14.7 Maximum and Minimum Values

§14.7 Maximum and Minimum Values
*單變數函數和多變數函數的差異
1. 鞍點(多變數函數)
2. 平滑單變數函數,兩個 local max ⇒ 一個 local min.
平滑多變數函數,兩個 local max ⇏ 一個 local min.
*How to find such points?
(1) Find critical points:
(i).
f x ( a, b)  f y ( a, b)  0
(ii). fx or fy does not exist at ( a, b ).
(2) 2nd Derivative Tests:
Let   f xx (a, b),   f xy (a, b)  f yx (a, b),   f yy (a, b)
Set D 



     .

(i). D  0,    (or   )
 f ( a, b) local minimum and (a , b) is a minimum point.
(ii). D  0,   0(or   0)  f ( a, b ) local maximum.
(iii). D  0  ( a, b) is a saddle point.
(iv). For any other cases, the test fails.
1 國立交通大學應用數學系 莊重教授 Why?
(2)-(i)的條件中
  0  在x軸方向(a, b, f (a, b))是凹向上.
D  0  其他所有方向也凹向上 .
Proof.
u  h, k .
Du f (a, b)  f x h  f y k .
Du2 f  Du ( Du f )   f xx h  f xy k h   f yx h  f yy k k
 f xx h 2  2 f xy hk  f yy k 2
 ah 2  2hk  k 2
k  k 2


 h 
  ( )   .
  

2
If    D  0  Du2 f  0 for any direction u.
 All directions at a, b, f (a, b)  are concave up.
Example 1:
f ( x, y )  x 4  y 4  4 xy  1. Find local max, min and saddle point.
Solution:
 f x  4 x 3  4 y  0

3
 f y  4 y  4 x  0
 (0,0), (1,1), (1,1) are critical points.
f xx  12 x 2 f xy  4 f yy  12 y 2
D( x, y )  144 x 2 y 2  16
D(0,0)  16  0.
 (0,0) is a saddle point.
D(1,1)  128  0, f xx (1,1)  12  0.
 f (1,1)  1 is a local min.
D(1,1)  128  0, f xx (1,1)  12  0.
 f (1,1)  1 is also a local min.
2 國立交通大學應用數學系 莊重教授 Theorem:
f is continuous on a closed and bounded set D.
⇒(i) There exist absolute minimum and absolute maximum.
(ii) Those extreme points occur at the critical points of f or the boundary of D.
Example 2:
Find the saddle points of the function f ( x, y )  x 3  3 xy 2  3x 2  3 y 2  4.
Example 3:
Find the local maximum and minimum and saddle points of the function
f ( x, y )  x 3  y 2  3xy  5
Example 4:
f ( x, y )  2 x 2  x  y 2  2, x 2  y 2  4. Find absolute extreme.
Solution:
f x  4x 1
1
 x   , y  0.
fy  2y
4
( x, y )
 1 
  ,0 
 4 
f ( x, y )

17
8
values

17
8
x2  y2  4
x2  x  2
2 x2
4,8,
7
4
max  8 occurs at x  2, y  0.
min  
17
1
occurs at x   , y  0.
8
4
3 國立交通大學應用數學系 莊重教授 Example:
f ( x, y )  x 2  2 xy  2 y on 0  x  3,0  y  2.
Find absolute max and min.
Solution:
f x  2x  2 y
 x  1, y  1.
f y  2 x  2
( x, y )
(1,1)
x0
0 y2
x3
0 y2
y0
y2
0 x3
0 x3
f ( x, y )
1
2y
9  4y
x2
x  22
0,4
1,9
0,9
0,4
value
1
0:absolute minimum.
9:absolute maximum.
Example:
A box with open top with constraint:
Solution:
ab  2bc  2ac 3 2 2 2
 4a b c
3
64  4a 2 b 2 c 2
4  abc
Maximum volume = 4 when ab = 2bc = 2ac
⇒ a = 2, b = 2, c = 1.
Example:
( x, y , z ) satisfies x  2 y  3 z  6. Find max V  xyz.
Solution:
6 3
4
 6 xyz  xyz 
3
3
4
2
Max V  when x  2 y  3 z  x  2, y  1, z  .
3
3
4 國立交通大學應用數學系 莊重教授