The disk-jet connection and observational tests Alexander (Sasha) Einstein Fellow UC Berkeley Tchekhovskoy Black Hole Power Balance Pj M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Black Hole Power Balance • What sets Pj ? Pj M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Black Hole Power Balance • What sets Pj ? • How does Pj Pj connect to 2 ˙ Mc ? M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Black Hole Power Balance • What sets Pj ? • How does Pj connect to 2 ˙ Mc ? • How can we probe disk-jet connection Pj M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Black Hole Power Balance • What sets Pj ? • How does Pj connect to 2 ˙ Mc ? • How can we probe disk-jet connection - observationally? Pj M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Black Hole Power Balance • What sets Pj ? • How does Pj connect to 2 ˙ Mc ? • How can we probe disk-jet connection - observationally? - theoretically? Pj M˙ c2 Thick disks and rotating black holes power jets (Meier 2001) Jets Affect Galaxies/Clusters Perseus Cluster Alexander (Sasha) Tchekhovskoy (Fabian et al. 2003) Meierfest Jets Affect Galaxies/Clusters Perseus Cluster1062 M87 Alexander (Sasha) Tchekhovskoy (Fabian et al. 2003)FORMAN ET AL. (Forman et al. 2007) Meierfest Jets Affect Galaxies/Clusters Perseus Cluster1062 (Fabian et al. 2003)FORMAN ET AL. (Forman Cosmic Feedback from AGN M87 et al. 2007) 125 (McNamara et al. 2009) MS0735.6 Alexander (Sasha) Tchekhovskoy Meierfest Jets Affect Galaxies/Clusters “M-sigma” relation: BH mass and stellar velocity 750 dispersion are correlated • Growth of the central BHs and their host galaxies are inter-connected • • Jet feedback? Radiative feedback? Alexander (Sasha) Tchekhovskoy TREMAINE E (Tremaine et al. 2002) Fig. 7.—Data on black hole masses and dispersions for the galaxies in Meierfest Table 1, along with the best-fit correlation described by eqs. (1) and (19). • • AGN Radio Loud/Quiet Dichotomy RL Factor of 1000 difference in radio luminosity. . 2, 2007 RQ RADIO LOUDNESS OF AGNs (Sikora, Stawarz and Lasota 2007) 823 There must be at least one Fig. 1.—Total 5 GHz luminosity vs. B-band nuclear luminosity. BLRGs are RLby open circles, Seyfert galaxies, by filled circles, radio-loud quasars other parameter in addition marked and LINERs by crosses, FR I radio galaxies by open triangles, and PG quasars ˙: by filled stars. to M and M Pjet (M, M˙ ; ??) differences in the location of individual objects within the subsamples. Furthermore, at the largest accretion luminosities, where the lower pattern is occupied mostly by quasars hosted by giant (Sikora & Begelman 2013) elliptical galaxies, the relative location of the two sequencea is (Broderick & not significantly modified. Figure 3 we plot the dependence of the radio loudness, R, Fender 2012) onIn the Eddington ratio, k, assuming k ¼ Lbol /LEdd ¼ 10(LB /LEdd ) (Meier 1999, Blandford 1990, 7 (see, e.g., Richards et al. 2006). Our results confirm the trend of Tchekhovskoy et al. 2010) the increase of radio loudness with decreasing Eddington ratio, (Meier 2001) originally noticed by Ho (2002; see also Merloni et al. 2003; = Lbol /L Nagar et al. 2005). However, we show in addition that thisEdd trend Alexander (Sasha) Tchekhovskoy Meierfest • Magnetic flux? Ambient medium? BH spin? Disk thickness? RQ Jets: Beautiful and Challenging Artist’s depiction (Chandra X-ray Obs.) Cygnus A galaxy (radio, 6 and 20 cm) M87 galaxy 109 solar mass black hole (radio, 20 cm) Image courtesy of NRAO/AUI; R. Perley, C. Carilli & J. Dreher (radio, 7 mm) Walker et al. 2008 1 light year 1000 black hole radii NRAO/AUI and F. Owen 109 solar mass black hole 3000 light years Jets: Beautiful and Challenging FRI/FRII dichotomy (Fanaroff & Riley, 1974) (radio, 6 and 20 cm) M87 galaxy 109 solar mass black hole (radio, 20 cm) Artist’s depiction (Chandra X-ray Obs.) FRII Cygnus A galaxy FRI Image courtesy of NRAO/AUI; R. Perley, C. Carilli & J. Dreher (radio, 7 mm) Walker et al. 2008 1 light year 1000 black hole radii NRAO/AUI and F. Owen 109 solar mass black hole 3000 light years BH Pj ⇠ a 2 2 2 B rg c F G FB / 2 Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c (a/rg ) 2 BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a 2 2 2 B rg c / 2 (a/rg ) 2 Gravity limits Pj and ! BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a 2 2 2 B rg c Pj = k / 2 2 (a/rg ) 2 Gravity limits Pj and ! BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a B subdominant 2 2 2 B rg c 0 Pj = k =0 / 2 2 (a/rg ) 2 Gravity limits Pj and ! BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a B subdominant 2 2 2 B rg c 0 Pj = k =0 / 2 2 (a/rg ) 2 ˙ . Mc = MAX 2 B dominant Gravity limits Pj and ! BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a B subdominant 2 2 2 B rg c 0 Pj = k =0 / 2 2 (a/rg ) 2 2 ˙ . Mc = B dominant MagneticallyArrested Disk MAX (MAD) (Narayan+ 2003, Tchekhovskoy+ 2011) Gravity limits Pj and ! BH F G FB Disk What Sets Jet Power? magnetic flux: ⇠ Brg2 grav. radius: 2 rg = GM/c k Pj ⇠ a B subdominant 2 2 2 B rg c 0 Pj = k =0 How strong are the jets? / 2 2 (a/rg ) 2 2 ˙ . Mc = 2 ˙ pj = Pj /M c B dominant MagneticallyArrested Disk MAX (MAD) (Narayan+ 2003, Tchekhovskoy+ 2011) Much Larger Flux than Before Our grid extends out to 5 10 rg AT, Narayan, McKinney 2011, MNRAS, 478, L79 Much Larger Flux than Before Our grid extends out to 5 10 rg 3811 80No. 02 ,2, 2 .2008 oN YGOLOPOT DLEIF DNA ,SKSID ,STEJ JETS, DISKS, AND FIELD TOPOLOGY 1183 Beckwith, Hawley, Krolik 2008 ylthgils nwohs si ygolopot pool-elpitlum eht rof surot ehT .seigolopot dlefi )thgir( pool-elpitlum dna )elddim( elopurdauq ,)tfel( elopid fo snoitarugfinoc laitinI Fig. —.11.— .giF Initial configurations of dipole (left), quadrupole (middle) and multiple-loop (right) field topologies. The torus for the multiple-loop topology is shown slightly dlefi etacidni senil dehsad dna diloS .retemarap % sag eht sruotnoc roloc ,senil dlefi citengam etoned sruotnoc etihW .erutcurts dlefi laitini eht etartsulli rezoomed tteb ot dto embetter ooz illustrate the initial field structure. White contours denote magnetic field lines, color contours the gas % parameter. Solid and dashed lines indicate field .egap eht fo tuo tnerruc senil dehsad ,egap eht otni tnerruc etoned senilpolarity: dilos :ytsolid iraloplines denote current into the page, dashed lines current out of the page. gnitareneg ,tuo deraehs si sihT .surot eht nihtiw dlefi laidar elbaredis eht taht gnorts yltneicfifus si , M005 % t yb ,hcihw dlefi ladiorot egde renni eht evird ot snigeb 2 kbk ni tneidarg ladiolop gnitluser egde renni ehT .drawni ) M51 ¼ r ta detacol yllaitini( surot eht fo ksid eht nihtiW . M0001 % t ta eloh kcalb eht ta sevirra ksid eht fo eht enimreted lliw taht ecnelubrut eht setareneg IRM eht ,ydob yllacitsitats a , M0004 % t yb dna ,ksid eht fo noitulove tneuqesbus edisni dehsilbatse neeb sah wofl noitercca tnelubrut yranoitats .surot laitini eht fo egde renni eht fo suidar eht owt eht naht ylwols erom sevlove aPDT ledom dlefi ladiorot ehT ladiorot reilrae morf stluser eht htiw tnetsisnoc ,sesac dlefi ladiolop .)2002 kilorK & yelwaH ( snoitalumis nainotweN-oduesp dlefi roivaheb siht ,)2002( kilorK & yelwaH ni htgnel ta dessucsid sA snaem hcihw( dlefi laidar laitini na fo ecnesba eht morf htob smets morf dna )raehs ot eud noitacfiilpma dlefi ladiorot on si ereht taht evitceffe tsom eht era hcihw ,sedom htgnelevaw-gnol taht tcaf eht ylno nigeb nac woflnI .ylwols ylevitaler worg ,noitercca gnivird ni ,edutilpma tneicfifus fo ecnelubrut decudorp sah IRM eht nehw s t i b r o 5 t u o b a o t g n i d n o p s e r r o c , M0 0 0 4 ¼ t y b s r u c c o h c i h w etar noitercca ehT .mumixam erusserp surot eht fo suidar eht ta hcihw retfa , M 4 01 ; 5:1 ¼ t tuoba litnu sesaercni eloh eht otni .dnert llarevo na tuohtiw snoitautcufl egral swohs ti fo selfiorp laidar detargetni-llehs ,degareva-emit swohs 2 erugiF etar noitercca :woflRnoitercca eht ot tnaveler seititnauq fo rebmun a = ˙ eht ," d 2 1) ""g rrg( / Fi$h ¼ )r(! ytisned ecafrus , Fi)r( r U$h ¼ M þ )r( )LF ("r Th ¼ L ,ssam tser tinu rep mutnemom ralugna detercca ten ˙ / i)r( ) ME ("r T ME eht , Fi)r( 2 kbkh htgnerts dlefi citengam"eht" , M F mutnemom ralugna ME eht dna , Fi)r( ) ME (" rtT"h xufl gnitnyoP diufl eht etoned ME dna LF stpircsbus ehT . Fi)r( ) ME (j r"Tjh xufl llA .ylevitcepser ,rosnet ygrene-sserts eht ot snoitubirtnoc ME dna -ubrut eht retfa emarf etanidrooc eht ni detupmoc erew seititnauq -lov eht sesac lla ni dna ,dehsilbatse saw wofl noitercca tnel .dnuob saw rettam eht erehw sllec ot detcirtser saw largetni emu ¼ t emit revo degareva erew snoitalumis dlefi ladiolop ehT degareva erew atad dlefi ladiorot eht elihw , M000;01 Y M0004 . M005;81 Y M005;21 ¼ t revo elttil htiw esoht :spuorg owt otni dedivid eb yam stolp xis esehT detercca dna ytisned ecafrus( ygolopot dlefi laitini no ecnedneped denfied si r suidar a ta Q ytitnauq a fo egareva llehs eSimilarly, ht ,ylralimithe S shell average of a quantity Q at a radius r is defined to be eb ot R pffiffiffiffiffiffi ffiffiffiffiffiffip R " d ! d )" ;! ;r ; t(Qg" "gQ(t; r; !; ") d! d" R pffiffiffiffiffiffi ¼ Si)r(Qh Þ5 ð : : ð5Þ hQ(r)iS ¼ ffiffiffiffiffiffip R " d ! d g" "g d! d" denfied si r suidar ta Q fo egareva emit eht fo elfiorp The ralugangular na ehT profile of the time average of Q at radius r is defined by yb Z Z 2 2 ffiffiffiffiffiffip pffiffiffiffiffiffi Þ6 ð :" d td )" ;! ;r ; t(Qg" ¼ Ai)r ;!(Qh "gQ(t; r; !; ") dt d": ð6Þ hQ(!; r)iA ¼ T# #T Þ7 ð :si Q fo egareva emulov dna emiLastly, t eht ,ylthe tsaLtime and volume average of Q is: R pffiffiffiffiffiffi ffiffiffiffiffiffip R " d ! d rd td )" ;! ;r ; t(Qg" "gQ(t; r; !; ") dt dr d! d" R pffiffiffiffiffiffi ¼ ViQh hQiV ¼ : : ffiffiffiffiffiffip R " d ! d rd td g" "g dt dr d! d" ð7Þ ,detupmoc si largetni eht hcihw revo emit eht si T snoitaInuqthese e eseequations ht nI T is the time over which the integral is computed, rof ; M0006 ¼ T yllacipyT .tnanimreted cirtem lausuand ehtgsiisgthe dnausual metric determinant. Typically T ¼ 6000M; for ,noitulove lluf eht fo M0006 tsal eht si siht gPDQKDPg d na g P and DKQDPg this is the last 6000M of the full evolution, eht fo elddim eht ni wodniw M0006 a esoohc ew aPD while T roffor elihTDPa w we choose a 6000M window in the middle of the -xe laitaps ehT .dehsilbatse si wofl noitercca eht retfsimulation a noitalumiafter s the accretion flow is established. The spatial ex.niamod lanoitatupmoc " dna ! lluf eht si noitargetni lletent hs ehoft fthe o tnshell et integration is the full ! and " computational domain. sexufl laidar dna slargetni llehs suoirav ,noitalumis neDuring vig a gnairgiven uD simulation, various shell integrals and radial fluxes eb neht nac atad esehT .emit ni M yreve derots dna dare etupcomputed moc era and stored every M in time. These data can then be -emit ro latot eht sa hcus seititnauq niatbo ot emit revintegrated o detargetnover i time to obtain quantities such as the total or time.etar noitercca ro wofltuo averaged tej degarejet va outflow or accretion rate. owt otni slargetni emulov dna llehs eht edivid ot lufesu oItslis a salso i tI useful to divide the shell and volume integrals into two ,yticilpmis roF .wofl dnuobnu rof eno dna dnuob rof enparts, o htiwwith ,straone p for bound and one for unbound flow. For simplicity, -nU .1 > tUh" fi ’’dnuobnu‘‘ eb ot enoz ralucitrap we a endefine fied ew a particular zone to be ‘‘unbound’’ if "hUt > 1. Unhtiw sllec dnuobnu esoht sa denfied eb rehtruf nac wobound fltuo doutflow nuob can further be defined as those unbound cells with r eht( sixa eht raen wofltuo eht ylno ,snoitalumis esehtUnrI .> 0> 0. In Uthese simulations, only the outflow near the axis (the flesti ksid eht morf woflkcab lanoroc eht ;dnuobnu sijet )woutflow) ofltuo tejis unbound; the coronal backflow from the disk itself .dnuremains ob sniam bound. er ydoB ksiD .1.3 3.1. Disk Body aPDQ dna gPDK ni sksid noitercca eht fo noitulove laitThe ini einitial hT evolution of the accretion disks in KDPg and QDPa -noc htiw nigeb snoitarugfinoc dlefi htoB .ralimis yleisviqualitatively tatilauq si similar. Both field configurations begin with con- siderable radial field within the torus. This is sheared out, generating toroidal field which, by t % 500M, is sufficiently strong that the resulting poloidal gradient in kbk 2 begins to drive the inner edge of the torus (initially located at r ¼ 15M ) inward. The inner edge of the disk arrives at the black hole at t % 1000M . Within the disk body, the MRI generates the turbulence that will determine the subsequent evolution of the disk, and by t % 4000M, a statistically stationary turbulent accretion flow has been established inside the radius of the inner edge of the initial torus. The toroidal field model TDPa evolves more slowly than the two poloidal field cases, consistent with the results from earlier toroidal field pseudo-Newtonian simulations (Hawley & Krolik 2002). As discussed at length in Hawley & Krolik (2002), this behavior stems both from the absence of an initial radial field (which means that there is no toroidal field amplification due to shear) and from the fact that long-wavelength modes, which are the most effective in driving accretion, grow relatively slowly. Inflow can begin only when the MRI has produced turbulence of sufficient amplitude, which occurs by t ¼ 4000M, corresponding to about 5 orbits at the radius of the torus pressure maximum. The accretion rate into the hole increases until about t ¼ 1:5 ; 10 4 M , after which it shows large fluctuations without an overall trend. Figure 2 shows time-averaged, shell-integrated radial profiles of a number of quantities relevant to the accretionRflow: accretion rate ˙ ¼ h$U r (r)iF , surface density !(r) ¼ h$i / (grr g"" )1=2 d", the M F r net accreted angular momentum per unit rest mass, L ¼hT"( FL) (r) þ r ˙ , "the"magnetic field strength hkbk 2 (r)i , the EM T "(EM) (r)iF /M F r" " Poynting flux h Tt (EM) (r)iF , and the EM angular momentum flux hjT"r j(EM) (r)iF . The subscripts FL and EM denote the fluid and EM contributions to the stress-energy tensor, respectively. All quantities were computed in the coordinate frame after the turbulent accretion flow was established, and in all cases the volume integral was restricted to cells where the matter was bound. The poloidal field simulations were averaged over time t ¼ 4000M Y10;000M , while the toroidal field data were averaged over t ¼ 12;500M Y18;500M. These six plots may be divided into two groups: those with little dependence on initial field topology (surface density and accreted AT, Narayan, McKinney 2011, MNRAS, 478, L79 Much Larger Flux than Before Our grid extends out to 5 10 rg AT, Narayan, McKinney 2011, MNRAS, 478, L79 y z x log ⇢ z=0 x p [%] Tchekhovskoy et al 2011, MNRAS, 418, L79, arxiv:1108.0412 Alexander (Sasha) Tchekhovskoy Meierfest t (h/r∼0.3) (Tchekhovskoy, McKinney 2012, MNRAS, 423, 55; Tchekhovskoy 2015) 140 120 100 80 60 40 20 p [%] Maximum Jet Power vs. Spin 1.0 ptot 0.5 0.0 a 0.5 Can quantify feedback due to black hole jet, disk wind, radiative output from first principles That p > 100% unambiguously shows that net energy is extracted from the BH 1.0 (h/r∼0.3) (Tchekhovskoy, McKinney 2012, MNRAS, 423, 55; Tchekhovskoy 2015) 140 120 100 80 60 40 20 BH p [%] Maximum Jet Power vs. Spin 1.0 ptot pj Disk pw 0.5 0.0 a 0.5 1.0 Can quantify feedback due to black hole jet, disk wind, radiative output from first principles High spin: most power is from black hole spin (Blandford-Znajek) Low spin: most power is from disk spin (Blandford-Payne) (see also Meier 1999) (h/r∼0.3) (Tchekhovskoy, McKinney 2012, MNRAS, 423, 55; Tchekhovskoy 2015) 140 120 100 80 60 40 20 BH p [%] Maximum Jet Power vs. Spin 1.0 pj 0.5 0.0 a 0.5 1.0 (McKinney 05, Hawley & Krolik 06) Jets from MADs can be much more powerful than in previous simulations with tuned initial conditions. MAD connection to observations • This model has been fleshed out in the last year or two • Many connections to observations of active galactic nuclei, gamma-ray bursts, tidal disruption events, microquasars • Magnetic flux ˙pinned: need to determine only MBH , a, M • We are only getting started! MADs in AGN • Radio jet core is where jet becomes transparent to its own synchrotron radiation: ⌧ ⇠1 ⌫ • At higher ν, the core shifts inward B / (drcore )3/4 • • core ⌧⌫ ⇠ 1 Can use this to measure B in the jet Magnetic flux 2 ⇡ B⇡rcore ✓j2 (Zamaninasab, Clausen-Brown, Savolainen, Tchekhovskoy, 2014, Nature, 510, 126) Alexander (Sasha) Tchekhovskoy nucleus Meierfest MADs in AGN? • Observed scaling: • Strength of magnetic flux in radio-loud AGN is consistent with MAD expectation • Many AGN are MAD • Bjet / ‣ 1/2 Lacc their central BHs are surrounded by dynamically important magnetic field Evidence for MADs in Fermi blazars (Ghisellini et al. 2014, Nature) and nearby lowluminosity AGN (Nemmen & Tchekhovskoy 2015, MNRAS) (Zamaninasab, Clausen-Brown, Figure 2: Magnetic flux of the jet, jet /( ✓Tchekhovskoy, j ), vs. the expected magnetic flux threading the Savolainen, 2014, Nature) MAD BH surrounded by a MAD, = 50(L r2 /⌘c)1/2 . We remove the ✓ dependence in BH jet acc g j since the value of ✓j is uncertain, as discussed in the text. Here we assume an accretion • • • (Rees 1988, Phinney 1989) • MADs in tidal disruptions? Swift J1644 Unlucky star torn apart by BH gravity M˙ peaks, then decreases as mass reservoir depletes 2 B However, keeps increasing as more stellar magnetic flux falls in Image credit: NASA/CXC/M.Weiss Inevitably, MAD forms and launches jets M˙ B2 • • • • Prime example: Swift J1644 (Tchekhovskoy et al. 2014, MNRAS, 437, 2744) Stellar flux insufficient: flux can be dragged from ambient medium (Tchekhovskoy+ 2014). Did numerical experiments to check this (Kelley, Tchekhovskoy, Narayan, 2014, MNRAS) Similarly, MADs form in core-collapse GRBs (Tchekhovskoy & Giannios 2015) Jets far out Same spherically symmetric density distribution. Bromberg & Tchekhovskoy, in prep Low-power High-power Jet power different by 100x. (see also Nakamura and Meier 2004) Jet Power Controls the Morphology high-power low-power Tchekhovskoy & Bromberg, in prep Jet Power Controls the Morphology high-power low-power FRII Cyg A FRI M87 Tchekhovskoy & Bromberg, in prep • Summary Jet power is set by the weaker of: ‣ ‣ large-scale magnetic flux mass accretion rate M˙ ⟶ MAD • How to go MAD? ‣ either centrally accumulate a lot of ˙ ‣ or decrease M • MADs give us the upper envelope of disk-jet connection: • • ‣ ‣ galaxy feedback from first principles slow down black hole rotation to a halt over quasar lifetime MADs are around us: ‣ ‣ ‣ radio-loud active galactic nuclei tidal disruption events core-collapse gamma-ray bursts Much more work to be done to directly connect simulations to observations
© Copyright 2024