§14.7 Maximum and Minimum Values *單變數函數和多變數函數的差異 1. 鞍點(多變數函數) 2. 平滑單變數函數,兩個 local max ⇒ 一個 local min. 平滑多變數函數,兩個 local max ⇏ 一個 local min. *How to find such points? (1) Find critical points: (i). f x ( a, b) f y ( a, b) 0 (ii). fx or fy does not exist at ( a, b ). (2) 2nd Derivative Tests: Let f xx (a, b), f xy (a, b) f yx (a, b), f yy (a, b) Set D . (i). D 0, (or ) f ( a, b) local minimum and (a , b) is a minimum point. (ii). D 0, 0(or 0) f ( a, b ) local maximum. (iii). D 0 ( a, b) is a saddle point. (iv). For any other cases, the test fails. 1 國立交通大學應用數學系 莊重教授 Why? (2)-(i)的條件中 0 在x軸方向(a, b, f (a, b))是凹向上. D 0 其他所有方向也凹向上 . Proof. u h, k . Du f (a, b) f x h f y k . Du2 f Du ( Du f ) f xx h f xy k h f yx h f yy k k f xx h 2 2 f xy hk f yy k 2 ah 2 2hk k 2 k k 2 h ( ) . 2 If D 0 Du2 f 0 for any direction u. All directions at a, b, f (a, b) are concave up. Example 1: f ( x, y ) x 4 y 4 4 xy 1. Find local max, min and saddle point. Solution: f x 4 x 3 4 y 0 3 f y 4 y 4 x 0 (0,0), (1,1), (1,1) are critical points. f xx 12 x 2 f xy 4 f yy 12 y 2 D( x, y ) 144 x 2 y 2 16 D(0,0) 16 0. (0,0) is a saddle point. D(1,1) 128 0, f xx (1,1) 12 0. f (1,1) 1 is a local min. D(1,1) 128 0, f xx (1,1) 12 0. f (1,1) 1 is also a local min. 2 國立交通大學應用數學系 莊重教授 Theorem: f is continuous on a closed and bounded set D. ⇒(i) There exist absolute minimum and absolute maximum. (ii) Those extreme points occur at the critical points of f or the boundary of D. Example 2: Find the saddle points of the function f ( x, y ) x 3 3 xy 2 3x 2 3 y 2 4. Example 3: Find the local maximum and minimum and saddle points of the function f ( x, y ) x 3 y 2 3xy 5 Example 4: f ( x, y ) 2 x 2 x y 2 2, x 2 y 2 4. Find absolute extreme. Solution: f x 4x 1 1 x , y 0. fy 2y 4 ( x, y ) 1 ,0 4 f ( x, y ) 17 8 values 17 8 x2 y2 4 x2 x 2 2 x2 4,8, 7 4 max 8 occurs at x 2, y 0. min 17 1 occurs at x , y 0. 8 4 3 國立交通大學應用數學系 莊重教授 Example: f ( x, y ) x 2 2 xy 2 y on 0 x 3,0 y 2. Find absolute max and min. Solution: f x 2x 2 y x 1, y 1. f y 2 x 2 ( x, y ) (1,1) x0 0 y2 x3 0 y2 y0 y2 0 x3 0 x3 f ( x, y ) 1 2y 9 4y x2 x 22 0,4 1,9 0,9 0,4 value 1 0:absolute minimum. 9:absolute maximum. Example: A box with open top with constraint: Solution: ab 2bc 2ac 3 2 2 2 4a b c 3 64 4a 2 b 2 c 2 4 abc Maximum volume = 4 when ab = 2bc = 2ac ⇒ a = 2, b = 2, c = 1. Example: ( x, y , z ) satisfies x 2 y 3 z 6. Find max V xyz. Solution: 6 3 4 6 xyz xyz 3 3 4 2 Max V when x 2 y 3 z x 2, y 1, z . 3 3 4 國立交通大學應用數學系 莊重教授
© Copyright 2025