Document 182015

Examining Effects of Black Carbon on
Climate and How to Mitigate Them
Through Different Transportation
Options
Mark Z. Jacobson
Atmosphere/Energy Program
Dept. of Civil & Environmental Engineering
Stanford University
International Council on Clean Transportation (ICCT)
January 5-6, 2009
London, United Kingdom
2
o
Temperature Change Since 1750 ( C)
Causes of Global Warming
1.5
1
0.5
0
-0.5
-1
Cooling
particles
Green- Fossil- Urban
fuel
house
heat
gases + biofuel island
soot
particles
Net
observed
global
warming
-1.5
M.Z. Jacobson
GATOR-GCMOM Model
Gas processes
Emissions
Photochemistry
Gas-to-particle conversion
Cloud removal
Aerosol processes
Emissions
Nucleation/condensation
Gas dissolution
Aqueous chemistry
Crystallization
Aerosol-aerosol coagulation
Aerosol-cloud coagulation
Dry deposition
Sedimentation
Rainout/washout
Meteorological processes
Pressure, winds, temp., TKE
Cloud processes
Subgrid clouds, size-resolved physics
Liquid/ice growth on aerosol particles
Liquid drop freezing/breakup
Hydrometeor-hydrometeor coagulation
Hydrometeor-aerosol coagulation
Precipitation, aer./gas rainout/washout
Below-cloud evaporation/melting
Lightning from collision bounceoffs
Radiative transfer
UV/visible/near-IR/thermal-IR
Gas/aerosol/cloud scat./absorption
Predicted snow, ice, water albedos
Surface processes
Soil, water, snow, sea ice, vegetation,
road, roof temperatures/moisture Ocean 2-D dynam., 3-D diffus/chem.
Ocean-atmosphere exchange
Cloud Microphysical and Chemical Processes
Condensation/deposition of water vapor onto aerosol particles
Coagulation: Aerosol-aerosol Aerosol-liquid Aerosol-ice
Aerosol-graupel
Liquid-liquid
Ice-graupel
Liquid-ice
Graupel-graupel
Liquid-graupel
Ice-ice
Gas dissolution. aqueous chemistry, hom.-het. freezing, contact freezing
Interstitial
aerosol
Liquid
Dissolved,
reacted
gas
Ice
Aerosolparticle
core
Graupel
Coagulated
aerosol
particle
Shrinkage, precipitation, rainout, and washout
Gas dissolution
and aerosolparticle
coagulation
during precip.
(washout)
Rainout
of core and
existing gas
Cloud evaporation --> interstitial aerosol plus evaporated cores
Size Distributions Treated
FF Soot
Number
BC POM SOM H2O-h H+
H2SO4 HSO4-
NH4+ NO3- Cl- NH4NO3
(NH4)2SO4
Intern.-mix
Number
BC POM SOM H2O-h H+
H2SO4 HSO4-
NH4+ NO3- Cl- NH4NO3
(NH4)2SO4
Na+ Soildust
Pollen/spore
Liq. Number
BC POM SOM H2O-h H+
H2SO4 HSO4-
NH4+ NO3- Cl- NH4NO3
(NH4)2SO4
Na+ Soildust
Pollen/spore
H2O(l)
Ice
Number
BC POM SOM H2O-h H+
H2SO4 HSO4-
NH4+ NO3- Cl- NH4NO3
(NH4)2SO4
Na+ Soildust
Pollen/spore
H2O(ice)
Graupel
Number
BC
POM
SOM
H2O-h
H+
H2SO4
HSO4-
NH4+
NO3-
Cl-
NH4NO3
(NH4)2SO4
Na+ Soildust
Pollen/spore
H2O(ice)
Fossil- and Bio-fuel Emissions (Tg/yr)
BC POC S(VI) Na+ K+ as Na+
Ca2+ as Na+ Mg2+ as Na+ NH4+ NO3- Cl- H2O-hydrated H+ Fossil-Fuel
3.2
2.4
0.03 calculated
calculated
Biofuel
1.6
6.5
0.3
0.023
0.14
0.18
0.08
0.018
0.16 0.30
calculated
calculated
+ 43 gases
BC/POC from Bond et al. (2004); other emis factors Andreae, Ferek
Modeled vs. Measured Annual
Precipitation
Data from
Huffman et al.
Modeled vs. Measured Annual
Lightning Flash Rate
Data from NASA LIS/OTD Science Team
300
250
200
2
(W/m )
TOA outgoing thermal-IR
Modeled vs. Measured Thermal-IR
150
100
ERBE
Model
50
0
-90
-60
-30
0
30
Latitude (degrees)
60
90
Data from Kiehl et al., 1998
Modeled vs. Measured Paired in
Space Monthly T and Td
T
d
T
300
500
60
80
100
300
Sep
Edmonton
53 N
114 W
T
d
T
300
150
500
225
60
80
100
300
Mar
Resolute
75 N
95 W
T
d
150
225
300
Temperature (K)
T
300
500
150
Pressure (hPa)
150
225
60
80
100
300
Mar
Soda
67 N
27 E
T
d
150
T
300
60
80
100
Sep
Resolute
75 N
95 W
T
d
T
300
150
225
60
80
100
300
Sep
Soda
67 N
27 E
T
T
d
300
60
80
100
Mar
Nyal
79 N
12 E
T
d
150
225
300
Temperature (K)
300
T
300
500
150
225
300
Temperature (K)
225
500
150
225
300
Temperature (K)
300
500
150
225
300
Temperature (K)
225
500
Pressure (hPa)
150
225
300
Temperature (K)
Pressure (hPa)
225
Pressure (hPa)
Mar
Edmonton
53 N
114 W
150
150
Pressure (hPa)
60
80
100
300
Pressure (hPa)
225
Pressure (hPa)
Pressure (hPa)
150
225
60
80
100
300
Sep
Nyal
79 N
12 E
T
d
T
300
500
150
225
300
Temperature (K)
150
225
300
Temperature (K)
Data from FSL (2008)
Modeled vs. Measured Paired in
Space Monthly Climatological Ozone
0
Mar
Poona
19 N
74 E
100
1000
Sep
Poona
19 N
74 E
100
1000
0
0
6000
1.2 10
Ozone (ppbv)
4
6000 1.2 10
0
100
4
1000
1000
0
6000
1.2 10
Ozone (ppbv)
4
6000
1.2 10
Ozone (ppbv)
0
4
6000 1.2 10
1
100
0
6000
1.2 10
Ozone (ppbv)
0
6000
1.2 104
Ozone (ppbv)
0
6000 1.2 10
4
1
10
Mar
Samoa
14 S
170 W
100
1000
4
Sep
Brazzaville
4S
15 E
100
4
0
6000 1.2 10
Sep
Syowa
69 S
39 E
10
1000
6000
1.2 10
Ozone (ppbv)
Pressure (hPa)
Pressure (hPa)
Mar
Syowa
69 S
39 E
Mar
Brazzaville
4S
15 E
100
4
10
4
6000 1.2 10
1
10
1
10
0
1000
0
1
Pressure (hPa)
10
4
6000 1.2 10
1
Pressure (hPa)
10
4
0
1
Pressure (hPa)
Pressure (hPa)
1
4
6000 1.2 10
Pressure (hPa)
4
6000 1.2 10
Pressure (hPa)
0
10
Sep
Samoa
14 S
170 W
100
1000
0
4
6000
1.2 10
Ozone (ppbv)
0
6000
1.2 104
Ozone (ppbv)
Data from Logan et al. (1999)
1030
1025
1020
1015
1010
1005
1000
o
o
34.4453 N, 118.1722 W
12
108
204
300
396
492
588
684
780
GMT hour of simulation (starting 12 GMT Aug. 1, 1999)
0.12
0.1
0.08
0.06
0.04
0.02
0
12
o
Air temperature ( C)
40
35
30
25
20
15
10
5
0
Ozone (ppmv)
Pressure
o
Ozone
o
o
34.0506 N, 117.5447 W
108
204
300
396
492
588
684
GMT hour of simulation (starting 12 GMT Aug. 1, 1999)
780
o
34.0133 N, 117.9406 W
12
108
204
300
396
492
588
684
GMT hour of simulation (starting 12 GMT Aug. 1, 1999)
Temperature
Relative humidity (%)
Air pressure (hPa)
30-Day Weather Predictions vs. Data Results with no model spinup or data assimilation
100
80
60
40
20
0
RH
780
o
o
34.0133 N, 117.9406 W
12
108
204
300
396
492
588
684
GMT hour of simulation (starting 12 GMT Aug. 1, 1999)
780
Model vs. Measured Solar Radiation
2
Solar irradiance (W/m )
2
Solar irradiance (W/m )
Model predicted the location and magnitude of cloud reduction of
sunlight for four days in a row
1000
800
600
400
200
0
o
o
34.2525 N, 118.8575 W
12
1000
800
600
400
200
0
96
180
264
348
432
516
600
GMT hour of simulation (starting 12 GMT Feb. 1, 1999)
o
o
34.2525 N, 118.8575 W
96
Measured and modeled
solar reductions due to clouds
108
120
132
144
156
168
180
192
GMT hour of simulation (starting 12 GMT Feb. 1, 1999)
684
Cooling (K) after eliminating emissions
Global Cooling Due to Eliminating
Anthropogenic CO2, CH4, FF+BF Soot
Emissions
0.2
0
-0.2
Anth. CH4(10y)
-0.4
FF+BF soot
-0.6
Anth. CO2(30y)
-0.8
-1
Anth. CO2(50y)
-1.2
-1.4
2000
2020
2040
2060
Year
2080
2100
FF Soot, BC Global Warming Potential
20- and 100-yr warming due to FF soot (ΔT-FF soot):
Global FF soot emissions ) (ΔE-FF soot): 0.24 K
5.68 Tg
20-yr warming due to anthropogenic CO2 (ΔT-CO2):
0.5 K
100-yr warming due to anthropogenic CO2 (ΔT-CO2):
1-1.45 K
Global CO2 emissions (fossil+perm. deforest.) (ΔE-CO2) 29,700 Tg
GWP = (ΔT-X/ΔE-X) / (ΔT-CO2/ΔE-CO2)
X
FF soot*
BC in FF soot 20-year GWP 2510 4480 100-year GWP 865 - 1255
1545 – 2240
*(56% BC+43% POC+1% sulfate)
Multiply by 12/44 for GWP relative to CO2-C
Ratio req. for diesel to cool climate vs. gas
(or for diesel-no trap to cool vs. w/trap)
Ratio w/15% better dies. mpg, const. emis.
(or 0.9% more carbon dioxide from than gas)
CO2 (30 y)
1000
FF soot GWP in terms of CO -C
100
10
CO2 (50 y)
2
0.01 g/mi (0.006 g/km) PM standard
0.04 g/mi (0.025 g/km) PM standard
0.08 g/mi (0.05 g/km) PM standard
2000
2020
2040
(a)
2060
Year
104
2080
2100
Ratio of CO2-C mass emission reduction
per mass of f.f. BC+OM emitted
104
Ratio of CO2-C mass emission reduction
per mass of FF soot emitted
Ratio of CO2-C mass emission reduction
per mass of FF soot emitted
Diesel with vs. w/o Trap; Diesel v. Gas
104
Ratio required for diesel to cool climate
Ratio w/20% better diesel mpg and const. emis.
(or 3.4% less carbon dioxide than gas)
1000
CO2 (30 y)
CO2 (50 y)
0.01 g/mi (0.006 g/km) PM standard
100
0.08 g/mi (0.05 g/km) PM standard
0.04 g/mi (0.025 g/km) PM standard
10
2000
2020
2040
2060
Year
2080
2100
(b)
0.01 g/mi (0.006 g/km) PM standard
1000
100
10
2000
CO2 (50 y)
0.04 g/mi (0.025 g/km) PM standard
0.08 g/mi (0.05 g/km) PM standard
CO2 (30 y)
Ratio required for diesel to cool climate
Ratio w/30% better diesel mpg and const. emis.
(or 10.8% less carbon dioxide than gas)
2020
2040
2060
2080
2100
Adding a trap with any PM reduction always reduces warming over
100 years regardless if CO2 at any fuel penalty < 30%
Gasoline vehicles reduce warming over diesel with a trap over 100
years when diesel has 18% or less mpg advantage over gas. Year
BC Changes Due to FF Soot after 6 years
AOD Changes Due to FF Soot after 6 years
Cloud OD Changes Due to FF Soot
Surface Solar Changes Due to FF Soot
Temperature Changes Due to FF Soot (6 yr)
Surface Albedo Changes Due to FF Soot
Comparison of Energy Solutions to
Global Warming
Electricity Sources Vehicle Technologies
Wind turbines
Battery-electric vehicles (BEVs)
Solar photovoltaics (PV)
Hydrogen fuel cell vehicles (HFCVs)
Geothermal power plants
Tidal turbines
Wave devices
Concentrated solar power (CSP)
Hydroelectric power plants
Nuclear power plants
Coal with carbon capture and sequestration (CCS)
Liquid Fuel Sources
Corn ethanol (E85) Cellulosic ethanol (E85)
Flex-fuel vehicles (FFVs)
Effects Examined
Resource abundance
Carbon-dioxide equivalent emissions
Lifecycle
Opportunity cost emissions from planning-to-operation delays
Leakage from carbon sequestration
Nuclear war / terrorism emission risk from nuclear-energy
Air pollution mortality
Water consumption
Footprint on the ground
Spacing required
Effects on wildlife
Thermal pollution
Water chemical pollution / radioactive waste
Energy supply disruption
Normal operating reliability
100
0
200
Nuclear
Hydro
Wave
Tidal
Geothermal
Solar-PV
CSP
Wind
2
600
500
Coal-CCS
Lifecycle g-CO e/kWh
Lifecycle CO2e of Electricity Sources
400
300
Time Between Planning & Operation
Nuclear:
10-19 y (lifetime 40 y)
Site permit (NRC): 3.5 y minimum with new regs. – 6 y
Construction permit approval and issue 2.5-4 y
Construction time 4-9 years (Low value Europe/Japan)
Hydroelectric:
8-16 y (lifetime 80 y)
Coal-CCS: 6-11 y (lifetime 35 y)
Geothermal: 3-6 y (lifetime 35 y)
Ethanol:
2-5 y (lifetime 40 y)
CSP: 2-5 y (lifetime 30 y)
Solar-PV:
2-5 y (lifetime 30 y)
Wave: 2-5 y (lifetime 15 y)
Tidal: 2-5 y (lifetime 15 y)
Wind: 2-5 y (lifetime 30 y)
100
0
200
Coal-CCS
Nuclear
Hydro
Wave
Tidal
Geothermal
Solar-PV
CSP
Wind
2
Opportunity-Cost g-CO e/kWh
Opportunity-Cost CO2e of Electricity
Sources
600
500
400
300
War/Leakage CO2e of Nuclear, Coal
500
2
Explosion or Leak g-CO e/kWh
600
400
300
200
100
0
Coal-CCS:
1-18% leakage of sequestered
carbon dioxide in 1000 years
Nuclear:
One exchange of
50 15-kt weapons over 30 y
due to expansion of uranium
enrichment/plutonium separation
in nuclear-energy facilities
worldwide
100
0
200
Hydro
Wave
Tidal
300
Nuclear
Geothermal
Solar-PV
CSP
Wind
2
500
Coal-CCS
Total g-CO e/kWh
Total CO2e of Electricity Sources
600
400
Percent change in all U.S. CO2 emissions
20
10
0
-10
-20
-30
Cel-E85
30
-16.4 to +16.4
-0.78 to +30.4
CCS-BEV -17.7 to -26.4
Nuc-BEV -28.0 to -31.4
Hydro-BEV -30.9 to -31.7
Wave-BEV -31.1 to -31.9
Tidal-BEV -31.3 to -32.0
Geo-BEV -31.1 to -32.3
PV-BEV -31.0 to -32.3
CSP-BEV -32.4 to -32.6
Wind-HFCV -31.9 to -32.6
50
Corn-E85
40
Wind-BEV -32.5 to -32.7
Percent Change in U.S. CO2 From
Converting to BEVs, HFCVs, or E85
Effect in 2020 of E85 vs. Gasoline on
Ozone and Health in Los Angeles
Change in ozone deaths/yr due to E85:
Changes in cancer/yr due to E85: +120 (+9%) (47-140)
-3.5 to +0.3
37.5
17.1
31.3
52.9
75.5
84.3
RFG
Corn-E90
Cel-E90
221.1
236.3
109.8
847
419
80.3
240
42.1
100
342
207
1000
59.2
3.5
4.1
10
1
0.5
0.6
Upstream Lifecycle Emissions (g/million-BTU-fuel)
Upstream Lifecycle Emissions
Gasoline, Corn-E90, Cellulosic-E90
0.1
CO
NMOC
NO
2
SO
2
NO
2
CH
4
BC
DeLucchi, 2006
2020 U.S. Vehicle Exhaust+Lifecycle+Nuc Deaths/Year
15000
10000
5000
0
20000
Nuc-BEV 640-2170-27,540
+7.2
Gasoline 15,000
Cel-E85 15,000-16,310
Corn-E85 15,000-15,935
CCS-BEV 2880-6900
Hydro-BEV 450-860
Wave-BEV 390-750
Tidal-BEV 320-660
Geo-BEV 150-740
PV-BEV 190-790
30000
CSP-BEV 80-140
Wind-HFCV 80-380
25000
Wind-BEV 20-100
Low/High U.S. Air Pollution Deaths For
2020 BEVs, HFCVs, E85, Gasoline
35000
Ratio of Footprint Area of Technology to
Wind-BEVs to Run All U.S. Vehicles
Wind-BEV Wind-HFCV Tidal-BEV Wave-BEV Geothermal-BEV
Nuclear-BEV Rhode Island Coal-CCS-BEV
PV-BEV
CSP-BEV
Hydro-BEV California
Corn-E85
CSP-BEV
1:1 (1-3 square kilometers) 3-3.1:1
100-130:1
240-440:1
250-570:1
770-1100:1 960-3000:1
1900-2600:1 5800-6600:1
12,200-13,200:1
84,000-190,000:1
143,000-441,000:1
570,000-940,000:1
470,000-1,150,000:1
Percent of U.S. land For Technology
Spacing to Power U.S. Vehicles
15
10
5
PV-BEV 0.077-0.18
CSP-BEV 0.12-0.41
25
20
Rhode Island 0.0295
+7.2
Cel-E85 4.7-35.4
Corn-E85 9.84-17.6
35
California 4.41
Nuc-BEV 0.045-0.061
CCS-BEV 0.026-0.057
Hydro-BEV 1.9-2.6
Geo-BEV 0.0067-0.0077
Tidal-BEV 0.017-0.040
Wave-BEV 0.21-0.35
0
Wind-HFCV 1.1-2.1
30
Wind-BEV 0.35-0.70
Percent of U.S. (50 states) for Footprint +
Spacing
to
Run
U.S.
Vehicles
40
Area to Power 100% of U.S. Onroad Vehicles
Solar PV-BEV
0.077-0.18%
Wind-BEV
Footprint
1-2.8 km2
Cellulosic E85 Wind-BEV
4.7-35.4%
turbine spacing
(low-industry est. 0.35-0.7%
high-data)
Corn E85
9.8-17.6%
Map: www.fotw.net
Water consumption (Ggal/year) to run U.S. vehicles
5000
0
10000
+7.2 Hydro-BEV 5800-13,200
Cel-E85 6400-8800
CCS-BEV 720-1200
Nuc-BEV 640-1300
Wave-BEV 1-2
Tidal-BEV 1-2
Geo-BEV 6.4-8.8
PV-BEV 51-70
CSP-BEV 1000-1360
Wind-HFCV 150-190
15000
Wind-BEV 1-2
Water Consumed to Run U.S. Vehicles
20000
Corn-E85 12,200-17,000
U.S. water demand = 150,000 Ggal/yr
Global Wind, Solar Availability
Max Potential Current
Wind over land > 6.9 m/s (TW) 72 47 0.02
Solar over land (TW)
1700
340 0.001
Global electric power demand (TW) Global overall power demand (TW) 1.6-1.8
9.4-13.6
Mean 80-m Wind Speed in Europe
Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/
Mean 80-m Wind Speed in North America
Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/
Modeled World Wind Speeds at 100 m
Average wind power over land outside Antarctica where wind speed > 6.9 m/s ~ 100 TW
Modeled Aug. U.S. Wind Speeds at 100 m
Modeled Aug. U.S. Downward Surf. Solar
Matching Hourly Electricity Demand in
Summer 2020 With 80% Renewables
with no change in current hydro
Demand
Solar
Hydro
Wind
Geothermal
Remaining
Hoste et al. (2008)
Overall Score of Technology Combination
8
6
4
0
10
+7.2
14
16
Cel-E85 10.70
Corn-E85 10.60
Nuc-BEV 8.50
Recommended
CCS-BEV 8.47
Hydro-BEV 8.40
Wave-BEV 6.11
PV-BEV 5.26
Tidal-BEV 4.97
Geo-BEV 4.60
CSP-BEV 4.28
Wind-HFCV 3.22
12
Wind-BEV 2.09
Overall Scores/Rankings (Lowest is Best)
Not recommended
2
1 2 3 4 5 6 7 8 9 10 11 12
Summary
The GWP of fossil-fuel soot, based on repeated results over
multiple simulations with a model evaluated against data for
numerous parameters on several scales is estimated to be
~860-1260 over 100 years and ~2500 over 20 years.
Adding a particle trap to a diesel vehicle is always expected to
reduce global warming, even in the case of a large fuel penalty for
the trap, due to the strong warming effect of black carbon.
Regardless of improvements due to a trap, the conversion of
combustion vehicles to battery electric or hydrogen fuel cell
vehicles powered by clean electricity provide significantly better
benefits than a diesel with a trap. Summary
The use of wind CSP, geothermal, tidal, PV, wave, and hydro to provide
electricity for battery-electric and hydrogen fuel cell vehicles and, by
extension, electricity for the residential, industrial, and commercial sectors,
will result in the most global warming, air pollution, and other externality
benefits among the energy options considered here. The combination of
these technologies should be advanced as a solution to global warming, air
pollution, and energy security.
Coal-CCS and nuclear offer less benefit thus represent a climate and health
opportunity cost loss and should not be advanced over these other options.
Corn and cellulosic ethanol provide no provable benefit and the greatest
negative impacts thus their advancement over other options will severely
damage efforts to solve global warming and air pollution problems.
More at
www.stanford.edu/group/efmh/jacobson/revsolglobwarmairpol.htm Energy Environ. Sci. (2008) doi:10.1039/b809990C