Real-time dynamics of quantum tunneling motivated by Lefschetz-thimble path integral Yuya Tanizaki The University of Tokyo & RIKEN March 24, 2015 @ JPS meeting, Waseda U. Collaborator: Takayuki Koike (Tokyo) Reference: Ann. Physics 351 (2014) 250 Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 1 / 11 Introduction Motivation Direct semiclassical description of quantum tunneling from the viewpoint of real-time path integral, Z Dx(t) exp(iS[x(t)]/~). Problem: Classical eom δS = 0 does not have tunneling solutions! Naively, semiclassical description seems to be impossible. Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 2 / 11 Introduction Simple example: Airy integral Let’s consider a one-dimensional oscillatory integration: 3 Z dx x Ai(a) = exp i + ax . 3 R 2π What is the MFA of this system? 60 3 ’10*’cos(x /3+x) exp(-0.5x)*cos(x3/3) 40 20 0 -20 -40 -60 -8 -6 -4 -2 0 2 4 6 8 Figure: Real parts of integrands for a = 1 (×10) & a = 0.5i Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 3 / 11 Introduction New technology on path integral Complex paths open a new way to compute path integrals. It’s better to circumvent the sign problem in order for a semiclassical method. ⇒ Lefschetz-thimble path integral (E.Witten, arXiv:1001.2933, arXiv:1009.6032) Z X Z Dx exp iS[x]/~ = nσ Dz exp iS[z]/~. σ Yuya Tanizaki (U. of Tokyo, RIKEN) Jσ Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 4 / 11 Introduction Find complex classical solutions Idea: 1 2 3 Find complex classical solutions zσ of eom δS = 0. Consider appropriate integration contours Jσ around zσ . Path integral on Jσ can be computed without the sign problem. Figure: Lefschetz thimbles for the Airy integral a = exp ±i0.1. Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 5 / 11 Quantum tunneling Double-well potential Complex-energy conservation: dz dt 2 + (z 2 − 1)2 = p2 Two different origins of oscillations ⇒ Solutions show double-periodicity! real-time oscillation imaginary-time oscillation x x Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 6 / 11 Quantum tunneling Double-well potential The list of parameters p can be obtained as (n, m ∈ Z) p p iK( (p − 1)/2p) K( (p + 1)/2p) tf − ti √ √ +m = n +(bdry. terms). 2 2p 2p Short-time asymptotic behaviors of the classical action: √ 2K(1/ 2)4 (n + im)4 . I[z(n,m) ] ' i 3 (tf − ti )3 Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 7 / 11 Quantum tunneling Complex solutions for quantum tunneling In order for the one-instanton action iS[z] ' −Sinst. = −4/3, complex solutions must be (highly-)oscillatory in the complexified space, i.e., n, m ' O(tf − ti ) (Me & Koike, arXiv:1406.2386): 15 20 10 10 5 20 40 60 80 100 t 50 100 10 5 Rez 10 Yuya Tanizaki (U. of Tokyo, RIKEN) t 150 Imz Rez 20 Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda Imz 8 / 11 Quantum tunneling Connection to the instanton calculus This solution has a close relationship with one-instanton ¨ (Cherman & Unsal, arXiv:1408.0012): xα (τ ) = tanh[(τ − τ0 )e−i(α−π/2) ] Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 9 / 11 Quantum tunneling Connection to the instanton calculus The action of this solution is that of the one-instanton solution at ¨ any α (Cherman & Unsal, arXiv:1408.0012): Z 4 e−iα dτ [e2iα (∂τ xα )2 − (x2α − 1)2 ] = Sα = 2~ 3 Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 10 / 11 Summary & Perspectives Summary & Perspectives Summary Real-time dynamics will become calculable in a nonperturbative way with Lefschetz-thimble path integrals. Exact semi-classical description of quantum tunneling is considered. Perspectives Application to real-time dynamics of topological objects in field theories. Sign problem, Resurgence trans-series, .... Yuya Tanizaki (U. of Tokyo, RIKEN) Lefschetz-thimble path integral & Quantum tunneling Mar. 22, 2015 @ Waseda 11 / 11
© Copyright 2024