期中考试 时间: 10:00-12:00, May. 9, 2015. 地点: 南强二 301 室 (50人) \302室(14人) 注意事项: 1. 提前20分钟到场; 2. 带科学计算器; 3. 请在每张答卷纸上写明学号、姓名及所属主讲老师 班级。 Chapter 5 Structures of Polyatomic Molecules (I) 1. Hybrid Orbital Theory 2. VSEPR Model (after-class reading) 3. Delocalized p-electrons/conjugation and Delocalized Molecular Orbital Theory 4. Hückel Molecular Orbital Theory and Conjugated Systems 5. Symmetry Rules for Molecular Reactions Chapter 5 Structures of Polyatomic Molecules (I) Please refer to Webtext: http://www.chem1.com/acad/webtext/chembond/cb06.html http://www.chem1.com/acad/webtext/chembond/cb07.html Linus Pauling (1901-1994) was the most famous American chemist of the 20th century and the author of the classic book The Nature of the Chemical Bond. He won the Nobel Prize in Chemistry in 1954 and the Nobel Peace Prize in 1962. §5.1 Hybrid Orbital Theory and Atomic Orbital Hybridization 1. Hybrid orbital theory -first proposed by Pauling in 1928 Two Modern Theories of Chemical Bonding VALENCE BOND THEORY • valence electrons are localized between two atoms (or as lone pairs). • half-filled atomic orbitals overlap to form bonds. VB theory demands orbital hybridization if necessary! MOLECULAR ORBITAL THEORY • valence electrons are delocalized. • valence electrons spread over entire molecule. MO theory describes hybridization of atomic orbitals more naturally and inherently ! How does MO theory deal with hybridization of AO’s? CMO cm mAO 2u* c2 > c 1 g (2s) (2 sA 2 sB ) g (2 pz ) (2 p A 2 p B ) c1 > c2 z LUMO 1pg 2p 2p Energy (LCAO-MO) 1st-order approximation: HOMO 2g 1pu z 2nd-order approximation: g (2 sp ) c1 g ( 2 s ) c2 g ( 2 pz ) c1 (2 sA 2 sB ) c2 (2 pz A 2 pz B ) ( c12 sA c22 pz A ) ( c12 sB 1u* sp-mixing 2s 1g 2s N N c22 pz B ) N : KK(1σ )2(1σ )2(1π)4(2σ )2 2 g u g Inequivalent sp-hybridization at each N atom Similarly, u ( 2 sp ) ( c12 sA c22 pz A ) ( c12 sB c22 pz B ) The -MOs of N2 consisting jointly of 2s and 2pz AOs, g / u (2 sp) (c12 sA c22 p A ) (c12 sB c22 p B ) z z z For each N atom, (a) 2s+2pz --HO1 1 (c12 s c22 pz ) z (b) 2s2pz --HO2 2 (c12 s c22 pz ) • Hybridization of AOs is inherently, though not explicitly, taken into account within the framework of MO theory! a. Central Themes of Valence Bond Theory Basic Principle of Valence Bond Theory: a covalent bond forms when the orbitals from two atoms overlap and a pair of electrons occupies the region between the nuclei. 1) Opposing spins of the electron pair. 2) Maximum overlap of bonding orbitals. 3) Hybridization of atomic orbitals, if required. Pauling proposed that the valence atomic orbitals in a molecule are different from those in the isolated atoms. We call this Hybridization! e.g., H2O b. Why do atomic orbitals need hybridization? • Suppose each bond arises from the overlap of an H1s orbital with one of the O2p orbitals. • This model suggests that the H-O-H bond angle should be 90, which differs significantly from the experimental value. Even worse, such a bonding motif poses very Use of O p - orbitals strong repulsion among the occupied 2s (O) AO and the two O-H bonds! b) Hybridization –sp3 a) No hybridization 104.5 90 b1 H2O b2 Inequivalent sp3 hybridization of O(2sp) AOs c. Why do atomic orbitals need hybridization? CH4 • Carbon has four valence electrons that are typically involved in the formation of 4 C-H bonds. • For a carbon atom bonded to four other atoms, experimental evidences suggested that all of the bonds have similar bonding orbitals. Hybrid Orbital Theory is phenomenological! d. How do atomic orbitals hybridize? • Hybridization of n AO’s of an atom gives rise to n hybrid orbitals (HO)! n {iAO }( i 1,..., n ) { jHO c jiiAO } ( j 1,..., n ) i 1 e.g., a sp3-hybridized orbital can be expressed as: h c12 s c22 px c32 py c42 pz • All n hybrids are equivalent except for directionality same energy. (Valid for equivalent hybridization!) 2. Construction of hybrid orbitals a. sp hybridization b. sp2 hybridization c. sp3 hybridization d. dsp3 (sp3d) hybridization (trigonal bipyramidal or square pyramidal) e. dsp2 (sp2d) hybridization (square planar) f. d2sp3 (sp3d2)hybridization (octahedral) g. More … (e.g., sp3d3f, or sp3d3) Bonding ability of AO: F 2l 1 Fs 1, Fp 3 , Fd 5 ... a. sp hybridization (linear species) • One s and one p AOs mix to form a set of two hybrid orbitals. + - + + - + - + + - For equivalent sp-hybridization: sp, =180, linear, 1 h1 (2 s 2 px ) Normalized & Orthogonal 2 1 hjhi d ij h 2 (2 s 2 px ) = |c2s|2=1/2 (component of s orbital) 2 Equivalent /inequivalent sp-hybridization Whether an atom adopts equivalent or inequivalent hybridization depends on its chemical environment! sp-hybridization at Be atom Cl-Be-Cl equivalent Cl-Be-Br inequivalent b. sp2 hybridization (trigonal planar) • One s and two p (px and py) AOs mix to form a set of three hybrid orbitals. • Equivalent case: 1 h1 s 3 1 h 2 s 3 1 h 3 s 3 2 2 px 3 1 2 px 6 1 2 px 6 1 2 py 2 1 2 py 2 sp2, D3h, =120º, trigonal = 1/3 (component of s-orbital) hi ai s bi 2 px ci 2 py For equivalent hybridization: the weighting of s orbital in each hybrid orbital is 1/3, and therefore ai 1 / 3 hi (1 / 3 )s bi2 px ci2 py Supposing h1 is parallel to the x-axis and is perpendicular to the y-axis, then we have h1 1 / 3s bi2 px h1 1 / 3s 2 / 32 px Normalization h1 1 / 3 s 2 / 3 2 px hi 1 / 3 s bi2 px ci2 py Normalization and orthogonality (i = 2 or 3) a1a2 b1b2 c1c2 0 1 / 3 2 / 3b2 0 c2 0 a2 b2 c2 1 1 / 3 b2 c2 1 2 2 2 b2 1 / 6 2 2 c2 1 / 2 h 2 1 / 3 s 1 / 62 px 1 / 2 2 py h3 1 / 3 s 1 / 6 2 px 1 / 22 py c. sp3 hybridization (tetrahedral) H equivalent hybridization H =1/4 H C H h2 1 h 2 [ s px p y pz ] 2 z h1 y x h4 1 h1 [ s px p y pz ] 2 h3 1 h 3 [ s px p y pz ] 2 1 h 4 [ s px p y pz ] 2 • One s and 3 p AO’s mix to form a set of four hybrid sp3 orbitals. 2 CH 4 , SiH 4 , GeH 4 , PX 4 , SO4 , PO4 3 Formation of four LMOs of CH4: h2 b LMO HO of C H 1s a ( s px p y pz ) / 2 1sa z a h1 y x d h4 c h3 b ( s px p y pz ) / 2 1sb c ( s px p y pz ) / 2 1sc d ( s px p y pz ) / 2 1sd iCMO CMO AO C AO' s of H atoms 1 a1 : s s (1sa 1sb 1sc 1sd ) / 2 2 t1 : x px (1sa 1sb 1sc 1sd ) / 2 2 t1 : y p y (1sa 1sb 1sc 1sd ) / 2 2 t1 : z pz (1sa 1sb 1sc 1sd ) / 2 iCMO cim mAO m CMOs of CH4 In light of the superposition principle, each LMO of CH4 can be expressed by a linear combination of its CMOs, i.e., LMO CMOs HO of C, H 1s a s x y z ( s p x p y pz ) / 2 1sa b s x y z ( s px p y pz ) / 2 1sb c s x y z ( s px p y pz ) / 2 1sc Yet to be normalized! d s x y z ( s px p y pz ) / 2 1sd It is provable that the four LMOs have the same energy! As CMOs are eigenfunctions of one-particle eigenequations, we have CMO CMO CMO CMO hˆ i i i & ( j )* i d ij j LMO 4 ci i j CMO i 1 4 4 & ci j / 1 E j 4 LMO ( j ( ci ) i / ( ci ) ( i ) / 4 ( 1 3 2 ) / 4 j 2 i 1 j 2 i 1 i 1 LMO LMO LMO LMO ) * hˆ j d / ( j ) * j d (for j 1,...,4) F d. dsp3 (sp3d) hybridization (bipyramidal) 1 2 h1 s px 3 3 1 1 1 h 2 s px py 2 3 6 1 1 1 h3 s px py 2 3 6 1 h 4 [ pz d z 2 ]; 2 z h3 x S h4 h1 h2 F F F F h5 F P y 1 h 5 [ pz d z 2 ] 2 F F The bond lengths will not be the same because there is more d contribution to the axial hybrid orbitals. In the case of dsp3, the axial bonds are shorter. In the case of sp3d, the axial bonds are longer. F e. dsp2 hybridization (square planar) d x 2 y 2 , s, p x , p y 1 h1 s 2 1 h 2 s 2 1 h 3 s 2 1 h 4 s 2 = 1/4 1 1 px d x 2 y 2 2 2 1 1 px d x 2 y 2 2 2 1 1 py d x 2 y 2 2 2 1 1 py d x 2 y 2 2 2 Square planar: D4h h3 y h1 h2 x h4 e.g., Ni(CN)42, AuCl4 f. d2sp3 (sp3d2) hybridization (Octahedral) 1 1 1 oc1 s px d x 2 y 2 z 2 6 2 1 1 1 3 52 y oc2 s p y d x2 y2 4 2 6 2 1 6 1 1 1 x oc3 s px d x2 y2 2 2 6 F F F F S F F d z 2 , d x 2 y 2 , s, 1 d z2 12 1 d z2 12 1 d z2 12 1 1 1 1 oc4 s p y d x2 y2 d z2 2 2 6 12 1 1 oc5 s pz 2 6 px , p y , pz 1 1 oc6 s pz 2 6 1 d z2 3 1 d z2 3 Hybridization schemes • spndm gives a “complete” set of hybrid orbitals for “any” geometry. sp sp2 sp3 sp3d (dz2) sp3d(dx2-y2) linear trigonal planar tetrahedral trigonal bipyramidal square pyramidal sp2d2 square pyramidal sp3d2 octahedral sp2d square planar 3. The angle between two hybrid orbitals 1) spn hybridization Let’s define hi h 2 s 1 2 p hi i 2 s 1 i 2 p i hj j 2 s 1 j 2 pj where pi is ij hj 2 p xi px yi2 py zi2 pz i Note the angle between the two vectors pi and pj is the angle ij between the two hybrid orbitals hi and hj , i.e., cos ij pi pj d Normalization and orthogonality 0 hihj d ( i s 1 i pi )( j s 1 j pj )d i j d (1 i )(1 j ) pi pj d 0 0 2 s 0 i j (1 i )(1 j ) cos ij cos ij i j (1 i )(1 j ) 0 ij 90 hi ij i j Equivalent hybridization. e.g., CH4 i j Non-equivalent hybridization. e.g., CHCl3, CH3Cl sp: = 0.5 cos = -1 sp2 : = 1/3 cos = 0.5 = 180.0 = 120.0 hj Equivalent hybridization 1 sp hybridization 4 3 i j 1 cos ij 3 (1 i )(1 j ) 109 28" 0 Non-equivalent hybridization sp3 hybrides z H t2 N H PH3, PF3, NF3, H t1 Other examples y X s-component of the N sp3 hybridized orbitals to form the N-H bonds. t3 t4 for NH 3 : HNH 107.3 (1 ) cos 107.3 0 0.23 HO ( N H ) 0.23s 0.77 p 0.48s 0.88 p Ls 1 3 * 0.23 0.31 Lp 3 3 * 0.77 0.69 lone pair 0.31s 0.69 p 0.56s 0.83 p s-component of the lone pair p-component of the lone pair For d-s-p hybridization, the angles between two hybrid orbitals can be calculated by: (where , and are the component of s, p and d orbitals) 3 1 2 cos ( cos ) 0 2 2 1 1 1 d sp : , , 3 2 6 1 1 3 1 1 2 cos ( cos ) 0 2 3 2 6 2 cos 1 0, cos 2 1 2 z 3 1 90 , 2 180 3 y 5 1 x Octahedral 4. The bonding ability of hybrid orbitals Atomic orbital bonding ability : s, p, d, f :1, 3, 5 , 7 n The bonding ability of a hybrid for the sp hybridizat ions, orbital is given by : 1 1 fh 3 5 Hybridization enhances the bonding ability of atomic valence orbitals!! 1 1 1 , , 6 2 3 , f h 1.932 sp f h 1.992 sp2 2 2 1 2 , 3 3 1 3 , 4 4 0, f h 2.00 sp3 fh 3 p 1, fh 1 s f h 2.925 d 2sp 3 5. Discussions F B sp2 e.g., BF3(D3h), BH3 (D3h), NO3, CO32 Example: BH3 • The B atom has 3 sp2 hybrid orbitals each with one electron. • This one electron pairs with the hydrogen 1s electron. • The 2pz AO of B atom is thus empty. F F Example: p pz+pz H C H tr3 H C C2H4 x H tr1 tr2 y C2H4 The sp2-hybridization and chemical bonding in C2H4. Example: nitrate (NO3-) --hybridization and delocalization dot-electron structure Resonance of three equivalent dot-electron structures –delocalization of p-electrons Example: Benzene --hybridization and delocalization The sp2 hybrid orbitals of C atoms and the 1s AOs of H atoms form the -framework of benzene. The unhybridized pz AOs of C atoms form a continuous cyclic 66 bond of benzene. 6. “Bent bond” model -- An alternative of hybrids “Bent bond” model of ethylene • No need to assume hybridization in the C atoms at all. • Directions of the p-orbitals in C atoms should be distorted sufficiently to provide the overlap for bonding. These bent bonds are called “banana bonds”. 6. “Bent-bond” Model -- an alternative of hybrids cyclopropane sp3 hybridization of C H2 C H2C CH2 Note the C–C bond angles are 120°— quite a departure from the tetrahedral angle of 109.5°associated with sp3 hybridization! Three “banana bonds” formed! In terms of MO theory, Dewar proposed that this molecule has -aromaticity and the C atoms adopt sp2-hybridization! You should understand that • Hybridization is not a physical phenomenon; it is merely a mathematical operation that combines the atomic orbitals we are familiar with in such a way that the new (hybrid) orbitals possess the geometric and other properties that are reasonably consistent with what we observe in a wide range (but certainly not in all) molecules. • Hybrid orbitals are abstractions that describe reality fairly well in certain classes of molecules (and fortunately, in much of the very large class of organic substances) and are therefore a useful means of organizing a large body of chemical knowledge... but they are far from infallible. Concept Map (I) Concept Map II §5.2 Valence Shell Electron-Pair Repulsion (VSEPR) Model • Quantum mechanical treatments have a number of advantages. However, the VSEPR model allows a simple qualitative prediction of molecular geometry. • In a molecule, the valence electron pairs are stabilized by electrostatic attraction exerted by the nucleus, but destabilized by Pauli repulsion exerted by neighboring electron pairs. • A lone pair is more diffuse than a bonding pair, exerting larger repulsion to a neighboring pair. A stable molecule should adopt such a geometry that minimizes the repulsions among its various electron pairs! VSEPR Repulsion of electron pairs LP-LP > LP-BP > BP-BP Atom B in ABn lies on the surface of a sphere; electron pairs are “localized” on a sphere of smaller radius at maximum distances apart, so as to minimize overlap of different electron pairs. 1. Repulsion between two lone pairs (LPs) is the greatest. 2. Repulsion between a lone electron pair and a bonding electron pair (BP) is less. 3. Repulsion between two bonding pairs is the least. 4. p electron pair does not influence stereochemistry. VSEPR model is used in combination with the Lewis dot-electron structures and hybrid orbital theory. Arrangements of Maximum distance between valence shell electron pairs. No. of pairs arrangement 2 Linear 3 Equilateral triangle 4 Tetrahedron 5 Trigonal bipyramid 6 Octahedron AX2 BeCl2, CaCl2 (linear) (2+2)/2=2 AX3 BF3 (trigonal plane) (3+3)/2=3 AX2E CCl2, SnCl2 (bent) (4+2)/2=3 AX4 CH4, AlH4-, CCl4, NH4+ (tetrahedral) (4+4)/2=4 AX3E NH3, NF3 (pyramidal) (5+3)/2=4 AX2E2 H2O, H2S (bent) (6+2)/2=4 (5+5)/2=5 (6+4)/2=5 (7+3)/2=5 (8+2)/2=5 (6+6)/2 (7+5)/2=6 For such molecule as XeF4, isomers exist! (8+4)/2=6 Repulsion of electron pairs LP -LP > LP-BP > BP-BP • N(VEP) = (7 + 4 + 1)/2 = 6; N(BP) = 4; N(LP) = 2 • Simply considering the pairs with a bond angle ~ 90º!!!!!!! • The first structure is preferred! Repulsion of electron pairs BP-BP < BP-LP < LP-LP • N(VEP) = (7+3)/2 =5; N(BP) = 3; N(LP) = 2 • The second structure is preferred! Molecular Stereochemistry No. of pairs of e formula stereochemistry point group 1 A2, AB none Dh or Cv 2 AB2 linear Dh 3 AB2e1 bent C2v 3 AB3 triangular D3h 4 AB2e2 bent C2v 4 AB3e1 pyramidal C3v 4 AB4 tetrahedral Td Molecular Stereochemistry No. of pairs of e- formula stereochemistry point group 5 AB2e3 linear Dh 5 AB3e2 T-shaped C2v 5 AB4e1 distorted tetrahedron C2v 5 AB5 trigonal bipyramid D3h 6 AB4e2 square planar D4h 6 AB5e1 square pyramid C4v 6 AB6 octahedron Oh VSEPR Example Lp Lp N N H H F 102° 107° H F F • Bond angles decrease with increasing electronegativity of the ligand or decreasing electronegativity of the central atom. • Why? The BP is more distant from the central atom upon increasing electronegativity of the ligand. ABnem (n = coordination number; m = number of lone pairs) An alternative view on the chemical bonding within hypervalent compounds 3-center 4-electron bond – VB (Coulson model) vs. MO (Rundle–Pimentel model ) description Example 1. XeF2 a) Classic view – Pauling’s model (d-orbital included). sp3d hybridization, 3 lone pairs + 2 axial Xe-F bonds b) 3-center 4-electron bond (d-orbital excluded). sp2 hybridization 3 lone pairs (equatorial) Axial 3c4e bond: Xe 5p (2e) + 2F 2p (2x1e) VB: Xe-F bond order =1/2 MO: 1 A(F 1 2 Xe F 2 ) 2 A(F 1 F 2 ) (occupied MOs) LUMO A(F 1 2 Xe F 2 ) Example 2. SF4 a) Classic view (inclusion of valence d orbital). sp3d hybridization, 1 lone pair + 4 S-F bonds b) 3-center 4-electron bond (exclusion of valence d orbital). sp2 hybridization 1 lone pair + 2 S-F (equatorial) Axial 3c4e bond (MO): S 3p (2e) + 2F 2p (1e) 1 AF 1 BS AF 2 2 A' (F 1 F 2 ) (occupied MOs) LUMO AF 1 BS AF 2 (A B) • This model counts well for the fact that the axial S-F bonds are longer than the equatorial ones. • Such bonding model can be used for similar hypervalent compounds, e.g., XeF4, BrF5 etc! §5.3 Delocalized p-electrons/conjugation and Delocalized Molecular Orbital Theory 5.3.1 Normal p bond H H C H C H C2H4 tr3 x tr1 tr2 y C2H4 i.e., 2c-2e p-bond Except the -framework, the remaining, unhybridized p orbital of C atom is perpendicular to the molecular plane, forming a p bond with that of a neighboring C atom. 5.3.2 Delocalized p bond m n n-orbital numbers, m-electron numbers (n>2) Conditions for the formation of a delocalized p bond • The atoms are coplanar, with every atom contributing a porbital orientated in the same direction. • The number of p electrons is less than twice of the number of participating p-orbitals. A. Some Inorganic conjugated molecules i. Linear type (AB2 16 valence electron) C: sp-hybridization + px + py p electrons : 16 - 4 - 4 8 3c-4e p-bond 2 34 : 34 ( x ) 34 ( y ) For x or y, we have three p-MOs, 1 2 1 p 2 [O (1) O (2)] 2 1 p 3 [O (1) 2C O (2)] 2 p 1 [O (1) 2C O (2)] bonding p1 p2 non - bonding anti - bonding p3 Isoelectronic analogy : CO2, NO2+, N2O, N3, COS, BeCl2, HgCl2 Note: While NO2+ has two equivalent 34 bonds, NO2 has just a 34 bond! ii. Non linear type(bent) (17~19 valence electron) sp2 orbital .. e.g., O3 (18 valence electrons) pz O 1 p 1 [1 22 3 ] 2 1 p 2 [1 3 ] 2 1 p 1 [1 22 3 ] 2 O ..p z .. p electrons : 18 - 6 - 8 4 34 34 O.. pz .. Central atom O: sp2 hybridization + pz bonding p1 non - bonding(HO MO) p2 anti - bonding(LU MO) p3 Isoelectron analogy: SO2 19 valence electrons: ClO2 4 3 53 anti-bonding non-bonding bonding iii. Equilateral triangular type: BCl3 D3h 24 valence electrons 24 Central atom B: sp2 hybridization non-bonding Cl -6 p c1 B (1) c2 Cl ( 2) c3 Cl ( 3) c4 Cl (4) anti-bonding Cl B 18 -12 Cl 6 p electrons : bonding 6 4 Isoelectronic analogy: AlF3, NO3-, CO32-, SO3, Cl2CO, (H2N)2C=O, Cl2C=S • For four-atom triangular type molecules, the pp-orbitals form one bonding, two nonbonding and one antibonding orbitals, in general. • For four-atom linear type molecules, the pp-orbitals form two bonding and two antibonding orbitals! B. Some organic conjugated molecules 6 6 10 10 NO2 H C CH2 C H H2C 44 10 9 6 6 4 3 5.3.3 The conjugation effects. i. The electrical conductivity is enhanced by the delocalization of p bond, e.g., graphene. ii. Color. The formation of delocalized p bonding increases the delocalized extent of the p electrons and causes the energy of the system to decrease. [n]Polyacene: laterally fused benzene rings 2n+1 4n+2 2n+1 4n 2 4n 2 Benzene, naphthalene, anthracene,.., pentacene, hexacene,… 1) HOMO-LUMO gap of oligoacene decreases with increasing of n. 2) Pristine oligoacene becomes instable with n > 5. 3) When n > 6, pristine oligoacene adopts an open-shell singlet ground state, i.e., biradical. (J. Am. Chem. Soc., 2004, 126, 7416) SOMO() SOMO() Two degenerate disjoint non-bonding orbitals of [n]polyacene. (n>6) iii. Acidity and basicity. A - NH 3 + H+ - H+ OH - H+ O- 8 7 4 3 4 3 NH2 8 7 Electron delocalization results in enhanced acidity of phenol and carboxylic acids as well as weakened basicity of amides and aniline. iv. Delocalization/conjugation effects on Chemical reactivity. e.g. H2C=CH-Cl. The formation of 34 causes a contraction of the C-Cl bond, and reduces the lability of Cl. e.g., the p-bond of Benzene shows much lower reactivity than that of simple alkenes. 5.3.4 Hyperconjugation. •First introduced in 1939 by R.S. Mulliken. •Hyperconjugation is the stabilizing interaction that results from the interaction of the electrons in a -bond (usually C–H or C–C) with an adjacent empty (or partially filled) non-bonding p-orbital or antibonding p orbital to give an extended molecular orbital that increases the stability of the system. •Only electrons in bonds that are to the positively charged carbon can stabilize a carbocation by hyperconjugation. 1.46 Å < 1.55 Å Hyperconjugation due to electron delocalization in simple alkanes. from (C-H) to p*(C≡C). Effects of hyperconjugation on Chemical properties. A. Bond length and bond energy: -bond: Shortening of bond length and increasing of bond energy. Bond type Hybridization C-C bond length (Å) C-C bond energy(kJ.mol-1) sp3-sp3 1.54 346.3 sp3-sp2 1.51 357.6 sp3-sp 1.46 382.5 B. Dipole moment The dipole moment of 1,1,1-trichloroethane is much larger than that of chloroform due to hyperconjugation. C. Stabilizing carbocations: (C-H) pp(C+) (CH3)3C+ > (CH3)2CH+ > (CH3)CH2+ > CH3+ §5.4 Hückel molecular orbital(HMO) theory and conjugated system p-type AO 5.4.1 HMO method • Proposed in 1931 by Hückel to deal with molecules with p-conjugation. nm • Later Modified by R. Hoffmann In light of the single-particle approximation, the p-electron Hamiltonian for a nm system is approximated by the form, m Hˆ p hˆ eff j j 1 (i.e., sum of one-electron Halmitonians) The total wavefunction of the nm system can be expressed as, m p j j 1 n ˆ E hˆ p - MO: c & H p p p p j j j ji i j eff j i 1 LCAO-MO: n-the number of C atoms; i-the p-AO of ith atom. hˆ eff j j j j n eff ( j c jii ) The exact form of h is unknown. Now use the variational method! i 1 * hˆ eff d & let E E Then make E E ...... 0 Variation Theorem c1 c2 cn Thus we have n secular equations ( in the matrix form), H 11 ES11 H 12 ES12 ... ... H 1n ES1n c1 0 c H ES H ES H ES ... ... 0 2n 2 n 2 21 22 22 21 ... ... ...... ...... ...... H ES H ES ... ... H ES n1 n2 n2 nn nn c n1 n 0 This demands the secular determinant to be zero, H 11 ES11 H 21 ES 21 ...... H n1 ES n1 H 12 ES12 ... ... H 1n ES1n H 22 ES 22 ... ... H 2 n ES 2 n No. of integrals: 0 H ~ n(n+1)/2 ij ...... ...... Sij ~ n(n+1)/2 H n 2 ES n 2 ... ... H nn ES nn To solve the secular equation, Hückel further introduced the following approximations, H ii i hˆ i d * --Coulombic integral H ij i hˆ j d (if i j 1) --Resonance integral * 0 (if i j 1) Sij i j d 1 * (if i j) --Overlap integral For a linear p-conjugation system, 0 (if i j 1) the secular determinant can thus be 0 (if i j 1) simplified as, αE β ... 0 0 Get {Ej} (n roots) For each E, get {Cji} How to determine the & integrals semiempirically? β 0 ... 0 αE β ... 0 ... 0 0 ... 0 0 0 ... ... ... β αE Semiempirical determination of the integrals H ii i hˆ i d * Coulombic integral: p-type AO energy of C! H ij i Hˆ j d (if i j 1) * 0 (if i j 1) e.g. C2H4 Resonance integral E 0 E x 1 0 ( x ( - E)/ ) 1 x x 1 E E2 Ep bond 2 E1 2 E0 2 Ep bond / 2 The p-bond energy of ethene can be determined by UV-vis spectroscopy. 2pA 2pB E0 E1 5.4.2 The HMO treatment for the p-bonding within 1,3-butadiene H2C=CH-CH=CH2 ψ c1φ1 c2φ2 c3φ3 c4φ4 Variation theorem Simplified secular equation by using Hückel approximations: 0 0 c1 0 E E 0 c2 0 0 c3 E 0 0 E c4 0 0 Seqular determinant: E 0 0 E 0 0 0 E 0 0 E αE let x , E α-βx β HMO method E 0 0 E 0 0 0 E 0 0 E x 1 0 11 ( 1 x 1 x 1 0 1 x 1 1 0 1 2 ( 1) 1 0 x 1 0 0 1 x x 1 0 0 1 x 1 0 0 0 1 x 1 0 0 1 x 1 1 11 x 1 2 1 x ( 1 x ( 1 1 1 x 0 x 1 11 x ( 1 1 0 1 x ( ( x x 1 x x 1 0 2 2 2 x 4 3x 2 1 0 2 αE let x , E α-xβ β x 1 0 0 1 x 1 0 0 0 1 x 1 0 0 1 x HMO method 3 H2C=CH-CH=CH2 4 2 1 x 4 3x 2 1 0 x 2 0.38 x2,3 0.618 2 x 2.62 x1,4 1.618 thus, E 4 1.618 Anti-bonding E3 0.618 Anti-bonding E 2 0.618 Bonding E1 1.618 Bonding (Note: , < 0) Now we can solve the secular equations to get the coefficients {ci}: x 1 0 0 c1 1 x 1 0 c2 0 1 x 1 c 0 3 0 0 1 x c 4 c1 x c 2 0 c1 c 2 x c3 0 c 2 c3 x c 4 0 c3 c 4 x 0 normalizat ion condition : c12 c22 c32 c24 1 1) By substituting x1 = -1.618, we get c1 c4 0.372,c2 c3 0.602 i.e., the p-MO is in the form 1 0.3721 0.6022 0.6023 0.3724 with E1 - x1 1.618 3 4 2 1 E1 1.618 E2 0.618 E3 0.618 E4 1.618 1 0.3721 0.6022 0.6023 0.3724 2 0.6021 0.3722 0.3723 0.6024 3 0.6021 0.3722 0.3723 0.6024 4 0.3721 0.6022 0.6023 0.3724 Antibonding MO (three nodes) E4 1.618 Antibonding MO (two nodes) E3 0.618 Bonding MO (One node) E2 0.618 Bonding MO (No node) E1 1.618 Delocalized energy Total p-electron energy in butadiene Epe (C4 H 6 ) 2 E1 2 E2 2( 1.618 ) 2( 0.618 ) 4 4.48 Total p-electron energy of two isolated C=C bonds Epe ( 2C C ) 2 2( ) 4 4 Thus, the delocalized energy or resonance energy is E2 || || E1 =+ E deloc Epe ( C4 H 6 ) Epe ( 2C C ) 0.48 0 Electron delocalization (p-conjugation) enhances the stability! 5.4.3 Population analysis and molecular diagrams of conjugated system i. Charge density --- the total p-electron density on the ith atom i nk ci2 (k ) k The probability of an electron in the kth MO to appear on the ith atom nk: number of electrons in the kth MO. (k ) ci (k )i i The p-electron density on the ith atom is: • For 1,3-butadiene, the two doubly occupied MOs are 1 2 (k )d ci2 (k ) i i nk ci2 (k ) k p 1 0.3721 0.6022 0.6023 0.3724 p 2 0.6021 0.3722 0.3723 0.6024 1 2 0.3722 2 0.6022 1.000 2 2 0.6022 2 0.3722 1.000 3 4 1.000 5.4.3 Population analysis and molecular diagrams of conjugated system ii. Bond order --- the strength of the p-bond between atoms i and j pij nk ci (k )c j (k ) k nk: number of electrons in the kth occupied MO. For 1,3-butadiene, the two occupied MOs are p 1 0.3721 0.6022 0.6023 0.3724 p 2 0.6021 0.3722 0.3723 0.6024 p12 2 0.372 0.602 2 0.602 0.372 0.896 p34 p23 2 0.6022 2 0.3722 0.448 p12 p34 2 p23 • The p-bond order of C1=C2 or C3=C4 is twice of the C2-C3 pbond order. After-class Problem As shown in the last few pages, the two occupied HMOs (1 & 2) of 1,3-butadiene are delocalized and expressed as 1 0.3721 0.6022 0.6023 0.3724 E1 1.618 2 0.6021 0.3722 0.3723 0.6024 E2 0.618 Let us consider the linear combinations of these two delocalized HMOs, which can be expressed as 1 ( 1 2 ) / 2 [0.974(1 2 ) 0.23(3 4 )] / 2 2 ( 1 2 ) / 2 [0.23(2 1 ) 0.974(3 4 )] / 2 Please prove the two wavefunctions, 1 and 2, have equal energy. Please figure out what they represent. iii. Free valence index --- the relative magnitude of the residue bonding ability of the ith atom In butadiene, the 1,4-sites Fi Pmax Pij ; Pmax 3 are more reactive than the j i 1 2,3-sites! F1 3 P12 3 0.896 0.836 F4 F2 3 P12 P23 3 0.448 0.896 0.388 F3 Example: 1,4 addition reaction of butadiene H2C=CH-CH=CH2 + Br2 BrH2C-CH=CH-CH2Br iv. Molecular diagram. 0.836 0.388 0.388 0.836 Pij 0.896 i 0.448 0.896 H 2C CH CH 1.000 1.000 1.000 CH2 1.000 Fi Another example: Please derive the secular determinant of trimethylenemethane. c1 E E 0 0 c2 p-MO 0 Variation c3 0 E 0 theorem cii c 0 0 E 4 i Then the secular determinant is E E 0 0 0 0 E 0 0 0 E x ( - E ) x 1 1 1 1 x 0 0 0 1 0 x 0 1 0 0 x 5.4.4 HMO treatments of cyclic conjugated polyenes (CnHn) e.g., p-conjugation in Benzene 6 cii i 1 Variation Theorem 0 0 0 c1 E E 0 0 0 c2 0 E 0 0 c3 0 0 E 0 c4 0 0 c 0 0 E 5 0 0 0 E c6 1 (1 2 3 4 5 6 ) 6 6 (b2 g ) 1 5 (e2u ) (2 3 5 6 ) 2 1 4 (e2u ) (21 2 3 24 5 6 ) 12 1 3 (e1g ) (2 3 5 6 ) 2 1 2 (e1g ) (21 2 3 24 5 6 ) 12 1 1 (a2u ) (1 2 3 4 5 6 ) E6 = -2 E4=E5= - E2=E3= + E1 = +2 General HMO solutions for cyclic conjugated polyenes (CnHn) E 2 E E 2 • When n=4m+1 or 4m+3, the system has a singly occupied HOMO, being radicaloid. • When n=4m, the system has two degenerate singly-occupied HOMOs (non-bonding), thus being diradicaloid. • Only when n= 4m+2 can a cyclically conjugated system has fully occupied HOMOs and be chemically stable. (fulfilling the Hückel rule of aromaticity!) §5.5 Graphical method to predefine the coefficients of HMOs for conjugated systems Background • The AO coefficients of HMOs for p-conjugated organic systems correlate with their geometries, displaying “quasi- 1 0.3721 0.6022 0.6023 0.3724 e.g., 1,3-butadiene 2 0.6021 0.3722 0.3723 0.6024 3 0.6021 0.3722 0.3723 0.6024 4 0.3721 0.6022 0.6023 0.3724 periodicity”. • Accordingly, a graphical method was developed by Q.E. Zhang et al. to predefine the AO coefficients of HMOs for such type of systems. n 5.5.1 Principle for linear conjugated [n]polyenes. Cii i 1 According to the Variation theorem, we have secular equations: C1(-E) + C2=0; C1 + C2(-E) + C3 = 0 C2 + C3(-E) + C4 = 0; …… Ck-1 + Ck(-E) + Ck+1 = 0 ; ……; whose matrix form is 0 E E 0 0 0 0 0 0 0 0 0 0 E 0 Cn-1 + Cn(-E) = 0 C1 C2 0 Cn 1 E Cn 0 0 let x ( E ) / 2cos E x 2 cos -2cos C1+C2=0 C1(-E)+C2=0 C1+C2(-E)+C3 =0 C2+C3(-E)+C4=0 …… Ck-1+Ck(-E)+Ck+1=0 -E -2cos C1 - 2cos C2+C3 =0 C2 - 2cos C3+C4=0 …… Cn-1 - 2cos Cn=0 …… Cn-1+Cn(-E)=0 C2 = 2cos C1, Ck+1 Ck-1 = 2cos Ck Cn-1 = 2cos Cn (cyclic formula) C3 = 2cos C2 C1 … , Ck+1 = 2cos Ck Ck-1 , … For a linear [n]polyene, Cn+1 = 0, C0 = 0) Ck 1 Ck -1 2cosCk sin1 sin 2 2 sin C 2 2cosC1 and let 1 2 2 cos 1 2 2 C k 1 2cosC k - C k-1 C1 sin C 2 2cossin sin2 C 3 2 cos C2 C1 2 cos sin 2 sin sin3 C 4 2 cos sin 3 sin 2 sin4 , ....... thus : C1 sin , C 2 sin2 , C 3 sin3 ,..., Ck sin k ,..., C n sinn Ci sin sin 2 sin 3 sin( n 1) sin n Thus, get get E = +2cos and {Ck} simultaneously! So we don’t have to solve algebraically the n-order secular determinant! Ci sin sin 2 sin 3 sin( n 1) sin n sin n 0 & sin( n 1 ) 0 (boundary condition) mp ( n 1 ) mp p ( m 1,2,3,..., n) n 1 mp Higher m, Em 2 cos (m 1,2,3,..., n) higher E. n 1 kmp 2 n kmp m A k sin( ) k sin( ) (m 1,2,3,..., n) n 1 n 1 k 1 n 1 k 1 n Normalization coefficient • For linear polyenes having even orbitals,there are n/2 bonding orbitals and n/2 antibonding orbitals. • For linear polyenes having odd orbitals,there are (n-1)/2 bonding orbitals, (n-1)/2 antibonding orbitals and a non-bonding orbital. Frontier MOs of [n]polyene: CnHn+2 mp 2 n kmp Em 2 cos , m sin ( ) (m 1,2,3,..., n) k n 1 n 1 k 1 n 1 a) When n=odd, SOMO, m = (n+1)/2, SOMO p / 2, ESOMO SOMO A(1 3 5 ...) Non-bonding! b) When n=even, HOMO, m= n/2; LUMO, m=(n+2)/2. HOMO np p p ( n 2 )p p p LUMO 2(n 1) 2 2( n 1 ) 2( n 1 ) 2 2( n 1 ) Coefficients of AO’s: HOMO LUMO n = 4l+2: Cn C1 , Cn 1 C2 , ... Cn C1 , Cn 1 C2 ,... n = 4l: Cn C1 , Cn 1 C2 ,... Cn C1 , Cn 1 C2 , ... which reflect the symmetry of HOMO and LUMO! Example: butadiene p MOs : (n=4) 4 A cii sin sin 2 sin 3 sin 4 i 1 sin 5 0 & sin 0, m 1 p/5 2 cos 1.618 E 1.618 mπ / 5 (m 1,2,3,4) 2 2p/5 0.618 0.618 3 3p/5 - 0.618 - 0.618 4 4p/5 - 1.618 - 1.618 2 mp 2mp 3mp 4mp m (sin 1 sin 2 sin 3 sin 4 ) 5 5 5 5 5 1 0.3721 0.6022 0.6023 0.3724 2 0.6021 0.3722 0.3723 0.6024 HOMO 3 0.6021 0.3722 0.3723 0.6024 LUMO 4 0.3721 0.6022 0.6023 0.3724 E1 1.618 , 1 0.3721 0.6022 0.6023 0.3724 symmetric E2 0.618 , 2 0.6021 0.3722 0.3723 0.6024 asymmetric E3 0.618 , 3 0.6021 0.3722 0.3723 0.6024 symmetric E4 1.618 , 4 0.3721 0.6022 0.6023 0.3724 asymmetric Major sym. element : trans-butadiene: C2 cis-butadiene: CS Note: These p–MOs are either symmetric or asymmetric with respect to the C2 (or CS) operation! Can we obtain the p–MOs based on their symmetries? 5.5.2 Symmetry classification a. [n]polyenes with even-number carbon atoms: CnHn+2 (n/2) 1 (n/2) 2 Symmetric MOs: 1 2 C1 C1' C2 C2' ..., Cn / 2 C( n / 2 )' 3 3 (n 1) 1 1 (n 1) cos cos cos , cos cos cos 2 2 2 2 2 2 & Ck 1 Ck 1 2Ck cos (Cyclic formula) Let coefficients of central atoms (1 & 1) be cos( / 2 ) 3 3 C2 C2' 2 cos cos cos (cos cos ) cos cos 2 2 2 2 2 2 3 5 5 C3 C3' 2 cos cos cos (cos cos ) cos cos 2 2 2 2 2 2 ..., C( n / 2 ) C( n / 2 )' ( n 1) cos 2 Symmetric MOs: 1 1 n 1 n3 n3 n 1 cos , cos cos cos cos cos 2 2 2 2 2 2 (n/2) 1 1 (n/2) Boundary condition: cos n 1 0 2 n 1 2m 1 2m 1 n p ( m 0 ,1,2 ,..., ) p 2 2 n 1 2 2m 1 n sym E m 2 cos p ( m 0 ,1,2 ,..., ) n 1 2 A total of n/2 values Asymmetric MOs: & Ck 1 Ck 1 2Ck cos C1 -C1 , C2 C2 ,..., Let coefficients for central atoms be sin( / 2 ), sin( / 2 ) n3 n 1 Ci sin n 1 , sin n 3 sin , sin 2 2 2 2 Then coefficients for terminal atoms are sin n 1 and sin n 1 2 2 The boundary condition: n 1 n 1 sin 0 mp 2 2 2mp n A total of n/2 values. (m 1,2,..., ) n 1 2 2mp n E 2 cos (m 1,2,..., ) n 1 2 2m 1 n p (m 0,1,2,..., ) Symmetric MOs Esym 2 cos n 1 2 2m n E 2 cos p ( m 1 , 2 ,..., ) Asymmetric MOs asym n 1 2 Thus, the lowest n/2 MOs (<p/2) are bonding and doubly occupied! n= 4k n/2= 2k (n+2)/2= 2k+1 n= 4k+2 n/2= 2k+1 (n+2)/2= 2k+2 LUMO Symm. Asymm. HOMO Asymm. Symm. … E (n+2)/2 E(n+2)/2 E4 E3 E2 E1 … … En/2 n/2 4 3 2 1 Asymm. Symm. Asymm. • Even-numbered MO’s are asymmetric. Symm. • Odd-numbered MO’s are symmetric. 2m 1 n p (m 0,1,2,..., ) Symmetric MOs Esym 2 cos n 1 2 2m n E 2 cos p ( m 1 , 2 ,..., ) Asymmetric MOs asym n 1 2 Thus, the lowest n/2 MOs (<p/2) are bonding and doubly occupied! n = 4k FMO symmetry Asymm. n n p m 4 2( n 1) Symm. n n2 p m 4 2(n 1) HOMO Symm. n2 m 4 LUMO Asymm. m HOMO LUMO E E asym n 2 cos p 2( n 1) Esym n2 2 cos p 2(n 1) n = 4k+2 n2 4 n n p Esym 2 cos p 2( n 1) 2(n 1) n2 p E asym 2 cos n 2 p 2(n 1) 2( n 1) C2 or v Example: hexatriene n=6 Symmetric MO Asymmetric cos 5 ( ) 2 3 ( ) 2 1 ( ) 2 1 ( ) 2 3 ( ) 2 5 ( ) 2 5 [ ] 2 3 [ ] 2 1 [ ] 2 1 [ ] 2 3 [ ] 2 5 [ ] 2 sin 7 2m 1 cos 0 p (m 0,1,2) Symmetric MO: 2 7 m 0,1 ( E α , bonding) 2m 1 E 2 cos p ( m 0,1,2) m2 ( E α, anti - bonding) 7 Asymmetric MO: sin 7 0 2m p (m 1,2,3) 2 7 2m E 2 cos p 7 ( m 1,2,3) m 1 m 2,3 bonding anti - bonding Three doubly occupied MOs, two sym. + one asym. b. [n]polyenes with odd-number carbon atoms Symmetric MOs: 1 cos n 1 cos n 3 2 2 0 1 [(n-1)/2] cos , 11, cos n 1 n3 cos cos 2 2 [(n-1)/2] Ck 1 Ck 1 2Ck cos & C0 1, C1 C1' ,..., C [( n 1 ) / 2 ] C [( n 1 ) / 2 ]' C1 C1' cos C2 2C1 cos 1 cos 2 ..., C( n 3 ) / 2 n 1 n3 cos C( n 1 ) / 2 cos 2 2 Boundary conditions: 2m 1 n 1 n 1 n 1 2m 1 p ( m 0 ,1,2 ,..., ) 0 p n 1 2 2 2 2 2m 1 n 1 E sym 2 cos 2 cos p ( m 0 ,1,2 ,..., ) n 1 2 cos Asymmetric MOs: sin [(n-1)/2] 1 n 1 n3 sin 2 2 sin , 0, 0 - sin sin 0 [(n-1)/2] 1 n3 n 1 sin 2 2 Ck 1 Ck 1 2Ck cos & C0 0 , C1 -C1' ,..., C [( n 1 ) / 2 ] -C [( n 1 ) / 2 ]' Let C1 -C1 sin C2 2C1 cos sin2 ... C [( n 3 ) / 2 ] sin[(n - 3) / 2 ] -C [( n 3 ) / 2 ] C [( n 1 ) / 2 ] sin[(n - 1) / 2 ] -C [( n 1 ) / 2 ] Boundary condition: sin n 1 0 2m p ( m 1,2 ,..., n 1 ) n 1 2 2 E asym 2m 2 cos 2 cos p n 1 n 1 ( m 1,2 ,..., ) 2 MOs of [n]polyenes with odd-number carbon atoms … 2m n 1 p (m 1,2,..., ) Asymmetric MO’s: E asym 2 cos n 1 2 Symmetric MO’s: Esym 2 cos 2m 1 p ( m 0,1,2,..., n 1) n 1 2 • Even-numbered MO’s are asymmetric. • Odd-numbered MO’s are symmetric. E ne , (n-1)/2 MOs doubly occupied, and one E(n+3)/2 (n+3)/2 (n+1)/2 (n-1)/2 E(n+1)/2 non-bonding SOMO! … … E(n-1)/2 E2 E1 p n = 4k+1 SOMO 2 Asym. 1 Sym. (n+1)/2= 2k+1 Sym. = p/2 ESOMO = n = 4k+3 (n+1)/2= 2k+2 Asym. = p/2 ESOMO = FMOs of [n]polyenes with odd-number carbon atoms n 1 n3 cos , cos cos , 1, cos 2 2 Symmetric: n 1 n3 θ , - sin θ sin θ , 0, sinθ Asymmetric: sin 2 2 n3 n 1 cos , cos 2 2 - sin n3 n 1 θ , - sin θ 2 2 nep, (n-1)/2 MOs doubly occupied, and one non-bonding SOMO! SOMO n = 4k+1 symmetric n = 4k+3 asymmetric E α 2 β cos θ p / 2, E p / 2, E p / 2, E n ψ SOMO A ( φ1 φ3 φ5 ...) k 1 Simplified diagram of SOMO: n=4k+1 n=4k+3 Example: ( 2) n=5 [2] (1) ( 0) (1) ( 2) [1] [ 0] [1] [2] asymmetric symmetric 2m 1 cos3 0 p (m 0,1,2) 6 m 0, p/6, Es1 1.732 2m 1 E α 2 β cos π m 1, 3p/6,Es 2 6 (m 0,1,2 ) m 2, 5p/6,Es 3 1.732 Symmetric MOs: 1 1 3 3 1 Ψs1 ( φ1 φ2 φ3 φ4 φ5 ) Bonding 3 2 2 2 2 1 Ψs 2 ( φ1 φ3 φ5 ) 3 Non-bonding 1 1 3 3 1 Ψs 3 ( φ1 φ2 φ3 φ4 φ5 ) anti-bonding 3 2 2 2 2 Example: ( 2) n=5 [2] Asymmetric MOs: (1) ( 0) (1) ( 2) [1] [ 0] [1] [2] asymmetric sin 3 0 & sin 0 m E 2 cos p 3 symmetric mp ( m 1,2) 3 ( m 1,2) m 1, p / 3, Eas1 bonding m 2 , 2p / 3, Eas 2 anti - bonding 1 Ψas1 ( φ1 φ2 φ4 φ5 ) Bonding 2 1 Ψas 2 ( φ1 φ2 φ4 φ5 ) Anti-bonding 2 Example: ( 2) n=5 [2] (1) ( 0) (1) ( 2) [1] [ 0] [1] [2] asymmetric symmetric 1 1 3 3 1 s 3 ( 1 2 3 4 5 ) 3 2 2 2 2 3 1 as 2 ( 1 2 4 5 ) 2 - 1 s 2 ( 1 3 5 ) 3 1 as1 ( 1 2 4 5 ) 2 1 1 3 3 1 s1 ( 1 2 3 4 5 ) 3 2 2 2 2 3 c. Cyclic conjugated molecules Example 1: benzene ---solution I (n=6 !) Boundary condition: 2 3 ( ) 2 i) Symmetric MOs 2k 1 Ck Ck ' cos 2 1 ( ) 2 n (k 1,2,.. ) 2 3 4 1 5 ( ) 2 2 cos Ck C k 1Ck 1 1 ( ) 2 6 5 v 5 ( ) 2 2 cos C6 C 5C1 5 5 3 2 cos cos cos cos 2 2 2 7 5 cos cos 0 2 sin 3 sin 0 2 2 2 sin 3 0 mp / 3 (m 0,1,2) 2 cos 2, 1, 1 3 ( ) 2 θ cos θ 2 cos θ E θ 0 0 , 1 2 α 2β 60 , 1/2 1 α β 120 - 1/2 -1 α- β E α 2β ψ1 N ( φ1 φ2 φ3 φ4 φ5 φ6 ) 60 α β 1 ( ) 2 2 3 ( ) 2 4 1 5 ( ) 2 6 1 ( φ1 φ2 φ3 φ4 φ5 φ6 ) 6 ψ2 N ( 0 3 1 ( ) 2 5 3 ( ) 2 5 ( ) 2 Bonding 3 3 3 3 φ2 φ3 0 φ5 φ6 ) 2 2 2 2 1 ( φ2 φ3 φ5 φ6 ) 2 1 1 1 1 ψ N ( φ1 φ2 φ3 φ4 φ5 φ6 ) 120 α β 3 2 2 2 2 1 ( 2φ1 φ2 φ3 2φ4 φ5 φ6 ) 6 Bonding Antibonding ii) Asymmetric MOs Boundary condition: 2 cos Ck C k 1Ck 1 5 3 5 2 cos sin sin sin 2 2 2 7 3 3 5 sin sin sin sin 2 2 2 2 7 5 sin sin 0 sin 3 cos 0 2 2 2 m sin 3 0 p (m 1,2,3) 3 1 [ ] 2 3 [ ] 2 3 2 4 1 5 [ ] 2 1 [ ] 2 5 6 3 [ ] 2 5 [ ] 2 v 60 , 120 , cos 1/2 - 1/2 2 cos 1 -1 E 4 5 180 -1 -2 - 2 6 θ 60 E α β 120 α β 180 α 2 β 1 (21 2 3 24 5 6 ) Bonding 6 1 5 (2 3 5 6 ) Anti-bonding 2 1 6 (1 2 3 4 5 6 ) Anti-bonding 6 E 6 -2 4 1 [ ] 2 5 3 2 4 1 - 3 [ ] 2 + +2 2 3 4 1 5 [ ] 2 1 [ ] 2 6 5 5 [ ] 2 3 [ ] 2 Example 2: benzene ---solution II (n= 7! ) i) Symmetric MOs Boundary condition: 2 cos Ck C k 1Ck 1 (0) (1) 6 v 1 2 (1) 2 cos cos 3 cos 2 cos 2 3 cos 4 cos 2 2 cos 2 cos 4 - cos 2 0 (2) 5 ( 2) 4 sin 3 sin 0 sin 3 0 (3) (3) m 7 p ( m 0 ,1,2 ,3 ) Similar to the linear 3 2 polyene (n=7) case by supposing the 0 , 60 120 180 two terminal atoms cos 1 1/2 - 1/2 -1 overlapping! 2 cos 2 1 E 2 1 2 bonding -1 - 3 -2 2 4 anti - bonding ii) Asymmetric MOs sin 3 sin 3 and sin 0 Question: Why do m we exclude the sin 3 0 p (m 1,2 7/2) case of m = 3? 3 60 , cos 1/2 2 cos 1 E 1 bonding 120 - 1/2 -1 - 2 anti - bonding Please derive the MOs after class! v [ 0] 1 [1] 6 2 [1] 5 [2] 3 [ 2] 4 [3] [3] Complicated p-conjugation: e.g., benzyl radical How to get the coefficient of atom 7? 1) Symmetric MOs: The secular equation centred at atom 6 : C6 ( E ) C4 C5 C7 0 let - 2cos ( E ) / C7 2 cos C6 C4 C5 2 cos cos 3 2 cos 2 cos 4 cos 2 Boundary condition: 2 cos C C 7 6 2 cos (cos 4 cos 2 ) cos 3 2 cos 0, (3 2 )1 / 2 2) Asymmetric MOs: The coefficients of atoms 1,6 and 7 that are located in the reflection plane should be 0. Then sin 3 0 mp / 3 (m 1,2) 2 cos 1 Remarks on HMO treatment of system with complicated pconjugation, 1) The use of symmetry can simplify the process. e.g., naphthalene 2) Secular equations pertaining to the multiply connected atoms should be carefully considered! Example: Please derive the HMOs of trimethylenemethane (44) without directly solving its secular determinant. §5.6 Symmetry of molecular orbital and symmetry rules for molecular reactions Brief introduction: • Frontier Molecular orbital (FMO) Theory proposed by K. Fukui in early 1950s. • The Principle of Orbital Symmetry Conservation proposed by R.B. Woodward (1965 Nobel Prize) and R. Hoffmann in 1965. • Owing to their aforementioned contributions, Fukui and Hoffmann were awarded Nobel Prize in Chemistry in 1981. 5.6.1 Frontier molecular orbitals Theory (1951) • A deeper understanding of chemical reactivity can be gained by focusing on the frontier orbitals of the reactants. • We need to consider only two frontier molecular orbitals (FMOs), the HOMO and LUMO, to predict the structure of the product. Highest occupied molecular orbital (HOMO) Lowest unoccupied molecular orbital (LUMO) •The FMO theory can be regarded as a natural extension of MO theory that facilitates us to obtain qualitative understanding of chemical reactivity. Reaction condition 1. During the course of a chemical reaction, the orbitals that are most readily accessible for interaction are the frontier orbitals. 2. When two molecules approach each other, the symmetry of the HOMO of one molecule must be compatible with that of the LUMO of the other molecule, i.e. orbitals with the same sign will overlap. This forms a transition state which is relatively stable and is a symmetry-allowed state. 3. The energy levels of the interacting HOMO and LUMO must be comparable ( < 6 eV). 4. When the HOMO and LUMO of two molecules overlap, electrons are transferred from the HOMO of one molecule to the LUMO of the other molecule. The direction of the transfer should be in line with the electronegativities and be consistent with the weakening of the original bond. H 2 I 2 2HI example A : H H H e H 2HI I I I I H 2 : ( 1s ) 2 ( 1s *)0 Symmetryincompatible overlap=0 I 2 : ( 5 p ) 2 (p 5 p ) 4 (p 5 p *)4 ( 5 p *)0 LUMO(H2) e HI e 2I I H 2 HI H HI H 2 I 2 2 HI (b) HOMO(I2) Electronegativityincompatible Real mechanism I2 HOMO(H2) (a) LUMO(I2) I e H2 I H 2 : ( σ1s )2 ( σ1s*)0 I 2 : ( σ5 p )2 ( π5 p )4 ( π5 p*)4 ( σ5 p*)0 Such a three-step mechanism meets all requirements! Example B:C2H4 + H2 C2H6 C2H4 + + + - - - - + p HOMO H 2 : ( 1g ) 2 ( 1u ) 0 - p* LUMO HOMO Without catalyst LUMO HOMO + - - + + LUMO With TM catalyst + + C2H4 - - HOMO H2 - + LUMO Overlap=0 incompatible in symmetry + - - + - + - + C2H4 H2 e Example C, N 2 O2 2 NO × * N 2 : KK ( 1σ g )2 ( 1σ u )2 ( 1πu )4 ( 2σ g )2 ( 1π g*)0 * O2 : KK ( σ 2 s )2 ( σ 2 s )2 ( σ 2 pz )2 ( π 2 px )2 ( π 2 py )2 ( π 2 px*)1( π 2 py*)1 HOMO (N2) SOMO (O2) overlap=0 Incompatible symmetry! Though both N2 and O2 are abundant in the atmosphere of the Earth, no such reaction can occur without catalyst! LUMO (N2) e SOMO (O2) Unreasonable electron transfer! Example D: C4 H 6 C2 H 4 Diels-Alder Reaction A Nobel-prize-wining Rxn! [4+2]-p-electrons Transition state • We can illustrate the HOMO-LUMO interactions by way of the Diels-Alder reaction between ethylene and 1,3-butadiene. • We need consider only the p electrons of ethylene and 1,3butadiene, and ignore the framework of bonds in each reactants. p-MOs of 1,3-Butadiene p-MOs of ethylene LUMO LUMO HOMO HOMO v v Correlation of FMOs v v LUMO e HOMO HOMO e LUMO FMOs of two reactants can overlap effectively! • Symmetry-allowed and thermally activated. Example E: A thermally "forbidden" reaction H2C H2C + CH2 CH2 • The dimerization of ethylene to give cyclobutane does not occur under conditions of typical Diels-Alder reactions(heating). i.e., it’s thermally forbidden. • Why? A thermally "forbidden" reaction 2H2C CH2 • HOMO-LUMO mismatch of two ethylene molecules in their ground state precludes single-step formation of two new bonds! The addition reaction is thermally forbidden, but allowed between two photo-excited ethenes. Example F: 2,4,6-Octatriene Thermal Electrocyclic Reactions p-MOs E v 6 5 4 3 LUMO + + - v HOMO disrotary v 2 1 This reaction is thermally allowed with the stereochemistry of its product governed by the symmetry-allowed disrotary. - + - Photochemical Electrocyclic Reactions Example G: 2,4,6-octatriene 6 p-MOs C2 5 4 LUMO 3 HOMO hv HOMO C2 conrotary LUMO 2 1 This photochemical cyclic reaction occurs with the stereochemistry of its product being governed by the symmetry-allowed conrotary. Stereochemical Rules for the Electrocyclic Reactions of [n]polyenes (n =even) Number of Electron pairs (double bonds) Thermal Reaction Photochemical Reaction Even (i.e., n= 4k) conrotatory disrotatory Odd (i.e., n= 4k+2 ) disrotatory conrotatory Why ? [n]Polyenes with even-number pp-orbitals. n 1 n3 cos θ , cos θ 2 2 Symm. θ θ cos , cos 2 2 Upon v Asym. v n 1 n3 sin , sin sin , sin 2 2 2 2 HOMO v / C2 n=4k (k=1,2,,..): Asym / Sym Nature of FMOs n=4k+2 (k=1,..): Sym / Asym cos n3 n 1 θ , cos θ 2 2 n3 n 1 sin , sin 2 2 LUMO v / C2 Sym / Asym Asym / Sym Thermal reaction (HOMO-based) Photo-reaction (LUMO-based) n=4k Conrotary (C2) Disrotary (v) n=4k+2 Disrotary (v) Conrotary (C2) Stereochemical rules for electrocyclic reactions [1,n] sigmatropic shift : stereochemical rules [1,5]--shift [1,7]--shift Suppose the transition state of such reaction is a combination of H atom and a [n]polyene with odd-number pp orbitals. [n]Polyenes: n=odd ci cii sin( n 1) , sin n sin , sin 2 .... mp/(n 1); E 2 cos (m 1,2,....n) i If n =odd, SOMO, m = (n+1)/2, somo p / 2, Esomo c1 sin( p / 2) 1; c2 0; c3 -1; ..., cn sin( np / 2) n SOMO A (1 3 5 ...) k 1 Sigmatropic shift Symmetry of SOMO v C2 TS symmetry Mode n= 4k+1 Sym. Asym. v Suprafacial n= 4k+3 Asym. Sym. C2 Antarafacial Note that the H-transfer demands both ends of SOMO of [n]polyene (n=odd) to overlap effectively with the H 1s orbital. • The sigmatropic H-transfer demands both ends of SOMO of such [n]polyene (n=odd) can overlap with the H 1s orbital. i.e., n=4k+1 Suprafacial mode n=4k+3 antarafacial mode TS requires CS-symmetry! TS requires C2-symmetry! QM-predicted transition states of [1,n]-sigmatropic shift [1,5]-sigmatropic shift [1,7]-sigmatropic shift 2. Woodward-Hoffmann rules --- principle of orbital symmetry conservation ( 分子轨道对称性守恒原理) Proposed originally to predict the stereochemistry of pericyclic reactions based on orbital symmetry. i. There is a one to one correspondence between the MO’s of the reactant and the product. ii. The symmetry of the correlated orbitals is the same. iii. The correlated orbitals should have comparable energies. iv. The correlation lines for orbitals with the same symmetry do not intersect. Orbital Symmetry Conservation Example A: Electrocyclic Reactions of butadiene p MOs of butadiene Orbital Symmetry Conservation v C2 A S S A LUMO A S HOMO S A Orbital Symmetry Conservation v v v conserved B A A B A A Disrotary, h C2 C2 C2 conserved B A A B B B Conrotary, B A B A 1. During the disrotatory cyclic reaction, the systems have a common v symmetry. 2. Thus the symmetries of all involved molecular orbitals subject to this operation should be maintained before/after the reaction. 3. In this regard, the HOMO and LUMO of the reactant are correlated with the LUMO and HOMO of the product by conservation of orbital symmetry. Energy/orbital correlation diagram 4. Thus the reaction should be photo-promoted. 1. During the conrotatory cyclic reaction, the C2 symmetry is conserved. 2. The symmetries of all involved molecular orbitals subject to this operator should be maintained before/after the reaction. 3. The HOMO and HOMO-1 of the reactant are correlated with the HOMO-1 and HOMO of the product. So do the unoccupied MO’s. Energy correlation diagram 4. Thus the reaction occurs for the reactant at its ground state. v C2 4S A * 4 A A* 3A S p * 3 S Ap 2S A p 2 A S 1A S 1 S S Conrotary mode Thermal reaction Disrotary mode Photochemical reaction The MO correlation diagrams of (a) conrotary and (b) disrotary cyclic reactions of butadiene to cyclobutene p * Example B: Cycloaddition of ethylene: a photochemical reaction 2H2C CH2 y z reactants xz x product yz x In photochemical reaction mode • Conserved symm. Operators: xz and yz. • The HOMO and LUMO of reactants are correlated with the xz LUMO and HOMO of yz the product, respectively. • Thus excited states of the reactants should be involved for the reaction to occur. FMO theory Symmetry of MOs vs. Orbital symmetry conservation principle • Viability of reactions • Stereochemical rules of reactions. • FMOs of reactants • All correlated valence MOs of reactants and products • Symmetry of the FMOs • Need to figure out the symmetry operators conserved in the reactions. determines everything. • Simple, and widely applicable • Useful, yet a bit complicated The reaction of [Et4N]I and tetracyanoethylene (TCNE) forms [Et4N]2[TCNE]2, which possesses [TCNE]22 with an intradimer C-C bond distance of 2.827(3) Å (CrystEngComm, 2001, 47,1). Please analyze the unusual intradimer bonding. The LUMO of neutral TCNE is the p* MO of the C=C moiety. The SOMO of [TCNE]: So the SOMOs of two [TCNE] are symmetry-compatible and can effectively interact with each other! Spin conservation • A chemical reaction occurs with conservation of spin. g g 2 H 2 ( Σ ) O2 ( Σ ) 2 H 2O( A1 ) Δ × 1 3 1 C2 H 4 ( s 0 ) C4 H 6 ( s 0 ) C6 H10 ( s 0 ) Δ • Please make use of the FMO theory to assess whether the ene reaction can occur thermally? Hint: In the transition state of this reaction, the propene can be regarded as an allylic anion and a proton. Symmetry allowed! Summary of Chapter 5 Key points/concepts 1. Hybrid orbital theory and VSEPR (Mostly Qualitative Theory/model!) 2. HMO, HMO treatment of p-conjugated systems 3. Graphical method to predefine coefficients of HMO of pconjugated systems. (Semi-quantitative Theory) 4. Symmetry rules for molecular reactions. (Qualitative Theory) Spatial Arrangements of Electron Pairs in Terminal Atoms in ABn .. .. cos( ) cos cos sin sin sin( ) sin cos cos sin cos cos 2 cos cos 2 2 cos cos 2 sin sin 2 2 sin sin 2 sin cos 2 2 sin sin 2 cos sin 2 2 [n]Polyenes: Nature of their FMOs Ci sin( n 1) , sin n sin , sin 2 .... mp/(n 1); E 2 cos (m 1,2,....n) nep, bonding MOs, p/2 ; If n being an even number, HOMO: m = n/2 np / 2( n 1) LUMO: m = (n/2)+1 ( n 2)p / 2(n 1) Nature of HOMO c1 sin sin[ np / 2( n 1)] cos[p / 2( n 1)] n n2 p p cn sin n sin p sin p [ ] 2( n 1) 2 2( n 1) 2 n p p p c sin p [ ] cos c1 Asymmetric If n= 4k n 2 2(n 1) 2(n 1) 2 If n= 4k+2 c sin n p [ p n 2 symmetric 2 p p ] cos c1 symmetric 2(n 1) 2(n 1) asymmetric [n]Polyenes: Nature of their FMOs sin( n 1) , sin n sin , sin 2 .... Ci mp/(n 1); E 2 cos (m 1,2,....n) LUMO m = (n/2)+1 Nature of LUMO (n 2)p / 2(n 1) c1 sin sin[( n 2)p / 2( n 1)] cos[p / 2( n 1)] n n(n 2) p p cn sin n sin p sin p [ ] 2( n 1) 2 2( n 1) 2 If n= 4k np p p p cn sin [ ] cos c1 symmetric 2 2(n 1) 2(n 1) 2 If n= 4k+2 cn sin n p [ p 2 symmetric 2 p p ] cos c1 asymmetric 2(n 1) 2(n 1) asymmetric [n]Polyenes: Nature of their FMOs sin , sin 2 .... Ci sin( n 1) , sin n mp/(n 1); E 2 cos (m 1,2,....n) nep, bonding MOs, p/2 ; If n being an odd number, SOMO m = (n+1)/2 p / 2 Nature of SOMO c1 sin sin( p / 2) 1; c 2 0; c3 -1; If n= 4k+1 If n= 4k+3 n ..., cn sin n sin p 2 np cn sin sin( 2kp p / 2) 1 c1 symmetric 2 np cn sin sin( 2kp 3p / 2) 1 c1 asymmetric 2 symmetric asymmetric HMO Treatment: Linear [n]polyenes (CnHn+2) n cii i 1 Trial p-MO n n ... 0 c1 E Variation E ... 0 c2 0 Theorem ... ... ... ... ... ... E cn 0 • The n MOs differ from each other in energy (non-degenerate MOs!). • The lowest n/2 (n = even) or (n+1)/2 (n= odd) MOs are occupied. {Ej}, {ci(j)} (j =1, 2, …, n) n ( j ) ci ( j )i i 1 • For linear polyenes having even orbitals,there are n/2 bonding orbitals and n/2 antibonding orbitals. • For linear polyenes having odd orbitals,there are (n-1)/2 bonding orbitals, (n-1)/2 antibonding orbitals and a non-bonding orbital. e.g., Hexatriene - 66 4 A cii i 1 sin sin 2 sin 3 sin 4 sin 7 0 & sin 0; sin 5 sin 6 mp (m 1,2,...,6) 7 mp Em 2 cos ( m 1,2,...,6) m= 3, HOMO, bonding! 7 m=4, LUMO, antibonding! 2 6 Kmp m= (sin )K 7 K 1 7
© Copyright 2025