Optical backscattering from near-spherical water, ice, and mixed phase drops Kenneth Sassen An experimental assessment of the scattering behavior of freely falling artificial raindrops and mechanically suspended drops in the ice and mixed phase has been undertaken with a device which simultaneously measures the parallel and cross polarized components of backscattered linearly polarized laser light (6328 A). Among the findings are that linear depolarization ratios () are generally <0.01 for raindrops up to nearly 6-mm diam, near 0.5 for regularly shaped frozen drops, and between 0.35 and 1.0 for more irregular ice parti- cles. Anomalous scattering behavior has been observed during the liquid to solid drop phase transition (6 > 1.0) and in the relatively great amounts of parallel polarized energy returned from raindrops >-4 mm. Backscattered signal variations produced during drop melting reveal that 6 values tend to remain near the initial ice value until most of the ice has changed phase. The details of the variations aid in the determination of the dominant scattering mechanisms responsible for the backscatter from large, near-spherical particles. The results are shown to have some bearing on measurements by lidar. 1. Introduction Investigations of the backscattering behavior of water drops larger than the wavelength have been performed primarily to elucidate the causes of certain atmospheric optical phenomena, such as the rainbow and the glory. Recent theoretical studies have utilized both detailed Mie calculations and approximate geometrical optics theory, assuming homogeneous spherical scatterers. While the scattering mechanisms responsible for the rainbow can be satisfactorily explained on the basis of the traditional ray tracing methods of geometrical optics, the mechanisms involved in producing true backscattering from spheres, as in the case of the glory, are not adequately described by this approximate analysis. For water spheres and light in the visible region, the results of the ray tracing method indicate that the backscattered energy consists almost entirely of rays reflected normally from the front and rear faces of the drop along the axis of symmetry (i.e., the axial rays), while multiple reflected off-axis rays contribute negligibly. Of the paraxial return, about four times more energy results from the internally reflected ray bundle than is reflected from the front surface. As the amplitudes of two axial components add coherently, the total far-field intensity can vary from about one to nine times of atmospheric hydrometeors obtained the intensity of the front surface reflection alone due to phase interference. Since it followsthat the total axial intensity varies strongly with minute variations in droplet diameter, this interference method should be amenable to determining precise rates of change in the diameter of growing or evaporating drops. This principle has been used by Ro et al. 1 in experiments which measured the period of the intensity cycles in light backscattered from a narrow laser beam directed toward the exact center of evaporating drops. In agreement with theory, the axial beam was observed to oscillate sinusoidally with the predicted period in the size parameter (the ratio of droplet circumference to incident wavelength) inversely proportional to the refractive index. However, this treatment alone cannot account for the glory, and what was neglected in the calculations was first pointed out by van de Hulst.2 The reason for the failure of the geometrical optics method to describe completely true backscattering lies in its inability to treat circumferentially backscattered energy, that is, the surface wave. This phenomenon results when energy incident at the interface between two dielectrics at or greater than the critical angle of total reflection (from the more dense medium) becomes trapped at the interface. For water spheres which are uniformly irradiated, the axial backscatter component is small in comparison to the contribution from surface The author is with University of Utah, MeteorologyDepartment, Salt Lake City, Utah 84112.This work was performed at University of Wyoming, Department of Atmospheric Science, Laramie, Wyoming 82071. Received 23 July 1976. 1332 APPLIED OPTICS/ Vol. 16, No. 5 / May 1977 waves, as light striking at every point on the edge of the drop will result in the formation of a surface wave provided that spherical symmetry is strictly maintained. Propagating along the interface of a spherical drop, surface wave energy is continuously being lost tangen- tially to the surface into the less dense medium and also at the critical refractive angle into the drop. The latter process results in internal reflection and refraction which create optical shortcuts through the drop (the so-called jump rays) and, when coupled with segments or cycles of surface waves, permit a number of ray paths of high enough energy to cause considerable interference with the reradiating surface wave. The resulting backscattered intensity variations in the circumferential component during drop evaporation have been measured and found to agree qualitatively with the complex, but apparently periodic, set of humps and spikes predicted by the Mie theory and also with a simple scaler model incorporating surface waves and the geometrical shortcuts.3 Thus, the dual backscatter mechanisms of spherical particles have been demonstrated experimentally by probing suspended drops with a narrow laser beam and corroborated by theoretical simulations of both an approximate and exact nature. The results of Mie calculations given in the form of the intensity growth curves of the series-expansion solution by Byrant and 4 are particularly illustrative of this dual nature. Cox Via the localization principle, the order of the expansion term can be related to the position of a ray from the origin in order to assess the various contributions of the scattering mechanisms. At a scattering angle of 1800, the backscattered intensity was shown to arise from large jumps near the origin and just before the series converges, the axial and circumferential components, respectively. The consideration of polarization has been omitted in the above discussion, since for homogeneous spherical particles the backscattered energy retains the incident state of polarization. Such is not likely to be the case for inhomogeneous or aspherical scatterers, even for raindrops of a few millimeters diameter which display only slight perturbations from spherical symmetry. For such near-spherical particles, the axial and circumferential rays will likely contribute predominantly to the backscatter, but the effect of off-axis internal scatterings may no longer be negligible. Those latter ray paths which involve a transformation of the scattering plane will yield depolarized energy. Similarly, optically in- homogeneous particles (e.g., severely melted ice particles) would likely produce depolarization. Unfortunately, Mie scattering calculations have yet to be performed for near-spherical particles much larger than the were suspended within the scattering volume at room temperature and observed during the change of phase. In addition, the deformation and breakup of falling drops induced by grazing interactions with an obstacle, and the freezing of suspended drops, were also briefly examined. The main objective has been to ascertain the amounts of depolarization produced in the backscatter by these particles. The experimental apparatus simultaneously measures the amounts of backscattered energyreturned in the planes of polarization orthogonal and parallel to the E vector of the laser source. Hence, linear depolarization ratios (6, the ratio of these values) could be used to describe the change in the state of polarization of the scattered energy. In all cases, the particles were interrogated singly with the apparatus oriented in the horizontal direction. Samples of collected rainwater, kept frozen until use, were used exclusively for the particles. In the final section, the experimental results are examined to assess the dominant scattering mechanisms believed to be responsible for the backscattering from near-spherical particles. These inferences are based on the known spherical particle scattering analogies discussed above. Then, the applicability of the depolarization measurements to the interrogation of atmospheric hydrometeors of similar character is discussed. The laboratory measurements are shown to be a valuable aid to the evaluation of data remotely sensed with polarization diversity lidar systems. II. A. Experimental Arrangement Apparatus A schematic portrayal of the cw laser backscatter system is given in Fig. 1. The basic components of the system, the optical source and detector, are rigidly mounted in an enclosure at right angles to one another. The vertically polarized laser beam is directed down the optical axis of the receiver through the use of a small 450 mirror mounted directly before the receiver lens. The He-Ne laser (Hughs model 3076H/R) emits -3 mW of energy at 6328 A with a beam divergence of <0.75 mrad (full angle). The output is linearly polarized to better than one part in a thousand and displays a beam amplitude ripple of <0.1%rms. After collimation the expanded laser beam is reduced to a diameter of 6 mm to improve the uniformity of the energy distribution across wavelength, as even a slight distortion in sphericity would introduce formable complexities into the calculations. This experimental study is concerned with the optical backscattering behavior of near-spherical water drops in the liquid and solid phase and during the water-ice phase transition. In contrast to the earlier laser studies, the particles have been uniformly irradiated in a collimated laser beam 6 mm in diameter through two experimental techniques. Water drops of diameters between 2.5 mm and 5.8 mm were sampled near terminal velocity by allowing the particles to fall through the the beam. scattering volume of the apparatus, while drops (of from 1.6-mm to 3.3-mm diam) frozen on a thin wire support showing the design for controlling the scattering volume. The light RECEIVER DUA PHOTOTUBES 45 ° MIRROR GLAN-AIROR PRISM COLIMATOR AND LASER l_ LASERl LIGHT TRAP SCATTERING VOLUME l 25cm Fig. 1. A schematic top view of the cw laser backscatter apparatus, trap is normally located 1.65 m from the receiver lens. May 1977 / Vol. 16, No. 5 / APPLIED OPTICS 1333 The receiver utilizes a 25-cm focal length lens, 6328-A-centered spike interference filter (16 A halfwidth), and a 2.5-mm diam diaphragm to collect only that energy scattered at angles >Ž1780 with respect to the direction of incidence from the scattering volume. The simultaneous measurement of the returned parallel and orthogonal polarized components is achieved through the use of a Glan-air polarizing prism and two appropriately positioned photomultiplier tubes (EMI 9558). A more detailed description of the receiver design is given elsewhere. 5 On the basis of a computerized simultation of the paths of all rays processed by the optics in the receiver, an area along the optical axis was chosen for the sampling of the particles centered at a distance of 73 cm from the receiver lens. In this region, the receiver views uniformly all energy returned within a 3.0-mm radius of the optical axis, displaying a sharp cutoff outside this area. These properties combined with the occulting of the laser beam make this an ideal region for the sampling of single particles. As shown in the figure, a series of tubular enclosures are used to shield the rest of the laser beam from scatterers. The spacing between the tubes, which are internally threaded and treated with an optically flat paint, controls the length of the scattering volume. The far tube is terminated with a light trap. B. Experimental Technique Two separate methods were employed to permit the examination of the particles. Since in the first case it was desired to assess the scattering behavior of large water drops which departed from sphericity due to aerodynamic drag forces, these particles were interro- gated after a free fall distance of nearly 8 m. Laws 6 has shown that drops up to 6-mm diam had attained 95% of their terminal velocities after falling this distance, so that the induced shape distortions can be considered typical of freely falling raindrops in still air. Although the path of the drops was confined within a pipe for shielding from air motions, the drops nonetheless displayed considerable variability in their final position with respect to the 3.5-cm3 scattering volume. Hence, a -8-mm wide slit of metal foil was positioned just below the scattering volume so that the data from most partially irradiated particles could be rejected by noting the characteristic noise from their impaction on the foil. Monodisperse streams of drops were generated at the tip of a capillary tube by allowing the gravitational separation of drops from a water jet supplied by a con- stant head reservoir. To produce streams of particles of various diameters, a number of different orifices were fitted to the syringe containing the rainwater samples. Drop diameters were found by measuring a number of splash sizes formed on filter paper treated with a dye, in the usual manner. Using this technique, successive drop diameters appeared to vary by as much as a few tenths of millimeters, but the frequent presence of radiating splash products would presumably set a limit to the measurements' accuracy of about this order. In order to observe frozen particles before and during 1334 APPLIED OPTICS/ Vol. 16, No. 5 / May 1977 melting, drops frozen on a support in an adjacent freezer (at -- 15 0 C) would be transferred to a previously aligned mounting fixture at the center of the scattering volume on an open laboratory bench. A loop of 0.1-mm diam wire coiled about a 0.35-mm needle form was used for the suspension of the drops. Although this method of support undoubtably introduced unnatural shape distortions in large drops, the freezing process often caused more significant distortions, and depolarization values for the completely melted particles were usually comparable to those observed for the freely falling particles. In general, the drops frozen in this manner appeared to be almost entirely opaque, displayed some vertical elongation in shape from gravity-induced distortions of the original water drops, and frequently developed irregularities such as protuberances or needlelike spicules during freezing. The positioning of the frozen drops was adjusted so that the wire loop lay just within the top edge of the laser beam. The transfer from the freezer could be accomplished in a period of a few seconds, and the initial laser returns were taken to be representative of pure ice particles. Immediately after emplacement, a photomicrographic record of the frozen particle's size and shape was taken. Stereomicroscopic observations were conducted during melting in order to relate the extent of the phase change to its scattering behavior. These observations were performed at an angle of 160°, or as close to the backscatter direction as possible, and typically showed the presence of bright spots at the particle's center or edge localities indicative of the axial and circumferential returns. At the termination of each experiment, the melted drops were photographed and removed from the support in order to obtain an estimate of the background signal contributed by the drop support. A small number of observations of the liquid to solid phase transition were also performed by suspending a supercooled drop in a similar manner within a dry ice cooled diffusion chamber. Entrance and exit ports for the laser beam were provided at positions corresponding to roughly the -5°C isotherm of the devices stable temperature gradient and also at a level well above the 0C level to observe their subsequent melting after relocation. The suspended drops were nucleated by bringing a dry ice granule on a probe into the vicinity of the drop. Microscopic observations revealed that typically an ice shell would initially form followed by freezing progressing inward from the shell and aided by the growth of internal ice branches. Drop opacity increased gradually, but would often display an instantaneous increase when freezing was far advanced, presumably from internal fracturing. Ice spicules were occasionally noted to extend slowly from a fracture in the ice shell. A glass hypodermic syringe was normally used as a water reservoir in these experiments to avoid the contamination of the rainwater samples with the lubricant found in disposable plastic syringes. The use of plastic (tygon) tubing was also minimized in the drop generating device to avoid the possible alteration of the surface tension properties of the rainwater, although many 6f the capillary tubes were comprised of short lengths of this material, and the rainwater samples were collected and stored in plastic bags. C. Data Recording and Analysis Drop phase transitions have been continuously monitored by recording the output of the photomultiplier tubes without preamplification on strip chart recorders. These data were analyzed for values by measuring the paired signal deflections at points with circles) sampled with the apparatus extending out of a laboratory window. In these cases,the modal diameters obtained with the dyed filter technique were used. For comparative purposes, a graph of the variation of calculated raindrop terminal velocities for an atmospheric pressure of 800 mb (approximate surface pressure at Laramie, Wyoming) with drop diameter 7 is inserted in the figure. An examination of the frequency distributions of E 1 and values for each drop group shows that the dis- a millimeter rule. The figures of the phase change vs time, shown in the following section, were made by persion of depolarization ratios remained approximately tracing the signal records on a single graph and conse- cases, but while this was also true for E 11values for drop quently preserve the original recorder sensitivities. In obtaining the 6 values, inaccuracies result primarily from uncertainties associated with the determination of the background signal level contributed by the drop support. Assuming that the presence of the particle during experimentation and its removal from the support did not affect the magnitude of this value, the background values were subtracted from the parallel polarized signal levels (since background measurements in the cross-polarized channel were negligible) during the data analysis. Additional inaccuracies may also have resulted from random data reading errors and the possibility of a small phototube calibration and optical alignment error. Total maximum probable uncertainties have been estimated to be '-10% of the 6 values for the data from suspended particles, with an additional 0.025 inaccuracy in the absolute 6 values for single data points. To record the dual-channel signal pulses generated by the passage of the falling drops through the laser beam, the data were read off photographs of the CRT display of a dual-trace storage oscilloscope with a more than adequate frequency response rate. The signals from the photodetectors were preamplified prior to normally distributed about the arithmetic mean in most diameters <-4 mm, the distributions for larger drops became increasingly broad and skewed toward higher E 11 values. This is seen as encouraging with respect to the experimental technique in that drops which were only slightly irradiated were apparently properly identified (as evidenced by the lack of skewness toward lower values), while, on the other hand, the Ell distributions for the larger drops might have been influenced by the increasing degrees if oscillatory motions experienced by these large particles. 8 A few typical standard deviations of the drop group 6 and EI values are shown as bars in Fig. 2. With regard to the variation of average backscattered energy with drop diameter shown in Fig. 2, both the natural and artificial raindrops of sizes up to -4-mm diam yielded an E1 increase proportional to the square of the drop radius as expected. Cross-polarized signals for those particles were below the detection threshold, but could not have produced 6 values >-0.05% for the most part. When drops of diameters >-4 mm were interrogated, however, measurable depolarization ratios were obtained which tended to increase from values of about 0.08-0.5%with increasing diameter. Moreover, display, so that 6 = 0.05% could be detected for drops >3 mm in diameter. Since negligible background sig- nals were produced during these experiments and a large number of data points were averaged so that the random data reading error could be ignored, uncertainties in the absolute value of depolarization ratios were estimated to be -- 0.01. However, particle signal returns often exceeded those values for which the cali- UNEARDEPOLARIZATION RATIO (%) 01 1.0 IIll I I I I IIIll I 6 6.0 bration had been performed (up to signal levels of -0.7 : 20 V), so that the phototube response rates could only be 0 assumed to remain linear throughout this region of large signal returns. E - 4.0 fa d o 1.0 a 0.8 z 5 06 Data from artificial raindrops are given in Fig. 2, which shows the amount of returned parallel-polarized energy (Ell, in volts) and linear depolarization ratio (6, in percent) obtained from series of drops of the indicated diameter. Each data point represents the numerical average of values from individual drops produced under a given set of conditions which varied in number from about 50 to 200 drops. Also included are a few E11 values obtained from natural raindrops (solid I 6 8 10 4 VT (m secI 0I Drops in Free Fall I * 2 CO 111. Experimental Results A. E,,- r I3/_ I 0.1 E,1 ,,I I 1 I I I, 1.0 (volts) Fig. 2. A compilation of linear depolarization ratios (, in percent) and returned parallel polarized energy values (E t, open circles) ob- tained from monodispersed streams of artificial raindrops near terminal velocity (see insert). Data from natural raindrops also shown as solid circles. The detection threshold of 3 values is 0.05% for drops >3 mm in diameter. Anomalous parallel-polarized scattering behavior of drops >4 mm in diameter is indicated, despite the generation of only minute amounts of depolarized energy. Horizontal bars give typical standard deviations in the Ell and a value samples. May 1977 / Vol. 16, No. 5 / APPLIED OPTICS 1335 the increasing depolarization ratios were accompanied by a trend of strongly increasing E1l values which were no longer proportional to the particle cross-sectional area. Although the data display considerable variability, the Ell variation with particle size can be approximated by a dependence on drop radius of roughly to the thirteenth power. As shown by the insert in the figure, terminal velocities increase only slightly in this size range, indicating that increasing degrees of drop deformations are being incurred which nearly compensate for the effect of increasing particle masses. It is clear that for raindrops of >-4-mm diam, scattering mechanisms are acting which are very dissimilar from those of more spherical drops, and yet these mechanisms do not involve the production of more than minute amounts of depolarization. This behavior is not found, on the other hand, when often destructive drop oscillations are induced in falling drops by grazing in- cidence with an obstruction. Although it was not possible to observe the drop shape variations accompanying raindrop coalescence or breakup under more realistic conditions, particle oscillations often resulting in drop breakup were produced by the method mentioned above. Figure 3 shows tracings of the oscilloscope records of a number of drops which had both interacted and failed to come in contact with the obstacle. The data are presented with the cross-polarized signal (EI) increasing downward from the top trace, while the parallel component (Ell) increases in the usual sense but at 0.1 times the El channel sensitivity. Examples of drops (of 3.2-mm diam) which fell through the scattering volume unaffected by the obstruction can be seen as the rather symmetrical Ell signal pulses at the right side of the figure and display little variability. These particles failed to produce any measurable depolarization. In contrast, the pulses from the drops with the induced I E1 , I I ~I I I I I I I particles usually varied considerably during the passage of a single drop through the laser beam, but often averaged to a value of -0.3, and occasionally up to -0.5. It is interesting to note, though, that corresponding E1l values were slightly to considerably less than those values for unaffected, similarly sized drops, indicating that in this case the distortions yielding the high depolarizations did not generate the strong parallel-returned energy increases evident from the increasing asphericity with drop size described above. Before describing the data from drops in the ice phase, a brief discussion of the variability of the data portrayed in Fig. 2 may be in order. First, it is not unlikely that the processes controlling the backscattering behavior of near-spherical | 1 | <--j ~1 1 AI ;I 2 ALs Fig. 3. Oscilloscope display tracings of dual-channel pulses from 3.2-mm diam drops near terminal velocity. Nondepolarizing interactions of two freely falling drops can be seen at the right side of the trace, while significant amounts of depolarized energy are generated as a result of severe drop distortions caused by grazing incidence of the remaining drops with an obstruction positioned above the edge of the scattering volume. E channel shown at ten times the sensitivity of the E11 channel. APPLIED OPTICS/ Vol. 16, No. 5 / May 1977 drops in free fall act in a nonuniform fashion with increasing drop size, so that small changes in drop deformation may lead to more significant variations in scattering behavior depending on exact scatterer geometry. The data also suggest that different rainwater samples used over single data collection intervals produced a more uniform increase in values with increasing particle diameter than what is indicated in the figure. Hence, characteristics of the rainwater samples such as surface tension and suspended or dissolved particulate matter may also have had an effect. And finally, with regard to the generation of the unexpectedly great EjI values for drops >-4 mm, it should be mentioned that in consideration of the possible approach of response saturation of the photodetectors, and the higher probability of incomplete particle irradiation for drops of nearly the beam diameter, it is possible that the parallel energy values given in the figure were underestimated. B. Frozen Drops As described earlier, the initial scattering properties of frozen rainwater drops immediately after emplacement in the laser beam were taken to be representative of pure ice phase particles. Since a number of forms were assumed by the drops during freezing, the experimental results will be given with regard to the three chief structures of the frozen drops. Hence, symbols are presented in the following figures which represent frozen drops with a regular circular or elliptical appearance (circles),with an irregular, asymmetrical shape (semicircles), and with large spicules (short lines). As a further aid to the data interpretation, axial ratios (the vertical to horizontal dimensions) measured from photomicrographs I J 1336 oscillations display considerable irregularities and significant amounts of depolarization. values for such are considered as a variable as well as particle diameters. In general, axial ratios increased with diameter, on the average from about 1.0 to 1.2 over the size interval of 2-3-mm diam, respectively. Figure 4 compiles the results of this phase of study. Depicted are the variations of 6 (top) and E11 (bottom) values with ice particle diameter and axial ratio. Differences in the scattering behavior of the ice particles can be seen as a function of particle shape. The in- crease in E1l values with increasing diameter and axial ratio tends to be less strong with the irregular particles than those frozen more regularly, while those few drops displaying needlelike extensions appear to display little dependence on either parameter. In other words, the regular particles tended to backscatter relatively more energy for frozen drops of a given diameter or axial ratio. The over-all increase in Ell values with increasing di- ameter is considerably stronger than what would be expected from the cross-sectional area increase, but it should be remembered that axial ratios also similarly increase and that relative contributions from each factor cannot be judged independently from the data. Linear depolarization ratios analogously display some stratification with particle diameter and axial ratio. For the regular ice particles, 6 are all between 0.45 and 0.60, whereas 6 for the more severely distorted drops range from 0.35 to nearly 1.0. Average depolarization values for the former type are 0.52, and 0.59 for all the particles. Although 6 values are not clearly related to particle diameter, the data do suggest that depolariza- Ld tion ratios diverge increasingly from a value of -0.5 with axial ratios increasing and decreasing from unity, particularly for the irregular drops. This again may be .,Ell partly an effect of correspondingly increasing diameters, but since irregular particle 6 values have shown a preference for being inversely related to E11 values, the following generalization can be made. Assuming that the balance of spherical particle scattering mechanisms and "I , I depolarization from internal optical inhomogeneities drops, the more variable depolarization ratios for the irregular drops reflect the added or detracted contributions from spherical particle scattering mechanisms (as determined by exact drop geometry) in conjunction with the more uniform amounts of depolarized energy generated through internal scattering. 10r- ICE PARTICLES ) T o 09 I REGULAR ) IRREGULAR / SPICULE ) ) ) 08 o C.7 & 0.6 A. 0.5 < 0.4 J 0.2 )s 3 / //) 0000 0 0 Q/ I T I . )3 0 0 o 1.5 2.0 3.0 (min) Fig. 5. Typical parallel and orthogonal polarized (dashed) traces vs time of the phase changes of suspended drops. E traces shown at two times the sensitivity of the E 11traces: (a) Record of the melting behavior of a 2.4-mm average diameter drop (top). Note the maintenance of high 6 values throughout much of the phase change and the presence of the E signal spike and the E11 single jump at -2.5 min associated with the initial internal axial contribution to the backscattered energy. (b) Record of the freezing behavior of a 2.1-mm average diam supercooled drop (bottom). Note anomalous a value of -1.3 at 2 min with cessation of protuberance growth. 0 0 3 0 3 p 3// 25 3.0 AVERAGE DIAMETER mm) 09 - 1.0 (b) (with an axial ratio of 1.05) did develop a relatively 3, 1.1 small protuberance during freezing. The ice particle 1.2 1.3 AXIAL RATIO Fig. 4. Values of (top) and Ell (bottom) from a number of suspended frozen drops as functions of ice particle average diameter and axial ratio. Data stratified into three ice particle shape types (see key). Note that the near-spherical regularly frozen drops produce a values of -0.5. As examples of the variations in the parallel and orthogonal polarization channels incurred during the phase transition, representative records of drop melting appearance, although the 2.1-mm average diam drop in )8) ) / 3.5 Drops Undergoing the Phase Change and freezing are provided in Figs. 5(a) and 5(b), respectively. The particles whose records are illustrated in this figure were when frozen rather symmetrical in . O 0) 60 TIME C. ) ) * 0.1 I I 2.0 E / 00 )/3 0.2 I 1.0 _9/ Po ) I I 0 0 CI 0.3 -------------- 0.5 value for the regular the average 6 determines in record (a) was 2.4 mm in diameter, with axial ratios of 1.02 in both phases. A sequence of four photomi- crographs encompassing the phase transition of a 2.7-mm diam ice particle is shown in Fig. 6. It is in- teresting to note that, as was usually the case, the presence of bright spots on areas of the drops surface or edge could be used to locate visually regions of strong energy return. May 1977 / Vol. 16, No. 5 / APPLIED OPTICS 1337 a b decreases, and a jump in the Ell signal occurs almost instantaneously. As a result, 6 values drop to <0.2 and then decline as both polarization signals decay correspondingly until a value of 0.005 is reached, in this case at -3 min. Signal levels and 6 values generated by the pure water drop remain fairly constant afterward. This record illustrates several important features of the scattering behavior of mixed phase particles which will now be examined more closely. First, that despite the growing relative amount of water, the 6 values for the most part typically maintain a value not too different from the initial pure ice value. During this interval, the return signals decay appreciably, initially more rapidly so during about the first minute of melting. Then, after most of the phase change has been completed, a E signal spike occurs which is followed by a rapid Ell signal increase. With the aid of the microscopic observations of the particles, it has been verified that these features are associated with the initial contribution of backscattered energy from the internal axial d C Fig. 6. Four photomicrographs of the appearance of a melting 2.7-mm average diam ice particle illuminated in the laser beam, taken at a scattering angle of-160°. Bright areas on the particle indicate region of intense backscatter. Times (t) below refer to time from implacement in scattering volume: (a) frozen particle, t = 10 sec, = 0.52; (b) significantly melted particle t = 135 sec, 1 = 0.45; (c) particle at EI value jump, t = 200 sec, 6 = 0.18 (note area of diffuse ice return from just above drop center); (d) water particle, t = 255 sec, = 0.01. ray bundle. The often abrupt removal of residual ice from the drops central area suddenly discloses the far internal face of the drop to the incident radiation and conveniently provides a means of assessing the relative importance of this mechanism with respect to the contributions from additional energy sources. Knowing that for spherical particles the added contribution from the internal axial component should increase the backscattered intensity of the total axial component from one to nine times that of the front external component alone (or -5 times on the average) as a result of phase interference, the average ratio of Ell signals in the experimental records at the jump peak to immediately preceding the signal jump should give an indication of the importance of this mechanism. Figure 7 shows the results of such an analysis where the E11 ratios for each record are depicted as a function of the melted drop In general, the records from drops undergoing the solid to liquid phase transition were considerably less complex for the regular drops in comparison to those displaying irregularities. 10 9 This may have been primarily a result of the fact that the ice content of the latter type would frequently be observed to move to more stable positionsduring melting, thereby altering the scattering properties of the particle. But when the drops remained fairly stable during melting, records of the type displayed in Fig. 5(a) were obtained in the majority of cases. In the figure, the E 1 signal trace is shown at twice the sensitivity of the E signal, so that signals of 8 6 aE 5 4 o _ _ 3 2 equal vertical deflection represent a value of 6 = 0.5. The abscissa gives the time in minutes from the emplacement of the frozen drop in the laser beam. It can be seen that depolarization ratios remain between 0.55 and 0.60 for nearly 2 min and then begin to decrease somewhat before a spike in the E trace occurs at -2.5 min. During this time, the ice particle was being enclosed in a water shell of increasing thickness until at -2.5 min the residual ice had receded to a position just occupyingthe drop center. Within a short time interval following this condition, the E signal spike rapidly 1338 APPLIED OPTICS/ Vol. 16, No. 5 / May 1977 F 7 -A 0 I I I 1.5 2.0 2.5 DROP Fig. 7. AVERAGE DIAMETER 3.0 I 3.5 (mm) Ratio of parallel polarized signals at the EI signal jump to just preceding the jump plotted against averagewater drop diameter. Cross-hatched area indicates the region of ratios to be expected for spherical particles from the contribution of the rear face axial component to the total axial return if no other scattering mechanisms were to contribute to the backscattered energy. Axial returns are shown to contribute substantially to the backscattered energy from nearspherical particles. diameter. With an average ratio of 2.6, or about one- 6 values for such enclosed particles were typically fairly half of the value to be expected on the average if no close to 0.5, but subsequent values fluctuated consid- other scattering mechanisms were acting, it is apparent that the combined contributions from multiple internal erably during freezing. As in the example, however, 6 values were often close to 0.5 during most of the freezing scatterings and surface waves are of roughly the same process. An additional interesting feature of these importance as the total axial component. The effect records is the presence for a short duration of 6 > 1.0 values in about half of the cases, usually following -1 min after nucleation when the particle was quite opaque and apparently mostly frozen. In Fig. 5(b), a maximum 6 value of 1.3 is found for a brief interval at 2.0 min. At of the remaining ice content of the drop could serve only to increase the Ell signal ratio slightly over the short time interval spanned by choosing signal values im- mediately proceeding and coincident with the signal jump. And in support of the view that the gradual signal decays in both channels following the jump is due this stage it was noted that the extrusion of liquid from within the particle to form an irregularity on the par- to the completion of the phase change, the amount of signal decrease in excess of the return from the pure ticles surface ceased. Similarly, the cessation of growth of a long needlelike spicule was approximately accom- water phase particle corresponds to a 6 value of roughly 0.5, as would be expected to be contributed from an value of 2.2 in one case. The surprising presence of such opaque ice mass. Although it is possible that surface wave contributions may have been artificially reduced by the presence of the drop support, the proportion of drop circumference actually occupied by the support was relatively small. A more basic question which will be addressed in another section, though, is in the over- all effect of the drop support on particle shape and in the applicability of these measurements to those of natural hydrometeors. As for the corresponding E 1 spike increase, this feature has no analog in spherical, homogeneous particle scattering behavior and so must be considered to have resulted from the presence of ice at the drop center. Thus, it can be assumed that this behavior was caused by the creation of internally reflected and refracted ray paths through the ice mass at this position which favored the transformation of the vibration plane (with panied by the generation of the highly anomalous 6 high depolarization ratios, unique in the author's experience with measurements of the backscattering behavior of numerous hydrometeor types, is at present unaccountable for on the basis of known scattering mechanisms. It is hoped that the specific conditions under which these anomalous values occurred may provide some insight into the likely responsible mechanisms. IV. Summary and Conclusions The experimental results discussed in this report are believed to have value in describing the general scattering behavior of near-spherical particles and also in aiding in the interpretation of field data sensed from natural hydrometeors with the optical backscatter depolarization technique. However, a limitation in the applicability of these data must be acknowledged in that respect to the incident energy). An examination of all all measurements had to be performed in the back- the data records also reveals that some particles <-2-mm diam failed to display this feature, while the relative strength of the signal spike tended to increase scatter with the vertically polarized laser beam oriented with increasing particle diameter, as did consequently disturbances resulting from the balance of surface tension and aerodynamic drag forces with the directional gravitational field, the particles tend to orient in space, so that the scattering behavior of the particles the magnitude of the depolarization ratio. For maximum values (drops >3 mm), 6 approached values of 1.0, while the ratios of E signals at the spike peak to that immediately preceding on one occasion was nearly 6. The increase in these values may have been induced by the increasing extent of the central ice mass with increasing particle size. in the horizontal direction. Since liquid hydrometeors of the size range encountered in this study display shape would likely depend on the angle of incidence of the radiation to some degree. Nonetheless, in view of the total lack of theoretical predictions of the scattering properties of such aspherical particles (much larger than any peculiar scattering behavior not displayed by melting drops. The drop freezing record in Fig. 5(b) the wavelength), these measurements clearly can provide useful insights into the dominant scattering mechanisms acting in large, near-spherical particles. To summarize, it is apparent that the character of the backscatter from particles distorted either by aerodynamic drag forces or mechanical suspension is vastly different for drops in the liquid and solid phase. Whereas liquid drops depolarize the incident energy to <-1%, frozen drops are capable of strongly altering the polarization properties of the returned energy. Since the shapes of suspended particles before and after the phase transition were often similar and since ice particles with considerable liquid coverings still produced shows a particle which produced 6 of -0.01 and 0.65 in the liquid and ice phase, respectively. Upon nucleation, large 6 values, the generation of the depolarized energy must result by virtue of the optical inhomogeneity of the In other respects, it is also noteworthy that the pure ice particles were more efficient backscatterers than the resultant liquid drops, nearly two times so on the average. Individual ice particles yielded Ell signal values which varied from 0.9 to 7.0 times the values for the completely melted drops. This difference in backscattering efficiency could not likely be explained in terms of the small decrease in diameter produced during the phase change. Finally, the behavior of drops undergoing the liquid to solid phase change will be considered with regard to the signals in both channels rise instantaneously with the formation of an ice shell around the drop. Initial ice bodies. The nonuniformities in the internal structure of the ice particles, as evidenced by their opaqueMay 1977 / Vol. 16, No. 5 / APPLIED OPTICS 1339 ness, provide opportunities for ray paths involving the multiple internal scattering of the incident light. That this behavior is efficient in producing backscatter is shown by the maintenance of high 6 values during most of the phase change. During much of this period, the scattering mechanisms responsible for much of the returns from the completely melted particle (i.e.,surface waves, the frontal axial reflection, and likely some in- ternally reflected ray paths), with the exception of the internal axial component, are contributing to the return energy and are yet incapable of lowering 6 values to any great extent. A particularly strong and perhaps different depolarizing process for melting drops is indicated in most records just as the receding ice body occupies a position at the center of the particle. (The ice mass typically rose to near the top of the drop due to entrapped air bubbles.) As represented by the El signal spike, this mechanism is a counterpart of the emergence of the Ell signal internal axial component, but probably involves ray paths which are refracted through the ice mass and which utilize the drops far internal face to aid in returning the energy in the backward direction. The scattering behavior of pure liquid drops can be examined with the aid of the experiments involving both the freely falling and suspended particles. From the latter measurements, it was inferred (for drops with the geometry induced by the suspension technique) that the combined external and internal face axial components comprised perhaps a half of the total returned energy. For truly spherical scatterers, the contribution of surface waves to the return would dominate, indicating that even slight distortions in sphericity are more destructive to the circumferential than the axial component. Depending on drop shape, the latter contribution may be significantly enhanced from the decrease in drop surface curvature from particle elongation. That both mechanisms contribute to the return is apparent from the photomicrographs of the particles such as shown in Fig. 6, which were taken at a scattering angle as close to the backward direction as possible (1600). It is interesting to note that on regularly frozen drops, the presence of bright areas at the particle's edges and center demonstrates that the corresponding scattering mechanisms were acting with the ice particles. After melting, it was often noted that surface wave generating areas would become localized at areas along the drop edge that varied according to exact drop shape. The strongest areas of return, however, were always at the center and edge of the drop at a point through the horizontal plane of the drop's center. An analysis of the data from freely falling drops where the influences caused by the artificial drop suspension were absent reveals that both experimental methods yielded comparable data. Contrasting the Ell and 6 values obtained in each case, the suspended drops produced on the average only slightly greater values, although Ell values were sometimes considerably greater. Hence, it is thought that the results discussed above are generally representative of those from more naturally shaped raindrops. The striking behavior of the artificial raindrops >-4 1340 APPLIED OPTICS/ Vol. 16, No. 5 / May 1977 mm in diameter implies that for these highly distorted particles the scattering mechanisms are vastly different from those producing the observed radius-squared Ell signal dependence for smaller drops. In reality, though, measurable raindrop deviations from sphericity commence at diameters of about 0.3 mm,9 with the drops thereafter increasing in degree of oblateness with size. Jones,8 observing natural raindrops in free fall, found large drops to resemble oblate spheroids which oscillated about an average axial ratio to an extent dependent on equivalent spherical diameter. Mean axial ratios of only -0.98 have been found for a 1-mm (equivalent spherical) diameter drop, with values then decreasing more strongly with increasing size until a -0.75 ratio was produced by drops of 4 mm (see Ref. 10). However, a discontinuity in the rate of change of axial ratios (with diameter) in the vicinity of the 4-mm diam drop value is lacking, so that the severe alteration in scattering behavior displayed by drops >-4 mm is likely due to an exaggeration of the deformation form. The precise geometry of such large drops can be approximated by a cap cyclide with a concavity on the bottom surface which increases in extent as drop size increases. The variation in experimental results shown in Fig. 2 may be related to the development of this structural feature with the creation of internally reflected ray paths, but more conclusive evidence would require the modeling of raindrop backscattering behavior. Such simulations seem permissible by means of the approximate geometrical optics approach in view of the successful treatment of surface waves by approximate theory3 and the availability of models describing numerically the shapes of large raindrops.1 0 "'1 This endeavor would be particularly useful in assessing any scattering dependence on the angle of incidence of the radiation. Despite the generation of the unexpectedly great amounts of backscattered energy from the large drops, it is important to note that only relatively minute amounts of energy were returned depolarized from these interactions. And yet, often significant depolarization accompanied the drop deformations caused by artificially induced oscillations and breakup. Thus, it appears that the effects of aerodynamic drag forces on drop shape are peculiar in that the resultant geometry tends to minimize the creation of ray paths capable of producing the depolarization of the incident light, at least as far as horizontal incidence is concerned. The inferences concerning near-spherical particle scattering behavior summarized above have their main applicability in the field of remote sensing with lidar and in the in situ hydrometeor discrimination with cwlaser systems. Both techniques can employ polarization sensitive receivers and in such form have received in- creasing attention in recent years to define the potential of the optical backscatter depolarization technique. These experimental results, although limited to horizontal incidence, have value in aiding in the delineation of this potential. Studies performed in recent years of both a theoretical and experimental nature have demonstrated that crystalline ice particles could be distinguished from spherical cloud droplets, but uncertainties about the depolarizing characteristics of distorted raindrops and near-spherical ice particles (e.g.,ice pellets, hailstones) left doubt about the ambiguity of the technique, at least in principle.1 2 The polarization measurements reported here substantiate this basic utility with regard to these hydrometeor forms. It is surprising, however, that linear depolarization ratios of about 0.5 have been recovered from the regularly frozen ice particles and liquid drops with an ice shell, since this same value is frequently encountered in studies of hexagonal ice particles with lidar and laboratory ice crystal clouds and natural snowflakes with cw laser systems. 1 3 Further- more, the generally higher amounts of depolarization produced by the irregular frozen drops appear to imitate more closely the 6 values of 0.65 to 0.70 observed for the opaque and irregular natural graupel particles.1 4 The 6 value variations observed during the phase transition are also valuable in identifying the presence of melting hydrometeors through the characteristic trends obtained from the artificial particles and natural snowflakes and graupel. Depolarization ratios and relative E 11values have been taken from these data and used in a model of the optical scattering properties of particles in the atmospheric melting region in an apparently successful comparison to actual lidar data (paper in preparation). The data from the freely falling artificial raindrops also have additional significance to lidar remote sensing: first, that raindrops with diameters >-4 mm can be expected to return relatively great amounts of energy; second, that atmospheric regions containing accumulations of large raindrops involved in coalescence or breakup can possibly be recognizable from the increased 6 values generated by this activity. The latter processes, however, apparently do not involve the genera- tion of increased Ell values. It is also significant that 6 > 1.0 during the freezing of drops have been found on several occasions. Although the occasional presence of similar anomalous values in lidar measurements has usually been attributed to anisotropic scattering properties of some ice crystal clouds, 1 3 it is now clear that the scattering from single particles can lead to such a drastic alteration of the polarization character of backscattered light. In view of the lack of theoretical support to aid in the interpretation of data remotely sensed via the optical backscatter depolarization technique, the characterization of the scattering behavior of various forms of atmospheric hydrometeors through experimental means is helping to demonstrate that the technique offers considerable promise to the evaluation of cloud and precipitation composition. References 1. P. S. Ro, T. S. Fahlen, and H. C. Bryant, Appl. Opt. 7, 883 (1968). 2. H. C. van de Hulst, Light Scattering from Small Particles (Wiley, New York, 1957). 3. T. S. Fahlen and H. C. Bryant, J. Opt. Soc. Am. 58, 304 (1968). 4. H. C. Bryant and A. J. Cox, J. Opt. Soc. Am. 56, 1529 (1966). 5. K. Sassen, J. Appl. Meteorol. 13, 923 (1974). 6. J. 0. Laws, Trans. Am. Geophys. Union 22, 709 (1941). 7. R. Gunn and G. D. Kinzer, J. Meteorol. 6, 243 (1949). 8. D. M. A. Jones, J. Meteorol. 16, 504 (1959). 9. H. R. Pruppacher and K. Beard, Q. J. R. Meteorol. Soc. 96, 247 (1970). 10. A. W. Green, J. Appl. Meteorol. 14, 1578 (1975). 11. H. R. Pruppacher and R. L. Pitter, J. Atmos. Sci. 28, 86 (1971). 12. Lidar polarization measurements appear in some cases to be also influenced by the design of the lidar system through the viewing of photon multiple scattering (see Ref. 13). 13. K. Sassen, J. Appl. Meteorol. 15, 292 (1976). 14. K. Sassen, Nature 255, 316 (1975). Some of the participants in the Garmisch-Partenkirchen Symposium on Radiation in the Atmosphere with Special Emphasis on Structure and Radiation Properties of Aerosols and Clouds Including Remote Sensing and Satellite Measurements: R. A. McClatchey (AFGL), V. E. Derr (NOAA-ERL), John Garing (AFGL), V. E. Zuev (U.S.S.R. Institute of Atmospheric Optics), and Sharon McClatchey. The meeting was held last August, and V. E. Derr was a section chairperson. Photo: F. S. Harris, Jr., (NASA-Langley). May 1977 / Vol. 16, No. 5 / APPLIED OPTICS 1341
© Copyright 2024