New directions of superconducting nanostructures 2009 (NDSN2009) 4-5 September, Nagoya Univ. How to determine pairing symmetries of chiral p-wave superconductors from vortex-core tunneling spectroscopy via odd-frequency pairings Yasunari Tanuma (Akita University) Collaborators: N. Hayashi (Osaka Prefecture University) Y. Tanaka (Nagoya University) A. A. Golubov (University of Twente) Contents 1. Introduction - Chiral p-wave superconductors - Andreev bound states & odd-frequency pairing states 2. Theoretical model - Quasiclassical theory in the presence of impurity effect - Vortex-core tunneling spectroscopy 3. Our results - Parallel & antiparallel vortex states - odd-frequency s-wave & d-wave pair amplitude 4. Summary Sr2 RuO4 - Unconventional Superconductors Y. Maeno et al., Nature (London) 372 (1994) 532. Critical temperature Tc = 1.5[K] - Crystal structure - - Electronic states Quasi-2D Fermi surface Ru : 4d -orbitals Layered perovskite eg d3z2 −r2 dx2 −y2 β γ α dxy c t2g b a dyz dzx A.P. Machenzie et al., Phys. Rev. Lett. 76 (1996) 3786. RuO2 plane dyz α band ( orbital ) three bands dzx β band ( orbital ) γ band ( orbital dxy ) Possible candidate for spin-triplet superconductors Sr2 RuO4 - pairing symmetry in bulk states Sr2 RuO4 orbital part: Tc = 1.5[K] μSR Spontaneous Magnetization (time-reversal symmetry breaking states) G.M. Luke et al., Nature (London) 394 (1998) 558. spin part: NMR Spin-polarizability for H ! ab is independent of temperature. K. Ishida et al., Nature (London) 396 (1998) 658. (frequency part): For ω → −ω pair wave function is even. even frequency d -vector notation chiral p-wave pairing symmetry d = z(sin kx ± i sin ky ) Non-uniform superconducting systems - Andreev bound states (ABS) positive pair potential ∆+ electron-like quasiparticle Cooper pair hole-like quasiparticle ∆− ∆+ ∆− < 0 negative pair potential Surface ABS ∆− Vortex ABS ∆+ - + + - ∆+ Odd-frequency pairings ∆− (110) surface quasiparticle s moving direction phase shift by applying magnetic field The proposal of this study: Vortex-core tunneling spectroscopy of chiral p-wave superconductors via odd-frequency pairing states. ・spin-triplet pairing symmetry ・chiral-domain structure - Chirality and vorticity Antiparallel vortex (APV) - + Y. Kato: J. Phys. Soc. Jpn. 69 (2000) 3378. Y. Kato & N. Hayashi: J. Phys. Soc. Jpn. 70 (2001) 3368. Y. Kato & N. Hayashi: J. Phys. Soc. Jpn. 71 (2002) 1721. Parallel vortex - + (PV) - Nonmagnetic impurity scattering effect N. Hayashi, Y. Kato & M. Sigrist: J. Low Temp. Phys. 79 (2005) 893. The quasiclassical Green s function theory - impurity scattering effect ・The Eilenberger equation ! " ˆ − Σ, ˆ gˆ −ivF · ∇ˆ g = iωn τˆz − ∆ ! " g if gˆ = −iπ quasiclassical Green s function −if¯ −g Matsubara frequency - self-energy Born limit ωn = (2n + 1)πT ˆ n , r) → Σ(E, ˆ Σ(iω r) ¯ ˆ k) - pair potential ∆(r, } SCF calculation Y. Tanaka, Y. Tanuma & S. Kashiwaya: Phys. Rev. B 64 (2001) 054510. ・LDOS(Local Density of states) ! " N (r, E) = NF Re g R iω → E + iδ n Self-consistent calculation ・Pair potential(PP) ∆(r, θ) = ∆+ (r)e +ilθ ∆± (r) = πT V + ∆− (r)e −ilθ l = 0, 1, 2, · · · s-wave, p-wave, d-wave, ! " |ωn |<ωc Matsubara frequency ・Pair amplitude (PA) F (l) (iωn , r, θ) = (l) F+ (iωn , r)e+ilθ (l) + (l) F− (iωn , r)e−ilθ ! F± (iωn , r) = e∓ilθ ! " f (iωn , r, θ" ) - even frequency f (iωn , r, θ! ) = f (−iωn , r, θ! ) - odd frequency f (iωn , r, θ! ) = −f (−iωn , r, θ! ) e∓ilθ ! # f (iωn , r, θ" ) ωn = (2n + 1)πT PP & odd-ω PA near vortex core Angular momentum at the center of core: l + m Impurity scattering:weak m = +1 m = −1 p−wave pair potential (antiparallel) m = +1 (parallel) m = −1 (antiparallel) (parallel) 1 px−ipy −wave px+ipy −wave 0.5 px−ipy −wave px+ipy −wave 0 −0.5 2 odd− ω pair amplitude Impurity scattering:strong 1 0 1 0.5 0 1.5 1 0.5 0 0 Γ = 0.1Δ 0 T = 0.1Tc Γ = 0.3Δ 0 T = 0.1Tc s−wave s−wave dx2−y2+idxy−wave dx2−y2+idxy−wave APV PV dx2−y2−idxy−wave r / ξ0 0 For antiparallel vortex (APV) l + m = 0 For parallel vortex (PV) l + m = −2 Γ:impurity scattering rate dx2−y2−idxy−wave 1 r / ξ0 2 3 ‘odd-ω s-wave’ ‘odd-ω d-wave’ Vortex-core tunneling spectroscopy in order to identify pairing symmetry Antiparallel vortex vorticity +iφ STM tip e impurity Parallel vortex vorticity −iφ STM tip e - + −iθ e chirality impurity + −iθ e chirality odd-ω s-wave odd-ω d-wave s-wave pair amplitude is robust against the impurity. d-wave pair amplitude is sensitive to the impurity. LDOS near the vortex-core Born impurity scattering (a) Antiparallel chiral p-wave vortex (b) Parallel chiral p-wave vortex −2 4 −1 3 −1 3 2 1 m=+1 Γ = 0.1Δ0 2 −2 E / Δ0 −1 1 2 0 1 1 0 4 2 −2 3 −1 2 0 m=+1 Γ = 0.3Δ0 1 2 3 N(0,E) 4 0 0.5 1 1.5 r / ξ0 odd-frequency s-wave 2 2 0 1 m=−1 Γ = 0.1Δ0 0 4 3 E / Δ0 0 E / Δ0 4 E / Δ0 −2 2 0 1 1 0 2 0 1 m=−1 Γ = 0.3Δ0 1 2 3 N(0,E) 4 0 0.5 1 1.5 r / ξ0 odd-frequency d-wave The measurements of ZEP under the influence of impurities. The observations of the symmetry of those odd-ω pair amplitude. 2 0 The ZEP as a function of Γ AbrikosovGorkov plot 3 N(r=0,E=0) / N F 10 antiparallel parallel 2 Pair amplitude 1 0.5 10 odd-ω s-wave 0 0 0.2 ! / "0 0.4 odd-ω d-wave 1 10 10 0 0 # = 0.005 "0 0.2 ! / "0 Chirality & vorticity: 0.4 Y. Kato: J. Phys. Soc. Jpn. 69 (2000) 3378. Y. Kato & N. Hayashi: J. Phys. Soc. Jpn. 70 (2001) 3368. Y. Kato & N. Hayashi: J. Phys. Soc. Jpn. 71 (2002) 1721. Summary Vortex-core tunneling spectroscopy of chiral p-wave superconductors in the presence of impurity effect - It enables us to detect the existence of chirality and odd-frequency pairings. Y. Tanuma N. Hayashi, Y. Tanaka & A.A. Golubov: Phys. Rev. Lett. 102 (2009) 117003.
© Copyright 2024