BMB 174

BMB 174
Regulated Proteolysis 3
April 7, 2015
The behavior of a cell is determined
by its repertoire of proteins
Nerve cell
Muscle cell
A cell’s protein repertoire is determined by a
balance between production of new proteins
and elimination of existing ones
New proteins
made
Old proteins
degraded
s
10’
10’
Processes & Diseases Linked to Ubiquitin System
Cellular functions: cell cycle, localization, transcription,
apoptosis, signaling, glucose sensing, circadiam rhythms
cancers:
sarcomas, leukemias: Mdm2 (ubi-ligase)
renal carcinomas: VHL tumor suppressor (ubi-ligase)
breast cancer: tumor suppressor BRCA1 (ubi-ligase)
neurodegenerative diseases:
Parkinson’s: UCH-L1 (de-ubi enzyme), Parkin (ubi-ligase)
Angelmann’s syndrome: E6-AP (ubi-ligase)
autoimmune disease: polyendocrinopathy, Aire (ubi-ligase)
muscle atrophy: atrogin-1/MAFbx and MuRF1 (ubi-ligase)
The principal means of degrading
proteins in cells is via the ubiquitinproteasome system (UPS)
The ubiquitin-proteasome system
is vast. Of the ~22,000 genes
encoded in each of your cells,
about 1000 of them are involved
in ubiquitin metabolism
The Ubiquitin–Proteasome System
altered function
Ub
Ub
E1
E2
Ub
E1
E2
E3
UbR
protein
protein
E3
ATP
E2
Ub
Ub
Ub
Ub
DUB
Ub
protein
Ub
+ Ub
~dozen
UBLs
~50
E2s
~600
E3s
~90
DUBs
~25
UbRs
3
26S
Different ubiquitin modifications do different things
Ub
substrate
endocytosis,
transport
K63
K63
K63
substrate
DNA repair
ribosome
function
K48
K48
K48
K48
substrate
proteolysis
RING domains comprise the lion’s share of E3s
RING
(300)
HECT
(28)
HECT and RING E3s have different mechanisms
cb
HECT E3
RING E3
Ub
E2
E3
substrate
substrate
ca
Ub
E2
substrate
E3
Ub
E2
substrate
E3
Ub
Ub
E2
substrate
E3
E2
E3
E3s and E1 bind competitively to E2s
ca
E2
Ub
substrate
substrate
Ub
E3
E3
E2
Ub
Ub
Ub
e
E3
E1
d
E3
Ub
f
E2
E2
substrate
substrate
Ub
c
b
Ub
E2
Ub
E2
E2 Ub
E2
The reaction cycle of ubiquitination
E2
E3
e
c
Ub
d
E3
substrate
E2
substrate
substrate
Ub
Ub
Ub
E3
b
f
E3
Ub
a
E2
substrate
E3
substrate
Ub
Ub
E2
E3
Regulation of RING-dependent ubiquitination
by phosphorylation
P
E2
P
substrate
substrate
E2
Ub
E2
APC/C
Cdh1
adaptor
Cdc20
adaptor
substrate
E2
Ub
Ub
Adaptor inhibition
Ub
APC/C
SCF E3s
P
cc
Cdh1
adaptor
E2
E3 activation
substrate
substrate
Ub
cb
substrate
Substrate activation
Cdc20
adaptor
ca
Ub
E2
Other modes of regulation of RING E3s
E3 binding inhibitor (cullins + CAND1)
substrate
ca
substrate
Ub
E2
E2
+
SCF
cb
K
K
substrate
Pseudosubstrate inhibitor (APC + Acm1)
Ub
E2
APC/C
cc
Ub
E2
no Lys
+
no Lys
substrate
Allosteric activator (Ubr1 + dipeptides)
Ub
substrate
substrate
Ub
E2
+
Ubr1
E3
Ub
E2
E3
Other modes of regulation of RING E3s
cd
Ub
substrate
substrate
Small molecule co-substrate (SCFTIR1 + auxin)
E2
+
SCF
ce
Ub
E2
E3
Substrate ordering (APC/C)
Time of
proteolysis
Substrate 1
Substrate 2
Substrate 3
late
Substrate 3
low
Substrate 2
+
APC
Substrate 1
E2
early
Ub
processivity
Substrate 1
high
Ub
E2
An example of how regulated destabilization
controls a biological process:
TheG1/S
G1/Stransition
transition in
The
in budding
buddingyeast
yeast
S
phase
U
U
U
U
U
An example of how regulated stabilization controls
a biological process: hypoxic signaling
O2
O2
O2 O2
high
HIF1a
O2
O2
OH
Oxygen
level
O2
low
HIF1a
RNAP
In low oxygen, HIF-1 accumulates and drives expression of proteins that
induce red blood cell production (Epo) and proteins that promote blood
vessel formation (VEGF)
Gabi Alexandru
RING domains constitute the lion’s share of ubiquitin
ligases, and about half of them comprise cullin–RING
ligases (CRLs)
CRL
(~270)
RING
(300)
HECT
(28)
Diversification of the SCF repertoire
G1-Cdk
Srb10
P
~20 FBPs in yeast
~70 FBPs in human
P
GCN4
SIC1
P
CDC4
GRR1
CDC4
F
SKP1
CUL1
F
H
Ub
CDC34
Different kinases for targeting
SKP1
CUL1
CLN1,2
H
Ub
CDC34
Different F-box proteins
Diversification of the SCF-like E3s
~50 SOCS box
proteins in humans
~200 BTB domain
proteins in humans
HP
VHL
HIF1
S
CDC4
MEL26
SOCS
S
El-C
H
CUL2
BTB
Ub
CUL3
MEI-1
H
Ub
CDC34
CDC34
Cul2
Cul3
What SCF looks like
Ub
E2
Skp1
b-cat peptide
RING
Cul1
Cul1
Ning Zheng, Brenda Schulman & Nikola Pavletich
How does Ub transfer happen across a gap?
How are ubiquitin chains assembled?
How is chain specificity achieved?
Ub-sepharose depletes more than E1
non-E1 factor eluted by salt only when
applied in absence of ATP
E1, E2, E3 promote Ub conjugation
E2, but not E3, sticks to Ub-sepharose
covalently in presence of E1 & ATP
E1 + ATP protect E2 from thiol inactivation
Ubiquitin flows from E1->E2->substrate
Figure 13
+CSN
Rbx1
cc
low activity
substrate
cb
high activity
substrate
ca
+Cand1
Ub
E2
Cand1
substrate
Cul1 N8
adaptor
no activity
+
N8
N8
E2
cd
What SCF looks like
Ub
E2
Skp1
b-cat peptide
RING
Cul1
Cul1
How does Ub transfer happen across a gap?
How are ubiquitin chains assembled?
Ning Zheng, Brenda Schulman & Nikola Pavletich