Examining Effects of Black Carbon on Climate and How to Mitigate Them Through Different Transportation Options Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University International Council on Clean Transportation (ICCT) January 5-6, 2009 London, United Kingdom 2 o Temperature Change Since 1750 ( C) Causes of Global Warming 1.5 1 0.5 0 -0.5 -1 Cooling particles Green- Fossil- Urban fuel house heat gases + biofuel island soot particles Net observed global warming -1.5 M.Z. Jacobson GATOR-GCMOM Model Gas processes Emissions Photochemistry Gas-to-particle conversion Cloud removal Aerosol processes Emissions Nucleation/condensation Gas dissolution Aqueous chemistry Crystallization Aerosol-aerosol coagulation Aerosol-cloud coagulation Dry deposition Sedimentation Rainout/washout Meteorological processes Pressure, winds, temp., TKE Cloud processes Subgrid clouds, size-resolved physics Liquid/ice growth on aerosol particles Liquid drop freezing/breakup Hydrometeor-hydrometeor coagulation Hydrometeor-aerosol coagulation Precipitation, aer./gas rainout/washout Below-cloud evaporation/melting Lightning from collision bounceoffs Radiative transfer UV/visible/near-IR/thermal-IR Gas/aerosol/cloud scat./absorption Predicted snow, ice, water albedos Surface processes Soil, water, snow, sea ice, vegetation, road, roof temperatures/moisture Ocean 2-D dynam., 3-D diffus/chem. Ocean-atmosphere exchange Cloud Microphysical and Chemical Processes Condensation/deposition of water vapor onto aerosol particles Coagulation: Aerosol-aerosol Aerosol-liquid Aerosol-ice Aerosol-graupel Liquid-liquid Ice-graupel Liquid-ice Graupel-graupel Liquid-graupel Ice-ice Gas dissolution. aqueous chemistry, hom.-het. freezing, contact freezing Interstitial aerosol Liquid Dissolved, reacted gas Ice Aerosolparticle core Graupel Coagulated aerosol particle Shrinkage, precipitation, rainout, and washout Gas dissolution and aerosolparticle coagulation during precip. (washout) Rainout of core and existing gas Cloud evaporation --> interstitial aerosol plus evaporated cores Size Distributions Treated FF Soot Number BC POM SOM H2O-h H+ H2SO4 HSO4- NH4+ NO3- Cl- NH4NO3 (NH4)2SO4 Intern.-mix Number BC POM SOM H2O-h H+ H2SO4 HSO4- NH4+ NO3- Cl- NH4NO3 (NH4)2SO4 Na+ Soildust Pollen/spore Liq. Number BC POM SOM H2O-h H+ H2SO4 HSO4- NH4+ NO3- Cl- NH4NO3 (NH4)2SO4 Na+ Soildust Pollen/spore H2O(l) Ice Number BC POM SOM H2O-h H+ H2SO4 HSO4- NH4+ NO3- Cl- NH4NO3 (NH4)2SO4 Na+ Soildust Pollen/spore H2O(ice) Graupel Number BC POM SOM H2O-h H+ H2SO4 HSO4- NH4+ NO3- Cl- NH4NO3 (NH4)2SO4 Na+ Soildust Pollen/spore H2O(ice) Fossil- and Bio-fuel Emissions (Tg/yr) BC POC S(VI) Na+ K+ as Na+ Ca2+ as Na+ Mg2+ as Na+ NH4+ NO3- Cl- H2O-hydrated H+ Fossil-Fuel 3.2 2.4 0.03 calculated calculated Biofuel 1.6 6.5 0.3 0.023 0.14 0.18 0.08 0.018 0.16 0.30 calculated calculated + 43 gases BC/POC from Bond et al. (2004); other emis factors Andreae, Ferek Modeled vs. Measured Annual Precipitation Data from Huffman et al. Modeled vs. Measured Annual Lightning Flash Rate Data from NASA LIS/OTD Science Team 300 250 200 2 (W/m ) TOA outgoing thermal-IR Modeled vs. Measured Thermal-IR 150 100 ERBE Model 50 0 -90 -60 -30 0 30 Latitude (degrees) 60 90 Data from Kiehl et al., 1998 Modeled vs. Measured Paired in Space Monthly T and Td T d T 300 500 60 80 100 300 Sep Edmonton 53 N 114 W T d T 300 150 500 225 60 80 100 300 Mar Resolute 75 N 95 W T d 150 225 300 Temperature (K) T 300 500 150 Pressure (hPa) 150 225 60 80 100 300 Mar Soda 67 N 27 E T d 150 T 300 60 80 100 Sep Resolute 75 N 95 W T d T 300 150 225 60 80 100 300 Sep Soda 67 N 27 E T T d 300 60 80 100 Mar Nyal 79 N 12 E T d 150 225 300 Temperature (K) 300 T 300 500 150 225 300 Temperature (K) 225 500 150 225 300 Temperature (K) 300 500 150 225 300 Temperature (K) 225 500 Pressure (hPa) 150 225 300 Temperature (K) Pressure (hPa) 225 Pressure (hPa) Mar Edmonton 53 N 114 W 150 150 Pressure (hPa) 60 80 100 300 Pressure (hPa) 225 Pressure (hPa) Pressure (hPa) 150 225 60 80 100 300 Sep Nyal 79 N 12 E T d T 300 500 150 225 300 Temperature (K) 150 225 300 Temperature (K) Data from FSL (2008) Modeled vs. Measured Paired in Space Monthly Climatological Ozone 0 Mar Poona 19 N 74 E 100 1000 Sep Poona 19 N 74 E 100 1000 0 0 6000 1.2 10 Ozone (ppbv) 4 6000 1.2 10 0 100 4 1000 1000 0 6000 1.2 10 Ozone (ppbv) 4 6000 1.2 10 Ozone (ppbv) 0 4 6000 1.2 10 1 100 0 6000 1.2 10 Ozone (ppbv) 0 6000 1.2 104 Ozone (ppbv) 0 6000 1.2 10 4 1 10 Mar Samoa 14 S 170 W 100 1000 4 Sep Brazzaville 4S 15 E 100 4 0 6000 1.2 10 Sep Syowa 69 S 39 E 10 1000 6000 1.2 10 Ozone (ppbv) Pressure (hPa) Pressure (hPa) Mar Syowa 69 S 39 E Mar Brazzaville 4S 15 E 100 4 10 4 6000 1.2 10 1 10 1 10 0 1000 0 1 Pressure (hPa) 10 4 6000 1.2 10 1 Pressure (hPa) 10 4 0 1 Pressure (hPa) Pressure (hPa) 1 4 6000 1.2 10 Pressure (hPa) 4 6000 1.2 10 Pressure (hPa) 0 10 Sep Samoa 14 S 170 W 100 1000 0 4 6000 1.2 10 Ozone (ppbv) 0 6000 1.2 104 Ozone (ppbv) Data from Logan et al. (1999) 1030 1025 1020 1015 1010 1005 1000 o o 34.4453 N, 118.1722 W 12 108 204 300 396 492 588 684 780 GMT hour of simulation (starting 12 GMT Aug. 1, 1999) 0.12 0.1 0.08 0.06 0.04 0.02 0 12 o Air temperature ( C) 40 35 30 25 20 15 10 5 0 Ozone (ppmv) Pressure o Ozone o o 34.0506 N, 117.5447 W 108 204 300 396 492 588 684 GMT hour of simulation (starting 12 GMT Aug. 1, 1999) 780 o 34.0133 N, 117.9406 W 12 108 204 300 396 492 588 684 GMT hour of simulation (starting 12 GMT Aug. 1, 1999) Temperature Relative humidity (%) Air pressure (hPa) 30-Day Weather Predictions vs. Data Results with no model spinup or data assimilation 100 80 60 40 20 0 RH 780 o o 34.0133 N, 117.9406 W 12 108 204 300 396 492 588 684 GMT hour of simulation (starting 12 GMT Aug. 1, 1999) 780 Model vs. Measured Solar Radiation 2 Solar irradiance (W/m ) 2 Solar irradiance (W/m ) Model predicted the location and magnitude of cloud reduction of sunlight for four days in a row 1000 800 600 400 200 0 o o 34.2525 N, 118.8575 W 12 1000 800 600 400 200 0 96 180 264 348 432 516 600 GMT hour of simulation (starting 12 GMT Feb. 1, 1999) o o 34.2525 N, 118.8575 W 96 Measured and modeled solar reductions due to clouds 108 120 132 144 156 168 180 192 GMT hour of simulation (starting 12 GMT Feb. 1, 1999) 684 Cooling (K) after eliminating emissions Global Cooling Due to Eliminating Anthropogenic CO2, CH4, FF+BF Soot Emissions 0.2 0 -0.2 Anth. CH4(10y) -0.4 FF+BF soot -0.6 Anth. CO2(30y) -0.8 -1 Anth. CO2(50y) -1.2 -1.4 2000 2020 2040 2060 Year 2080 2100 FF Soot, BC Global Warming Potential 20- and 100-yr warming due to FF soot (ΔT-FF soot): Global FF soot emissions ) (ΔE-FF soot): 0.24 K 5.68 Tg 20-yr warming due to anthropogenic CO2 (ΔT-CO2): 0.5 K 100-yr warming due to anthropogenic CO2 (ΔT-CO2): 1-1.45 K Global CO2 emissions (fossil+perm. deforest.) (ΔE-CO2) 29,700 Tg GWP = (ΔT-X/ΔE-X) / (ΔT-CO2/ΔE-CO2) X FF soot* BC in FF soot 20-year GWP 2510 4480 100-year GWP 865 - 1255 1545 – 2240 *(56% BC+43% POC+1% sulfate) Multiply by 12/44 for GWP relative to CO2-C Ratio req. for diesel to cool climate vs. gas (or for diesel-no trap to cool vs. w/trap) Ratio w/15% better dies. mpg, const. emis. (or 0.9% more carbon dioxide from than gas) CO2 (30 y) 1000 FF soot GWP in terms of CO -C 100 10 CO2 (50 y) 2 0.01 g/mi (0.006 g/km) PM standard 0.04 g/mi (0.025 g/km) PM standard 0.08 g/mi (0.05 g/km) PM standard 2000 2020 2040 (a) 2060 Year 104 2080 2100 Ratio of CO2-C mass emission reduction per mass of f.f. BC+OM emitted 104 Ratio of CO2-C mass emission reduction per mass of FF soot emitted Ratio of CO2-C mass emission reduction per mass of FF soot emitted Diesel with vs. w/o Trap; Diesel v. Gas 104 Ratio required for diesel to cool climate Ratio w/20% better diesel mpg and const. emis. (or 3.4% less carbon dioxide than gas) 1000 CO2 (30 y) CO2 (50 y) 0.01 g/mi (0.006 g/km) PM standard 100 0.08 g/mi (0.05 g/km) PM standard 0.04 g/mi (0.025 g/km) PM standard 10 2000 2020 2040 2060 Year 2080 2100 (b) 0.01 g/mi (0.006 g/km) PM standard 1000 100 10 2000 CO2 (50 y) 0.04 g/mi (0.025 g/km) PM standard 0.08 g/mi (0.05 g/km) PM standard CO2 (30 y) Ratio required for diesel to cool climate Ratio w/30% better diesel mpg and const. emis. (or 10.8% less carbon dioxide than gas) 2020 2040 2060 2080 2100 Adding a trap with any PM reduction always reduces warming over 100 years regardless if CO2 at any fuel penalty < 30% Gasoline vehicles reduce warming over diesel with a trap over 100 years when diesel has 18% or less mpg advantage over gas. Year BC Changes Due to FF Soot after 6 years AOD Changes Due to FF Soot after 6 years Cloud OD Changes Due to FF Soot Surface Solar Changes Due to FF Soot Temperature Changes Due to FF Soot (6 yr) Surface Albedo Changes Due to FF Soot Comparison of Energy Solutions to Global Warming Electricity Sources Vehicle Technologies Wind turbines Battery-electric vehicles (BEVs) Solar photovoltaics (PV) Hydrogen fuel cell vehicles (HFCVs) Geothermal power plants Tidal turbines Wave devices Concentrated solar power (CSP) Hydroelectric power plants Nuclear power plants Coal with carbon capture and sequestration (CCS) Liquid Fuel Sources Corn ethanol (E85) Cellulosic ethanol (E85) Flex-fuel vehicles (FFVs) Effects Examined Resource abundance Carbon-dioxide equivalent emissions Lifecycle Opportunity cost emissions from planning-to-operation delays Leakage from carbon sequestration Nuclear war / terrorism emission risk from nuclear-energy Air pollution mortality Water consumption Footprint on the ground Spacing required Effects on wildlife Thermal pollution Water chemical pollution / radioactive waste Energy supply disruption Normal operating reliability 100 0 200 Nuclear Hydro Wave Tidal Geothermal Solar-PV CSP Wind 2 600 500 Coal-CCS Lifecycle g-CO e/kWh Lifecycle CO2e of Electricity Sources 400 300 Time Between Planning & Operation Nuclear: 10-19 y (lifetime 40 y) Site permit (NRC): 3.5 y minimum with new regs. – 6 y Construction permit approval and issue 2.5-4 y Construction time 4-9 years (Low value Europe/Japan) Hydroelectric: 8-16 y (lifetime 80 y) Coal-CCS: 6-11 y (lifetime 35 y) Geothermal: 3-6 y (lifetime 35 y) Ethanol: 2-5 y (lifetime 40 y) CSP: 2-5 y (lifetime 30 y) Solar-PV: 2-5 y (lifetime 30 y) Wave: 2-5 y (lifetime 15 y) Tidal: 2-5 y (lifetime 15 y) Wind: 2-5 y (lifetime 30 y) 100 0 200 Coal-CCS Nuclear Hydro Wave Tidal Geothermal Solar-PV CSP Wind 2 Opportunity-Cost g-CO e/kWh Opportunity-Cost CO2e of Electricity Sources 600 500 400 300 War/Leakage CO2e of Nuclear, Coal 500 2 Explosion or Leak g-CO e/kWh 600 400 300 200 100 0 Coal-CCS: 1-18% leakage of sequestered carbon dioxide in 1000 years Nuclear: One exchange of 50 15-kt weapons over 30 y due to expansion of uranium enrichment/plutonium separation in nuclear-energy facilities worldwide 100 0 200 Hydro Wave Tidal 300 Nuclear Geothermal Solar-PV CSP Wind 2 500 Coal-CCS Total g-CO e/kWh Total CO2e of Electricity Sources 600 400 Percent change in all U.S. CO2 emissions 20 10 0 -10 -20 -30 Cel-E85 30 -16.4 to +16.4 -0.78 to +30.4 CCS-BEV -17.7 to -26.4 Nuc-BEV -28.0 to -31.4 Hydro-BEV -30.9 to -31.7 Wave-BEV -31.1 to -31.9 Tidal-BEV -31.3 to -32.0 Geo-BEV -31.1 to -32.3 PV-BEV -31.0 to -32.3 CSP-BEV -32.4 to -32.6 Wind-HFCV -31.9 to -32.6 50 Corn-E85 40 Wind-BEV -32.5 to -32.7 Percent Change in U.S. CO2 From Converting to BEVs, HFCVs, or E85 Effect in 2020 of E85 vs. Gasoline on Ozone and Health in Los Angeles Change in ozone deaths/yr due to E85: Changes in cancer/yr due to E85: +120 (+9%) (47-140) -3.5 to +0.3 37.5 17.1 31.3 52.9 75.5 84.3 RFG Corn-E90 Cel-E90 221.1 236.3 109.8 847 419 80.3 240 42.1 100 342 207 1000 59.2 3.5 4.1 10 1 0.5 0.6 Upstream Lifecycle Emissions (g/million-BTU-fuel) Upstream Lifecycle Emissions Gasoline, Corn-E90, Cellulosic-E90 0.1 CO NMOC NO 2 SO 2 NO 2 CH 4 BC DeLucchi, 2006 2020 U.S. Vehicle Exhaust+Lifecycle+Nuc Deaths/Year 15000 10000 5000 0 20000 Nuc-BEV 640-2170-27,540 +7.2 Gasoline 15,000 Cel-E85 15,000-16,310 Corn-E85 15,000-15,935 CCS-BEV 2880-6900 Hydro-BEV 450-860 Wave-BEV 390-750 Tidal-BEV 320-660 Geo-BEV 150-740 PV-BEV 190-790 30000 CSP-BEV 80-140 Wind-HFCV 80-380 25000 Wind-BEV 20-100 Low/High U.S. Air Pollution Deaths For 2020 BEVs, HFCVs, E85, Gasoline 35000 Ratio of Footprint Area of Technology to Wind-BEVs to Run All U.S. Vehicles Wind-BEV Wind-HFCV Tidal-BEV Wave-BEV Geothermal-BEV Nuclear-BEV Rhode Island Coal-CCS-BEV PV-BEV CSP-BEV Hydro-BEV California Corn-E85 CSP-BEV 1:1 (1-3 square kilometers) 3-3.1:1 100-130:1 240-440:1 250-570:1 770-1100:1 960-3000:1 1900-2600:1 5800-6600:1 12,200-13,200:1 84,000-190,000:1 143,000-441,000:1 570,000-940,000:1 470,000-1,150,000:1 Percent of U.S. land For Technology Spacing to Power U.S. Vehicles 15 10 5 PV-BEV 0.077-0.18 CSP-BEV 0.12-0.41 25 20 Rhode Island 0.0295 +7.2 Cel-E85 4.7-35.4 Corn-E85 9.84-17.6 35 California 4.41 Nuc-BEV 0.045-0.061 CCS-BEV 0.026-0.057 Hydro-BEV 1.9-2.6 Geo-BEV 0.0067-0.0077 Tidal-BEV 0.017-0.040 Wave-BEV 0.21-0.35 0 Wind-HFCV 1.1-2.1 30 Wind-BEV 0.35-0.70 Percent of U.S. (50 states) for Footprint + Spacing to Run U.S. Vehicles 40 Area to Power 100% of U.S. Onroad Vehicles Solar PV-BEV 0.077-0.18% Wind-BEV Footprint 1-2.8 km2 Cellulosic E85 Wind-BEV 4.7-35.4% turbine spacing (low-industry est. 0.35-0.7% high-data) Corn E85 9.8-17.6% Map: www.fotw.net Water consumption (Ggal/year) to run U.S. vehicles 5000 0 10000 +7.2 Hydro-BEV 5800-13,200 Cel-E85 6400-8800 CCS-BEV 720-1200 Nuc-BEV 640-1300 Wave-BEV 1-2 Tidal-BEV 1-2 Geo-BEV 6.4-8.8 PV-BEV 51-70 CSP-BEV 1000-1360 Wind-HFCV 150-190 15000 Wind-BEV 1-2 Water Consumed to Run U.S. Vehicles 20000 Corn-E85 12,200-17,000 U.S. water demand = 150,000 Ggal/yr Global Wind, Solar Availability Max Potential Current Wind over land > 6.9 m/s (TW) 72 47 0.02 Solar over land (TW) 1700 340 0.001 Global electric power demand (TW) Global overall power demand (TW) 1.6-1.8 9.4-13.6 Mean 80-m Wind Speed in Europe Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/ Mean 80-m Wind Speed in North America Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/ Modeled World Wind Speeds at 100 m Average wind power over land outside Antarctica where wind speed > 6.9 m/s ~ 100 TW Modeled Aug. U.S. Wind Speeds at 100 m Modeled Aug. U.S. Downward Surf. Solar Matching Hourly Electricity Demand in Summer 2020 With 80% Renewables with no change in current hydro Demand Solar Hydro Wind Geothermal Remaining Hoste et al. (2008) Overall Score of Technology Combination 8 6 4 0 10 +7.2 14 16 Cel-E85 10.70 Corn-E85 10.60 Nuc-BEV 8.50 Recommended CCS-BEV 8.47 Hydro-BEV 8.40 Wave-BEV 6.11 PV-BEV 5.26 Tidal-BEV 4.97 Geo-BEV 4.60 CSP-BEV 4.28 Wind-HFCV 3.22 12 Wind-BEV 2.09 Overall Scores/Rankings (Lowest is Best) Not recommended 2 1 2 3 4 5 6 7 8 9 10 11 12 Summary The GWP of fossil-fuel soot, based on repeated results over multiple simulations with a model evaluated against data for numerous parameters on several scales is estimated to be ~860-1260 over 100 years and ~2500 over 20 years. Adding a particle trap to a diesel vehicle is always expected to reduce global warming, even in the case of a large fuel penalty for the trap, due to the strong warming effect of black carbon. Regardless of improvements due to a trap, the conversion of combustion vehicles to battery electric or hydrogen fuel cell vehicles powered by clean electricity provide significantly better benefits than a diesel with a trap. Summary The use of wind CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for battery-electric and hydrogen fuel cell vehicles and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most global warming, air pollution, and other externality benefits among the energy options considered here. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent a climate and health opportunity cost loss and should not be advanced over these other options. Corn and cellulosic ethanol provide no provable benefit and the greatest negative impacts thus their advancement over other options will severely damage efforts to solve global warming and air pollution problems. More at www.stanford.edu/group/efmh/jacobson/revsolglobwarmairpol.htm Energy Environ. Sci. (2008) doi:10.1039/b809990C
© Copyright 2024