Big HI Data and Artificial Intelligence Team Up to Decode the Multiphase ISM in Galaxies GALFA-HI Claire Murray University of Wisconsin - Madison Robert Lindner (UW Madison), Snežana Stanimirović (UW Madison), W. M. Goss (NRAO), Carl Heiles (UC Berkeley), John Dickey (UTas), Patrick Hennebelle (CEA) + the rest of the 21-SPONGE team Outline 1. Open questions, observations of the multiphase ISM 2. Pros and cons of future “big data” 3. Autonomous Gaussian Decomposition: turning the cons into pros! 4. Applications to observations and simulations Important Open Questions • What are the properties (Ts, N(HI), etc…) of HI in all phases? Important Open Questions • What are the properties (Ts, N(HI), etc…) of HI in all phases? Unconstrained! Important Open Questions How much HI exists in each phase? CNM, WNM, and unstable fractions depend on input physics (e.g. MacLow et al. 2005, Audit & Hennebelle 2005, Hill et al. 2012) Strong turbulence Pressure Weak turbulence Pressure • Density Density Audit & Hennebelle 2005 Comparing simulations with observations is essential, and difficult! Simula:ons* Observa:ons* Physical*quan::es* Observed*spectra* Synthe:c*spectra* AGD() Gaussian*components* v ⇥i , i , v i , AGD() Gaussian*components* v ⇥i , i , v i , Better observational constraints… 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA public.nrao.edu, NRAO/AUI/NSF VLA 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA • 58 sources: S>3 Jy, |b|>10 • Matching HI emission from Arecibo Observatory • High-sensitivity HI absorption: σ𝜏 ~7 x 10-4 Arecibo VLA 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA • 58 sources: S>3 Jy, |b|>10 • Matching HI emission from Arecibo Observatory Arecibo • High-sensitivity HI absorption: σ𝜏 ~7 x 10-4 Superior sensitivity allows us to detect unstable/WNM lines in absorption! Millennium Survey (Heiles & Troland 2003) 21-SPONGE Max Max Ts ~600 K Ts ~ 1500 K Murray et al. 2015, in press VLA 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA • 58 sources: S>3 Jy, |b|>10 • Matching HI emission from Arecibo Observatory Arecibo • High-sensitivity HI absorption: σ𝜏 ~7 x 10-4 Unstable fraction ~ 20% Millennium Survey = 48% (upper limits) Millennium Survey (Heiles & Troland 2003) 21-SPONGE Max Max Ts ~600 K Ts ~ 1500 K Murray et al. 2015, in press 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA Stacked absorption Murray et al. 2014 21-SPONGE 21-cm Spectral line Observations of Neutral Gas with the (E)VLA Stacked emission Probes Lyα scattering excitation! Stacked absorption Murray et al. 2014 21-SPONGE limited to 10s of sources • WNM GASS; McClure-Griffiths et al. 2009 HI Absorption Sightlines Visible to SKA-1 • WNM ~106 spectra, 5 minutes each… ~10 years to analyze! McClure-Griffiths et al. 2015 To the rescue… AUTONOMOUS GAUSSIAN DECOMPOSITION Lindner et al. 2015 in press (arXiv:1409.2840) • Automatic, efficient decomposition of 1D spectral data into Gaussian functions • Good initial guesses are chosen without human interaction • Generally applicable to any data set! Lindner et al. 2015 in press (arXiv:1409.2840) Autonomous Gaussian Decomposition (AGD) Provides optimized initial guesses for multi-component Gaussian fit 1. Computer vision using st th 1 -4 numerical derivatives 2. Regularization provides smooth derivatives 3. Supervised machinelearning optimizes regularization parameters to maximize guess accuracy ! Guess criteria: • Python package “GaussPy” (available upon publication) Email: [email protected] 21-SPONGE AGD Guesses AGD Best-Fit Human Best-fit AGD vs. Human (me) on 21-SPONGE Number of components Noise in resulting best fit Lindner et al. 2015 in press (arXiv:1409.2840) Future Applications Simula:ons* Observa:ons* Physical*quan::es* Observed*spectra* Synthe:c*spectra* AGD() Gaussian*components* v ⇥i , i , v i , AGD() Gaussian*components* v ⇥i , i , v i , 30* AGD Results AGD*results* Gaussian*components* • Input:*10k*spectra* • Blue: 104 synthetically• Output:*20k*Gaussian* observed HI absorption components*(blue)* lines (Kim et al. 2014) • Component*space*has*two* •phases*(CNM,*WNM)* Black: 21-SPONGE VLA HI absorption lines • Simulated*“WNM”* (Murray et al. 2015) components*not*seen*in* observa:ons* Stacking% result* 21ASPONGE*data:**Murray*et*al.*(2014b,*in*prep)* 34* Simula:on*data:*Kim*et*al.*(2014)* ?? Matching Gaussians to Clouds in Simulations Density 0 100 200 300 400 LOS distance Optical Depth Velocity Matching Gaussians to Clouds in Simulations First statisticallyrobust quantification of cloud-component correspondence! Conclusions • 21-SPONGE will constrain the uncertain mass distribution of HI as a function of Ts, as the largest high-sensitivity HI absorption survey • Autonomous Gaussian Decomposition (AGD) provides optimized initial guesses (and final fits) for multi-component Gaussian models - Python implementation: “GaussPy” available soon Generally applicable to any spectral data set • AGD results are comparable to human decompositions • AGD enables objective, unbiased comparisons between observations and simulations (e.g., 21-SPONGE vs. 3D hydro sims) - Confirms correspondence between physical clouds and Gaussians Future: Ts completeness function, constraints on Lyα photon field and more!
© Copyright 2025