Fungal Phylogenetics: How to find the missing link Ringvorlesung Genetik – Biologisch-Pharmazeutische Fakultät Jena, April 2009 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) Agenda Introduction: terms in phylogenetics Data: how to find a phylogenetic marker Reconstruction: planting phylogenetic trees Applied Phylogenetics: Reconstruction of evolution of basal fungi Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 2 Terms in phylogenetics Phylogeny: study of evolution Cladistics: hypothesis of phylogeny Plesiomorphic (original) characters Apomorphic (derived) characters Synapomorphies proving Evolution P S A S Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) 3 Example Plesiomorphy: a tail Synapomorphy: loss of tail (Aut-)Apomorphy: to speak P S1 A1 S1 A2 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 4 Para- und Monophyly Paraphyletic groups are identified by plesiomorphic characters no closed/complete evolutionary community Monophyletic groups are defined by Apomorphies always closed/complete evolutionary community Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) 5 Example: para- & monophyletic groups P S1 A1 S1 A2 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 6 Homology & Analogy Both terms are describing similar characters! Homologous characters originate from a single evolutionary point structure of arms by Mammalia Analogous characters evolve independently or convergent flying animals Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) 7 Example: Homology & Analogy Homologous character: Structures of arms of Mammalia Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) Analogous character: flying animals 8 Kind of Homologies orthologous genes: same Gene, other Spezies Specifications are helpful redrawing the evolution of characters e.g.: Actin, Cytochrome C paralogous genes: same Species, other (duplicated) Gene phylogeny of paralogous genes is leading to errors in reconstruction e.g.: Hämoglobin (α, β, γ), MADS box gene Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) 9 Generating Data Phylogenetic marker Phenologic characters biochemical Ontogenesis Moleculargenetic characters morphological physiological Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) Protein DNA 10 Kerstin Hoffmann, 2008 http://de.wikipedia.org/wiki/Darwinfinken Phenologic characters: non-molecular-genetic criteria Morphological characters Physiological characters Color, size, shape, etc. e.g. optimal temperature of growth, nutritions, oxygen, etc. Biochemical characters Metabolism pathways, biochemical production Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 11 Moleculargenetic character: DNA or Protein? DNA Relatively easy to extract Universal code Triple information non-coding sequences, no posttranscriptional loss of information FRC: 18S rDNA, 28S rDNA, { ITS1 & 2, 5.8S rDNA } Protein Codon Position More substitution models Information beyond the sequence: Function of AA, structure, group of function FRC: actin, tef 1-alpha, btub, (rpb1, rpb2, tdh) Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 12 Actin Bild: http://de.wikipedia.org/wiki/Actin Moleculargenetic character Structure protein of cytoskeleton in eucaryotic cells Coding sequence Highly conserved gene (15% divergency between algae and human) ITS (internal transcribed spacer) Non-coding sequence between rDNA High copy number Not under selective pressure Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 13 (Dis)Advantages pro contra Morphological characters Easy to discover Low cost Fossils „Visible“ facts Same Moleculargenetic characters Comparable Limited Same procedure Limited data Easy storage Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) level? Inaccurate/misinterpretion Evolut. rate not definable Not comparable No limited data Preservation/ conservation possibilities of fossils Error due procedures 14 Taxon sampling & Alignment Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 15 Methods of reconstruction Distance based phylogeny Parsimony Heuristic, weighted, unweighted Likelihood UPGMA, Neighbor Joining, … Maximum Likelihood Bayesian inference Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 16 Substitution model 4 nucleotides = 4 state of characters DNA vs. Protein how to calculate? Why not GTR+G+I? 1. time consuming 2. possible boost of errors no substitution reverse subst. convergent subst. Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) parrallel subst. 17 Level of phylogeny ATTACGGCA ATTACGGCA ATTACGCCA AATAGGGCA conserved Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) ATCACGCCA ATTAGGGCA ATTACGCCA AATAGGGTT variable 18 Methods to combine data SuperMatrix alias multi-gene-analysis alignments of single markers final alignment is the combination of sets missing characters are filled with gaps SuperTree informal Supertree taxonomic substitution formal SuperTree algorithm-based coding Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 19 Methods: Supermatrix Combination of partitions with different types of characters Partition 1 Partition 2 Partition 3 partitions include: morphological data DNA sequence data protein sequence data Taxa Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 20 Methods: Informal Supertrees “taxonomic substitution” hierarchically nested non-overlapping source trees still in use e.g., Tree of Life Bininda-Emonds 2008 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 21 Methods: Formal Supertrees E F GH J KL Direct AB C D E F GH I J K L consensus-like techniques A B C K L MRP Matrix C DE H I K optimization criterion coding technique Indirect Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) Bininda-Emonds 2008 22 How to interprete a tree? http://blogs.nature.com/news/thegreatbeyond/2008/04/jellies_were_first_animal.html Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 23 Insecta Applied phylogenetics Plantae Vertebrata Metazoa The study of evolutionary relations among all living (and dead) organisms Tree of Life – Project AFTOL –Archaea A fungal tree of Protozoa life The FRC Jena: basal fungi Eukaryota Zygomycetes and Chytridiomycetes Eubacteria Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) http://www.tolweb.org/tree/ Fungi 24 Phylogeny of the kingdom Fungi Past till Present Basidiomycota Ascomycota Glomeromycota Schüßler et al. 2001 Blastocladiomycota „Zygomycota“ James et al. 2006 Hibbett et al. 2007 Chytridiomycota Neocallimastigomycota © Addison Wesley 1999 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) Microsporidia James et al. 2006 Keeling et al. 2000 25 Hibbett et al. 2007 Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 26 Characteristics of chytridiomycetes chytridium: unreleased spores chytridion: ("little pot“) [Greek] predominantly aquatic, also terrestric flagellated gametes and zoospores chitin (cellulose) in cell walls mostly saprobic, also parasitic Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) Allomyces sp. (Tom Volk, Univ. of Wisconsin-LC) 27 Traditional classification based on habitate, zoospore characterization, life cycles Chytridiomycota Chytridiomycetes Chytridiales (Schröter 1892) Blastocladiales (Fitzpatrick 1930) Monoblepharidales (Sparrow 1942) Spizellomycetales (Barr 1980) Neocallimastigales (Li et al. 1993) Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 28 super tree – all data set based on 4 source trees 29 Questions? “Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve” Karl Popper (1972) Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 30 Thank you for your attention With Many thanks to PD Dr. K. Voigt K. Hoffmann Dr. K . Fliegerova Prof. Dr. O. Bininda-Emonds Dr. Alexandro Stamatikis Malte Brinkmeyer Prof. Dr. S. Böcker Thasso Griebel Christoph Thieme Matthias Gube … and for the support at the Group Microbial Phytopathology Jena Martin Eckart – Fungal Reference Center Jena – Institute of Microbiology (2009) 31 Literatur Books: Knoop/ Müller Gene und Stammbäume Jean-Michel Ph. D. Claverie Bioinformatics for Dummies Paper: W.M. Fitch (2000) Homology Trends in Genetics 16:227 PubMed... Phylogenetic course 2009 (Voigt, Hoffmann, Eckart) 32 Phylogenetische Rekonstruktion der Evolution basaler Pilze Kerstin Voigt & Martin Eckart Friedrich-Schiller-Universität Jena, Pilz-Referenz-Zentrum http://www.prz.uni-jena.de 1. Deep-level phylogeny 3. Supertrees & -matrices http://www.prz.uni-jena.de 2. Zygomycetes 4. Chytridiomycetes Zygomycetes – Characteristics Sexual Reproduction – Gametangiogamy Copulation of non-differentited, coenocytic gametangia leads to the formation of zygotes (zygospores) which are associated with two yoke-shaped suspensors Absidia glauca Syzygites megalocarpus Phycomyces blakesleeanus 100 μm Mucorales – Parasitism Sikyospore versus Galls Parasite Parasite Host 10 μm Host 10 μm Parasitella parasitica (-) parasitises on Gilbertella persicaria (+) Chaetocladium brefeldii (+) parasitises on Mucor hiemalis forma hiemalis (-) Foto: Abdel-Rahman Saleem (2002) Foto: Reinicke M, Eckart M & Voigt K (2000) Mucorales (Fungi) Gall-mediated Mycoparasitism Host Parasit Parasite Absidia parricida x Mucor rouxii Sikyotic Mycoparasitism Host Parasite Parasitella parasitica x Thamnidium elegans Sikyotic Mycoparasitism Host Parasite Parasitella parasitica x Mucor rouxii Zygomycetes – Characteristics Asexual reproduction via non-motile mitospores Sporangium Sporangiolum Merosporangium multispored uni- or fewspored elongated sporangiolum producing uniserate spores 50 µm Absidia corymbifera Syzygites megalocarpus Syncephalastrum racemosum Mucorales Mortierellales Kickxellales 20 μm 25 μm Mucor Mortierella Kickxella Coenocytic Irregularly septated Regularly septated Micropores Micropores Dolipores Sporangia Sporangiola Merosporangia Sporangia Soil fungi Soil fungi Merosporangia Soil fungi Zygomycota – Traditional Classification Basidiomycota Phylum Class Order Zygomycota Trichomycetes Class Order Zygomycetes Mucorales Mortierellales Kickxellales Ascomycota Harpellales Asellariales Eccrinales Glomeromycota Blastocladiomycota Zygomycota Chytridiomycota Neocallimastigomycota Zoopagales Dimargaritales Endogonales Entomophthorales Basidiobolales (Alexopoulos et al. 1996) Alexopolous, C.J.; Mims, C.W.; Blackwell, M. 1996. Introductory Mycology. NY: John Wiley & Sons Zygomycota – Novel Classification No rank Phylum Class Order Zygomycota Trichomycetes Class Order Zygomycetes Mucorales Mortierellales Kickxellales Harpellales Asellariales Eccrinales Zoopagales Dimargaritales Endogonales Entomophthorales Basidiobolales Fungi incertae sedis Basal fungal linages Subphylum Entomophthoramycotina Order Entomophthorales Family Basidiobolaceae Subphylum Order Kickxellomycotina Harpellales Asellariales Dimargaritales Kickxellales Subphylum Order Mucoromycotina Mucorales Mortierellales Endogonales Subphylum Order Zoopagomycotina Zoopagales (Alexopoulos et al. 1996) No rank Fungi/Metazoa incertae sedis Class Mesomycetozoa Order Eccrinales Alexopolous, C.J.; Mims, C.W.; Blackwell, M. 1996. Introductory Mycology Hibbett et al. 2007 Mycol Res. 111: 509-47 (Hibbett et al. 2007) Zygomycetes represent the most basal group of terrestric fungi Chytridiomycota + Actin (273 aa) + β-tub (435 aa) Mucorales ´Zygomycota´ + EF-1α (458 aa) Σ 1,166 aa MYCOTA Maximum Parsimony 8 trees 4,018 steps CI = 0.58 HI = 0.42 RI = 0.59 Ascomycota Basidiomycota Metazoa Choanoflagellida Microsporidia BP > 60 % 10 changes Mycetozoa Entamoebidae Diplomonadida Oomycota Viridiplantae Euglenozoa Heterolobosea Mucorales (Fungi) Zygomycetes – Importance Biotechnology biotransformations carotene lycopene chitosan fatty acids Food production cheese tempeh soy souce Agriculture plant pathogens food spoilage post-harvest pathogens Medicine human, animal pathogens (zygomycoses and entomophthoromycoses) Rhizopus Circinella Pilobolus Syzygites Columella The trade-mark of the Mucorales is a swollen extension of the sporangiophore called a columella, which protrudes like a balloon into the sporangium. Columella a bulbous vesicle at the sporangiophore apex 50 µm Family structure of the Mucorales Aktin & EF-1α 18S & 28S rDNA Σ 4,151 bp 82 Taxa Gewichtete Maximum-Parsimony 2 trees 12,046 steps CI = 0.27 HI = 0.73 RI = 0.62 Mucoraceae – Thermophile Absidia spp. Thamnidiaceae Mucoraceae – Mesophile Absidia spp. Cunninghamellaceae Mucoraceae Parasitella parasitica Chaetocladiaceae Thamnidiaceae Mycotyphaceae Gilbertellaceae Choanephoraceae Pilobolaceae Mucoraceae Saksenaeaceae incl. Apophysomyces Phycomycetaceae incl. Spinellus Syncephalastraceae Umbelopsis spp. 100 changes Mortierellales Voigt & Wöstemeyer (2001) Gene 270: 113-120. Spinellus fusiger classifies within the Phycomycetaceae Proposed by von Arx (1983) Sydowia Evidenced by Voigt et al. (2008) Sporangia of Spinellus fusiger (Mucorales) parasitic on fruitbodies of the mushroom Mycena pura. (© Malcolm Storey 2004, from www.bioimages.org.uk). The Intron Structure of the Actin Gene 1412 1 Act-1 I II 501-668 Max. Intron Length [bp] Intron Group 805-969 167 164 Intron Presence III IV V 1122-1267 1351-1411 1278-1342 145 64 65 Organism Group I II III IV V Higher Taxon 0 1 + - - - - Mortierellales Mortierella Mortierellales 2 + + - - - 3 - + - - - Thermophilic Absidiagroup and all others Mesophilic Absidiagroup 4 - - + - - 5 6 + + + + - + - + Mortierella, Umbelopsis, Micromucor Absidia, Rhizomucor, Thermomucor and all others Absidia, Chlamydoabsidia, Cunninghamella, Halteromyces Fennellomyces, Phascolomyces, Thamnostylum, Zychaea Rhizomucor miehei Thamnidiaceae Syncephalastraceae Act-4R Genera and Species Syncephalastrum Family structure of the Mucorales based on a Five-Locus-Phylogeny Neighbor-Joining (similar topology: MP, ML) actin & EF-1α & βtub & 18S & 28S rDNA 5,312 nt 35 Taxa Weighted BP > 70 Mortierellales Chaetocladium brefeldii Syzygites megalocarpus Rhizopus microsporus Rhizopus oryzae Cokeromyces recurvatus Blakeslea trispora Choanephora infundibulifera Poitrasia circinans Gilbertella persicaria Mucor mucedo Pilaira anomala Zygorhynchus moelleri Actinomucor elegans Mucor hiemalis Utharomyces epallocaulus Parasitella parasitica Ellisomyces anomalus Mycotypha afriana Mucor racemosus Radiomyces spectabilis Absidia glauca Chlamydoabsidia padenii Halteromyces radiatus Absidia corymbifera Phycomyces blakesleeanus Spinellus fusiger Fennellomyces linderi Thamnostylum piriforme Syncephalastrum racemosum Gongronella butleri Umbelopsis ramanniana Umbelopsis isabellina 0.1 substitutions per site Morphology: sporangia versus sporangiola Sporangia Rhizopus microsporus Rhizopus oryzae Blakeslea trispora Choanephora infundibulifera Poitrasia circinans Gilbertella persicaria Mucor mucedo Pilaira anomala Zygorhynchus moelleri Actinomucor elegans Mucor hiemalis Utharomyces epallocaulus Parasitella parasitica Ellisomyces anomalus Mucor racemosus Absidia glauca Chlamydoabsidia padenii Halteromyces radiatus Absidia corymbifera Phycomyces blakesleeanus Spinellus fusiger Fennellomyces linderi Thamnostylum piriforme Umbelopsis ramanniana Umbelopsis isabellina Mortierellales Gongronella butleri Morphology: sporangia versus sporangiola Sporangiola Chaetocladium brefeldii Syzygites megalocarpus Cokeromyces recurvatus Blakeslea trispora Choanephora infundibulifera Ellisomyces anomalus Mycotypha afriana Radiomyces spectabilis Fennellomyces linderi Thamnostylum piriforme Syncephalastrum racemosum Morphology: appendaged, striated sporangiospores and longitudinal suture in sporangial wall Blakeslea trispora Choanephora cucurbitarum Poitrasia circinans Gilbertella persicaria Poitrasia circinans Choanephora fruit (wet) rot on yellow straight neck squash (Cucurbita pepo) caused by Choanephora cucurbitarum. Photo: Gerald J. Holmes, Dept. Plant Pathology, North Carolina State University Raleigh, NC 27695 Voigt K & Olsson, L (2008) Acta Biologica Hungarica 59 (3): 365383. Take Home Message – Criteria of Phylogenetic Relevance Monophyletic: 1. Columella 2. Sporangiospores: appendaged, striated 3. Longitudinal suture in sporangial wall 4. Growth temperature Polyphyletic: 1. Spore number (Sporangia, sporangiola) 2. Spore shape 3. Apophysis 4. Sporangial or sporangiolar wall (persistent, deliquescent, evanescent) 5. Rhizoids 6. Zygospore morphology (appendaged, opposed-apposed suspensors) 7. Mycoparasitism Mucorales – the genus Absidia -pyriform, apophysate sporangia -polyphyletic (mesophilic, thermotolerant, parasitic species) spores columella apophyse 20 µm Hoffmann et al. (2007) Mycological Research 111 (10): 1169-1183. Mucorales – the genus Absidia 0.2 mesophilic thermotolerant growthrate [mm/h] mycoparasitic 0.15 0.1 0.05 0 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 temperature [°C] Hoffmann et al. (2007) Mycological Research 111 (10): 1169-1183. Splitting the genus Absidia Mortierellales 100 Umbelopsidaceae Absidia zychae Absidia parricida 94 100 Lentamyces Hoffmann & Voigt 2008 99 Circinella umbellata 100 100 Lichtheimia spp. 79 Lichtheimiaceae Hoffmann, Walther & Voigt 2009 100 Dichotomocladium elegans Dichotomocladium hesseltinei Dichotomocladium robustum 100 100 61 98 100 91 0.1 substitutions/site 100 Absidia spp. Absidiaceae s. str. von Arx 1982 We thank our collaborators… Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum, University Jena Lennart Olsson Nadine Piekarski Jena Bioinformatics Centre, University Jena Stefan Schuster Christoph Thieme Institute of Microbiology, University Innsbruck Martin Kirchmair Sigrid Neuhauser Reinhold Pöder Institute of Applied Microbiology, University of Nat. Resources and Applied Life Sciences Vienna Hansjörg Prillinger Centraalbureau voor Schimmelcultures Utrecht Grit Walther Sybren deHoog Dept. of Forest Resources, University of Idaho, Moscow George Newcombe Grants: Taif University, Saudi Arabia Youssuf Gherbawy Institute of Microbiology, University Szeged Tamás Papp Csaba Vágvölgyi Fungal Reference Centre (Pilz-Referenz-Zentrum) Jena 10.000 fungal cultures (active and cryo) Kerstin Hoffmann Martin Eckart Claudia Kesselboth Lysette Wagner Gisela Baumbach ...and many helpful hands from volunteer students
© Copyright 2024