Equivalence of ndpa and cfg • For any npda M, there is a cfg G such that L(G)=L(M) • For any cfg G, there is an npda M such that L(M)=L(G) 1 Convert cfg to pda • Example – CFG in Greibach normal form – Productions in P: SaSA|a, AbB, Bb – w=aabb • Idea: use the stack to hold the derivation process, and match the input with the derivation 2 • SaSA|a, AbB, Bb, w=aabb S aSA w=aabb is accepted by PDA aaA aabB z S z a S A z a aabb A z b B z b z 3 Convert cfg to pda • Construct M – Initial: (q0, , z)={ (q1, Sz) } – Process the input: • (q1, a, S)={ (q1, SA), (q1, )}: for SaSA|a • (q1, b, A)={ (q1, B) }: for AbB • (q1, b, B)={ (q1, )}: for Bb – In the end: (q1, , z)={ (q2, )} 4 • P: SaSA|a, AbB, Bb • Run M on the input aabbb • See the relation between S * aabb *(q0, aabb, z) 5 Convert pda to cfg • Idea: the grammar simulates the move of pda • Assumptions for an npda – Only one final state qf – All transitions must have form, a{}, (qi, a, A)={ c1, c2, …, cn}, where ci=(qj, ) or ci=(qi, BC) 6 • Simulation – each variable is of form (qiAqj) -- generating string w – corresponding move in pda • • • • • Starting at state qi Top stack symbol is A Read in string w=a1a2…am Ending at state qj Stack symbol is popped out. qi A z qj qk a1 B C z a2 D E C z . . . C z F G z . . . H z am z 7 • The construction – Start variable: S=(q0zqf) – For transitions a{}, (qi, a, A)={ c1, c2, …, cn}, where ci=(qj, ) or ci=(qi, BC) • If ci=(qj, ), add production (qiAqj)a qi A z qj a z 8 • If ci=(qj, BC), add production (qiAqk)a(qjBql)(qlCqk), for all qk, qlQ qj qi A z a B C z qk ql D E C z . . . C z F G z . . . H z z 9 • Example – – – – (q0, a, z)={ (q0, Az) } (q0, a, A)={ (q0, A) } (q0, b, A)={ (q1, ) } (q1, , z)={ (q2, ) } • Converted to satisfy the requirements – – – – – (q0, a, z)={ (q0, Az) } (q3, , z)={ (q0, Az) } (q0, a, A)={ (q3, ) } (q0, b, A)={ (q1, ) } (q1, , z)={ (q2, ) } 10 • Work 11 (q0, a, z)={ (q0, Az) } (q3, , z)={ (q0, Az) } 12 • The final result 13 Comments on dpda and dcfl • For efficient parsing, we need “deterministic cfl”. • The corresponding deterministic pda – (q, a, b) contains one element – If (q, , b) is not empty, (q, c, b) is empty for c 14
© Copyright 2025