DIGITAL WHOLE-BODY VIBRATION EXPOSURE RECORDER FOR MONITORING HEAVY EQUIPMENT IN THE F I E L D by ANDRE KINDSVATER B.C.S., C o n c o r d i a University, 1976 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE (Department We a c c e p t to of E l e c t r i c a l this thesis the r e q u i r e d as STUDIES Engineering) conforming standard THE UNIVERSITIY OF BRITISH COLUMBIA. August 1982 © A n d r e ' K i n d s v a t e r 1982 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it f r e e l y a v a i l a b l e f o r reference and study. I further agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by t h e head o f my department o r by h i s o r her r e p r e s e n t a t i v e s . It is understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain s h a l l n o t be allowed without my permission. Department o f ^LB^T/Z-I^AIL- E u&/K>££ The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 29. JUL.? 19 BZ JZ/AJq written 11 ABSTRACT A self-contained whole-body vibration been d e v e l o p e d , Two vibration exposure using d i g i t a l s e t s of d i g i t a l Whole-body for The The from 1 t o 80 supported designed: according f o r analogue filters conforming to to the ISO 2631 t h e E v a l u a t i o n o f Human E x p o s u r e to band filters covering the Hz. was based on a low by a s t a c k - o r i e n t e d accelerometer The has techniques. and outputs power 8 b i t m i c r o - arithmetic instrument processes 3 analogue straingage signal were order octave implementation processor, of Vibration) b) a s e t o f s e c o n d range filtering filters (Guide evaluation o f heavy e q u i p m e n t o p e r a t o r s filters a) a s e t of w e i g h t i n g standard a n a l y z e r f o r the processor. i n p u t s from a the filtered triaxial rms (10 sec) recording. can the be ISO selected 2631 in standard the field o r t o be as either 1 of 6 octave filters. The field instrument measurements h a r v e s t i n g . On that set the by scope ISO rms the under production machine vibration 2631 from standard. levels shock But laboratory and conditions investigated, exposure standard. vibration contribution of e v a l u a t e d i n the the p a r t i c u l a r operator the measured energy was i s well high indicate used in forest i t was below t h e variations the presence impulses, which a r e for found limits in of a outside the large the iii TABLE OF CONTENTS 1. Introduction 2. Whole-Body V i b r a t i o n And I t s E f f e c t s On Man Introduction V i b r a t i o n Measurements The Human Body As A M e c h a n i c a l S y s t e m C o n s i d e r a t i o n s Of F i e l d Measurements Standards ISO 2631 S t a n d a r d VDI 2057 E f f e c t s Of WBV M e c h a n i c a l B e h a v i o u r o f P a r t s o f t h e Body P h y s i o l o g i c a l Reactions Damage To H e a l t h Conclusion 3. S y s t e m D e s i g n Hardware Software 4. D i g i t a l F i l t e r D e s i g n ISO Whole-Body F i l t e r s Octave Bandpass F i l t e r s Design Scaling BILIN.C Coefficient Quantisation Arithmetic Noise Limit Cycles 5. P e r f o r m a n c e Laboratory Tests P e r f o r m a n c e Improvement Field Trials Data E v a l u a t i o n Results 6. C o n c l u s i o n F u t u r e Work And Recommendations 7. R e f e r e n c e s Appendix A Hardware Software Appendix B I n t e r n a t i o n a l S t a n d a r d ISO 2631 1 3 3 5 .. 7 11 16 16 17 19 19 20 23 23 25 25 27 32 , 32 34 35 38 41 41 41 44 46 46 58 67 67 72 83 84 86 89 89 115 148 148 LIST OF FIGURES F i g . 2.1 S i m p l e Model o f t h e Human Body 8 Fig. 2.2 Simplified Mechanical System Representing the Human Body 8 F i g . 2.3 Impedance of one S u b j e c t S i t t i n g a n d S t a n d i n g .... 10 F i g 2.4 Impedance o f 8 S u b j e c t s Sitting Erect (median, 20th and 80th P e r c e n t i l e ) 10 F i g . 2.5 Equipment and Methods F o r R e c o r d i n g a n d A n a l y z i n g Random V i b r a t i o n 13 F i g 2.6 V i b r a t i o n i n T h r e e D i r e c t i o n s o f Two T r a c t o r S e a t s W h i l e D r i v i n g on a bad Road 14 F i g . 2.7 K - v a l u e s a f t e r VDI 2057 18 F i g . 2.8 ISO 2631 v s . VDI 2057 18 F i g 3.1 V i b r a t i o n A n a l y s i s S y s t e m 29 F i g 3.2 Flow C h a r t 30 F i g 3.3 S t r u c t u r e o f a 2nd O r d e r F i l t e r S e c t i o n 31 F i g 3.4 D a t a Flow w i t h i n a 2 n d - o r d e r F i l t e r S e c t i o n 31 F i g 4.1a ISO 2631 Whole-Body F i l t e r ; x- a n d y - d i r e c t i o n ... 33 F i g 4.1b ISO 2631 Whole-Body F i l t e r ; z - d i r e c t i o n 33 F i g 4.2 O c t a v e Bandpass F i l t e r a f t e r ANSI S1.11 34 F i g 4.3a D e s i g n P a r a m e t e r s i n t h e s - P l a n e 37 F i g 4.3b D e s i g n P a r a m e t e r s i n t h e z - P l a n e 37 F i g 4.4 S i m p l i f i e d G a i n M o d e l o f a S e c o n d O r d e r F i l t e r .... 40 F i g 4.5 D e t a i l e d Model f o r S c a l i n g o f a S e c o n d O r d e r F i l t e r 40 F i g 4.6 I d e a l F i x e d P o i n t M u l t i p l i c a t i o n a n d T r u n c a t i o n ... 43 F i g 4.7 F u l l w o r d T r u n c a t i o n i n I n t e g e r M u l t i p l i c a t i o n 43 F i g . 5.1 I S O ( x , y ) F i l t e r R e s p o n s e from Function Generator Input 48 F i g 5.2 ISO(z) Filter Response from F u n c t i o n G e n e r a t o r Input 49 F i g . 5.3 #1 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 50 F i g . 5.4 #2 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 51 F i g . 5.5 #3 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 52 F i g . 5.6 #4 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 53 F i g . 5.7 #5 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 54 F i g . 5.8 #6 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 55 F i g . 5.9 A c c e l e r a t i o n Range o f S c o t c h Yoke 56 F i g . 5.10 #4 F i l t e r R e s p o n s e W i t h Shaker I n p u t 56 F i g . 5.11a Sample Waveform o f S c o t c h Yoke 57 F i g . 5.11b F r e q u e n c y C o n t e n t o f S c o t c h Yoke 57 F i g . 5.12a Z e r o - P o l e - Z e r o - P o l e S t r u c t u r e 60 F i g . 5.12b Z e r o - P o l e - P o l e - Z e r o S t r u c t u r e 60 F i g . 5.13a F i l t e r #1 Z-P-Z-P 61 F i g . 5.13b F i l t e r #1 Z-P-P-Z 61 F i g . 5.14a F i l t e r #2 Z-P-Z-P 62 F i g . 5.14b F i l t e r #2 Z-P-P-Z ..' 62 F i g . 5.15a F i l t e r #3 Z-P-Z-P 63 F i g . 5.15b F i l t e r #3 Z-P-P-Z 63 F i g . 5.16a F i l t e r #4 Z-P-Z-P 64 F i g . 5 . 1 6 b F i l t e r #4 Z-P-P-Z .. 64 F i g . 5.17a F i l t e r #5 Z-P-Z-P 65 F i g . 5.17b F i l t e r #5 Z-P-P-Z 65 F i g . 5.18a F i l t e r #6 Z-P-Z-P66 F i g . 5.18b F i l t e r #6 Z-P-P-Z 66 V Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. 5.20 M a d i l l - 0 4 4 G r a p p l e Y a r d e r 5.21 I n s t a l l a t i o n of t h e F u l l D a t a A c q u i s i t i o n System 5.22 A t t a c h m e n t o f t h e S e n s o r t o t h e Cab S t r u c t u r e ... 5.23 A t t a c h m e n t of t h e S e n s o r t o t h e S e a t 5.24 E q u i v a l e n t E x p o s u r e T i m e s 5.25a X - A x i s V i b r a t i o n Measurement Day #1 5.25b X - A x i s D i s t r i b u t i o n Day #1 5.26a Y - A x i s V i b r a t i o n Measurement Day #1 5.26b Y - A x i s D i s t r i b u t i o n Day #1 5.27a Z - A x i s V i b r a t i o n Measurement Day #1 5.27b Z - A x i s D i s t r i b u t i o n Day #1 5.28a X - A x i s V i b r a t i o n Measurement Day #2 5.28b X - A x i s D i s t r i b u t i o n Day #2 .'— 5.29a Y - A x i s V i b r a t i o n Measurement Day #2 5.29b Y - A x i s D i s t r i b u t i o n Day #2 5.30a Z - A x i s V i b r a t i o n Measurement Day #2 5.30b Z - A x i s D i s t r i b u t i o n Day #2 5.31a X - A x i s V i b r a t i o n Measurement Day #3 5.31b X - A x i s D i s t r i b u t i o n Day #3 5.32a Y - A x i s V i b r a t i o n Measurement Day #3 5.32b Y - A x i s D i s t r i b u t i o n Day #3 5.33a Z - A x i s V i b r a t i o n Measurement Day #3 5.33b Z - A x i s D i s t r i b u t i o n Day #3 69 69 70 70 71 74 74 75 75 76 76 77 77 78 78 79 79 80 80 81 81 82 82 vi L I S T OF TABLES T a b l e 2.1 F r e q u e n c y Ranges P r o d u c e d by Common Sources of Vibration 4 T a b l e 2.2 Items M e a s u r e d i n F i e l d T e s t s 11 T a b l e 2.3 Mean V a l u e o f Oxygen U p t a k e 22 T a b l e 2.4 Mean V a l u e of H e a r t R a t e 22 T a b l e 4.1 ANSI S1.11 F i l t e r s 34 T a b l e 4.2 M u l t i p l i c a t i o n N o i s e 44 T a b l e 4.3 C a l c u l a t e d DC L i m i t C y c l e L e v e l s ..45 T a b l e 5.1 C a l c u l a t e d and M e a s u r e d DC L i m i t C y c l e L e v e l s ... 59 T a b l e 5.2 E q u i v a l e n t E x p o s u r e Times 72 vii ACKNOWLEDGEMENT I his would support like t o thank my s u p e r v i s o r D r . P.D. Lawrence f o r and p a t i e n c e I would a l s o l i k e and the opportunity on-going I research thank the course of t h i s t o thank D r . P.L. C o t t e l l t o conduct ergonomic also throughout t h i s work i n forest Amaury De Souza work. f o r h i s support i n the context of the harvesting. f o r h i s help with the f i e l d wor k. I am g r a t e f u l forest harvesting This British and work Columbia Engineering to MacMillan Bloedel f o r the use of their facilities. has been (Grant by t h e S c i e n c e No. 79 RC-3) and Research A 6422 a n d A 9 3 4 1 ) . supported Council the of B r i t i s h C o u n c i l of Natural Columbia Sciences (Grants 1 1. INTRODUCTION In Canada, t h e F o r e s t I n d u s t r i e s contributor to manufacturing higher, total as i n 1976). in B r i t i s h increased productivity level s l o w i n g . The f o r the One area w h i c h has potential 31% of total be where t h e p e r c e n t a g e was 51% of with an to areas and 'environmental' measurement even limits with not and only use of gain more insight machinery, a recent project and was layout) relating to identify variables productivity h a r v e s t i n g u s i n g heavy to in undertaken of e r g o n o m i c equipment. monitor and s u c h as n o i s e , t e m p e r a t u r e , record vibration, relating each time r e f e r e n c e . 2 vibration (or more has been w i d e l y investigated agent extensively documented is also reflected respect improves costs. wide v a r i e t y variables, VDI to increases in e f f i c i e n c y along with operator task execution, the seems f a r , i s t h e human f a c t o r developed variables I t s importance 3 a was as a s t r e s s - i n d u c i n g 2631 To in forest Whole-Body V i b r a t i o n ) , ISO improving t h i s development investment control to a s i n g l e of but ignored thus assess environment, humidity been s t e a d i l y a c h i e v e t h e more e f f i c i e n t system One larger f o r improvement human f a c t o r s A has interaction. measure (operator as or single can a l s o demands c o n t i n u e d been l a r g e l y man-machine 2). Billion trend to higher mechanisation 1 t o compensate and largest contribution of m e c h a n i s a t i o n , but and ($6.4 Regionally this Columbia, productivity, to earnings the manufacturing. Overall be export are 2057", to which 'reduced in d e f i n i t e state specifically and i t s role (see chapter standards such frequency-dependent comfort', 'fatigue-decreased 2 proficiency' In and the 'hazard ergonomic studies , simultaneous and measured p r o d u c t i o n and relationships stress and of 5 the etc.) to h e a l t h safety'. w h i c h t h i s work forms a between measured v i b r a t i o n variables (in-haul variables (e.g. time, heart part, levels out-haul rate) time, are being investigated. The objective measurement of of this vibration suitable vibration analysis whole-body v i b r a t i o n d a t a The s y s t e m had data-logger and simultaneously useful be in a to survey with of commercially instrument of s y s t e m and i n the other available Meter by ergonomic The environment of an available the to the design system to a gather existing to recorded be the Also, power equipment and Kjaer. axis at a and to supply. some but that none instrument 2512 Human The battery time be indicated sophisticated i s the to i n s t r u m e n t had external Bruel display already requirements, most one consider variables. 1981) for a d i g i t a l the data (since processes only based, except use compatible meet some o f to humans, e a s i l y w i t h an independent all. is field. interface commercially could fulfill Vibration exposure forest harvesting systems t h a t could work provide r u g g e d , compact and A thesis and IEC-625 bus is Response powered analogue interface. 3 2. WHOLE-BODY VIBRATION AND ITS EFFECTS ON MAN INTRODUCTION Awareness is increasing and space workplace working safety i n our technological transportation create (Tablel and, in quite Most v i b r a t i o n e n c o u n t e r e d random n a t u r e w i t h i n laboratory data and realistic interfere extreme water, with air at the comfort, circumstances, health dealt from working a industrial and the e a r l y but been 1930's . 6 i s of with sinusoidal variety of the field a f o r t h e sake of v i b r a t i o n e f f e c t s the m a j o r i t y Complementing conditions. e x p o s u r e has environment f r e q u e n c y band, quantifying have (WBV) regularly since i n an a broad conditions. derived can o f whole-body v i b r a t i o n i n the l i t e r a t u r e investigations s o c i e t y . Ground, 2.1). problem determining and v i b r a t i o n v e h i c l e s , as w e l l as machinery v i b r a t i o n s that efficiency The noted o f t h e e f f e c t s o f m e c h a n i c a l shock vibration laboratory measurements of under data are under 4 SOURCE icr io° 1 F r e q u e n c y (Hz) 1,0" 10 110 110 _i infrasonic k— 1 2 audible 3 ultrasonic WBV—H Aircraft manoeuvers gust responses p i s t o n engines propellers r o t a t i n g wings jet engines Air cushion craft surface responses power s o u r c e s Bridges struct.responses to wind a n d t r a f f i c Land v e h i c l e s earthmoving, a g r i cultural + military road t r a n s p o r t r a i l transport Machine t o o l s stationary portable i i i- t- Ships sea movement power s o u r c e s Space v e h i c l e s aerodynamic effects power s o u r c e s Table 2.1 F r e q u e n c y ranges produced vibration by common s o u r c e s of 5 This of survey is restricted whole-body v i b r a t i o n o n l y , Frequencies sickness, below which operation. which are 1 i s not Not of a WBV), with 1Og frequency are not In the more t h a n on t o o l s are differs in from t h a t Hz 100 with heavy clinical and Hz. motion equipment above 5g studies. picture (see formed when, f o r local 7 1000 to accelerations o p e r a t e d . Hence to effects accident-damage specific that 1 associated problem reports rather contents range No 1-20 140dB t h e r e induced chest loss wall required heavy e q u i p m e n t Hz e f f e c t on (disorientation, levels are from the vibrations accelerations of up to included. .(infrasound). of range t o m i l i t a r y and one example, p n e u m a t i c phenomena and usually apparent discussed produces i n the are an more r e l e v a n t WBV Effects Hz to the and noise and hearing occurs, i s e v i d e n c e of of vibration b a l a n c e and but for seems of minor disturbance nausea), a u r a l importance pain, to 6 this intensities vestibular whole-body v i b r a t i o n . Due overlap the i n the and high case of operators. VIBRATION MEASUREMENTS Sine-wave visualize Thus, equations. frequency, maximum purposes, other periodic because they can mathematical specifying and be a s i n e - w a v e can of the sine-wave be can amplitude, i s c a l c u l a b l e . The by described They acceleration, an be and are easy g r a p h i c a l l y or completely phase important by to simple defined by characteristics. parameter for test instantaneous a c c e l e r a t i o n produced d e t e r m i n e d by equation: vibrations taking the second d e r i v a t i v e 6 A=4ir fDsin2fff t 2 from t h i s , 2 maximum acceleration a=0.04024f D c a n be c a l c u l a t e d a s : where: 2 a=max a c c e l e r a t i o n f=frequency i n Hertz D=displacement Random because vibrations , 8 they unpredictably. specific Neither must be If observed standard be acceleration used probability band, the a c c e l e r a t i o n a deviation for long several picture limited to a frequencies nor by instantaneous random v i b r a t i o n s . and instantaneous period, to change m a g n i t u d e often statistical rms a c c e l e r a t i o n produced i n cm i n t h e band a r e p o s s i b l e . i s indeterminate, f o r any s p e c i f i c over though velocities predicted to c a l c u l a t e difficult contains and a l l f r e q u e n c i e s can are wave forms t h a t A random v i b r a t i o n , instantaneous displacements maximum have n o n p e r i o d i c frequency simultaneously, however, in g a Thus, theory and t o p r e d i c t t h e acceleration. random vibration t h e mean, t h e v a r i a n c e , c a n be measured and c a l c u l a t e d . is and t h e 7 THE HUMAN BODY AS A MECHANICAL SYSTEM From a p u r e l y m e c h a n i c a l be c o n s i d e r e d a s a complex and a masses. E a r l y standing lead as or system investigations sitting unit (Fig. mass. Resonant 2.3a, 2.3b) s u g g e s t system spring f o r multiple - single vertical system . whole body can single systems (Fig. be spring were might dampers impedance p e a k s a p p e a r i n g between order model of springs, Below 2 Hz t h e 9 resonances mass t h e human body of the mechanical t h e damped o f F i g . 2.1. H i g h e r account o f view consisting man under to a simple mass-spring a point of vibration body acts 4 a n d 5 Hz - single developed mass 1 0 to 2.2), but the s i n g l e used as a fairly good best f o r v i b r a t i o n s below approximation. Moreover 10 Hz w h i c h from the approximation coincides w i t h t h e range t h e 4 Hz r e s o n a n c e further shoulder resonance fits in of primary f o r t h e thorax-abdomen t h e 20 - 30 Hz range interest. system Apart there i s a from t h e head-neck- system. Other resonant experimentally f r e q u e n c i e s f o r p a r t s o f t h e body have determined: Hand: 30 t o 40 Hz Arm,leg: 2 t o 6 Hz Jaw: 100 Eyeball: 60 t o 200 Hz t o 90 Hz been 8 m r F i g 2.1 Simple model o f t h e human body UPPER TORSO MMSHOULDER SYSTEM STIFF ELASTICITY^ or SPINAL COLUMM THORAXABDOMEN SYSTEM (SIMPLIFIED) HIPS • FORCE APPLIEO I TO SITTING * SUBJECT LEGS FORCE APPLIED TO STANDING SUBJECT F i g 2.2 S i m p l i f i e d m e c h a n i c a l system r e p r e s e n t i n g t h e human body a t low f r e q u e n c i e s 9 It to was difficult to assign d e f i n i t e t h e e l e m e n t s o f t h e model, s i n c e t h e y the body test. graph type, posture and A homogeneous sample o f exhibits the found fairly muscle tone 8 large variations i n F i g . 2.3b. E s t i m a t e s healthy Spring Damping 32.7 N/cm 12.8 Nsec/cm Damper: factor: critically of the subject young f o r the values 75.2 kg constant: values males 0.258 on under already a s shown by t h e u p p e r and s i n g l e mass model a r e : Mass: depend numerical lower of the elements i n 10 Fig 2.3 Impedance of one s u b j e c t Frequency (Hz) sitting and Frequency Fig 2.4 Impedance of 8 s u b j e c t s 80th sitting percentile) erect standing (Hz) (median, 2 0 t h and 11 CONSIDERATIONS OF F I E L D MEASUREMENTS An extensive National Using at Institute on equipped 5 points, physiological 2.2) were r e c o r d e d was t h e n analysed range of WBV was forOccupational a specially (Table a study Hz a 1 1 levels vehicle a FM t e l e m e t r y i n blocks with test the (NIOSH) . truck, v i b r a t i o n parameters and through through S a f e t y and H e a l t h ex-Ambulance (off-line) 0-25 conducted link. motion The d a t a of 1024 s a m p l e s a n d Hewlett-Packard Digital over Fourier Analyzer. Vibration acceleration at: Target v e h i c l e f l o o r [ v e r t i c a l a x i s ) Man/seat i n t e r f a c e ( i . e . w o r k e r ' s b u t t o c k s , axes) Worker's k n e e ' ( v e r t i c a l a x i s ) Worker's s h o u l d e r ( v e r t i c a l a x i s ) W o r k e r ' s head ( v e r t i c a l a x i s ) a l l three Environment N o i s e Tat t h e w o r k e r ' s e a r l e v e l ) T e m p e r a t u r e and r e l a t i v e h u m i d i t y ( m a n u a l l y Physiology E l e c t r o c a r d i o g r a m (EKG) E l e c t r o m y o g r a m (EMG, 2 s p i n a l i s muscles) channels, obtained) bilateral sacro- Other: Road profiles traversed by t h e t a r g e t v e h i c l e a n d continuous observation of the operator and h i s v e h i c l e motion (video tape) T a r g e t - v e h i c l e speed ( D o p p l e r r a d a r ) T a r g e t - v e h i c l e t i r e p r e s s u r e (where a p p l i c a b l e ) Two-way radio communication between t a r g e t - v e h i c l e o p e r a t o r and mobile r e c o r d i n g u n i t Table From 21 r u n s different 2.2 Items m e a s u r e d by one o f types) about four in field drivers 150 s p e c t r a l on 22 p l o t s were tests machines generated. (of 11 1 2 The main c o n c l u s i o n s - the majority direction - there from t h e d a t a a r e : level vibration appears i n the z- (vertical), difference between (weights: - of high is little levels drawn in operators the of measured vibration different body mass 180-230 l b s ) i t appears that there the upper t o r s o from operator's i s a single transmission path to the v e h i c l e through the seat. - f o r a l o g skidder, vibration and 15Hz w i t h levels Unfortunately data occurred no e v a l u a t i o n was made of recorded). At the Norwegian Institute Sjoflot and coworkers with self-propelled between 1.0 from 0.07 t o 0. 130g ( p e a k ) . (EKG and EMG's were investigations mostly have machines of A g r i c u l t u r a l carried particular the p h y s i o l o g i c a l out reference Engineering, a series of t o t h e WBV c a u s e d by i n a g r i c u l t u r e and f o r e s t r y 1 2 1 3 . Their main aims were: a) to develop vibration b) to methods o f m e a s u r i n g , a n a l y s i n g a n d e v a l u a t i n g t h e e x p o s u r e o f machine o p e r a t o r s evaluate investigations The action, vibrotechnical concerning vibration i . e on the directions driving seat different acceleration beneath the aspects irregular seats. according experiments was The just types also in a n d random a c c e l e r a t i o n was r e c o r d e d e x p e r i m e n t s where vibration in practical under of at the driver. seats were place In of some evaluated, measured on t h e v e h i c l e body acceleration various laboratory oscillations. the was measured t o ISO 2631. The v i b r a t i o n with work a n d types during in three practical of machinery, various 13 speeds, e t c . , was r e c o r d e d on m a g n e t i c t a p e and a n a l y z e d in the laboratory. The to frequency 110 Hz. The f r e q u e n c y s p e c t r a amplitude period was of to sample 2.8 m i n u t e s . speed the average 25 for Hz, was frequency spectra, o f 0.1 anotfter tope H Hz and a recordings. T V.100, Nolte frequ«cj| O—D and frequencies frequence tronfformotton To.pt recorder speed for analysis. A o f 1OOsamples/sec f o r t h e a n a l o g u e ; A. Anotoooui recorder FM PI 6200 Compensol ion poper recorder •Amplifier experimental for a l s o made w i t h a r e s o l u t i o n FM MAS 0.3 acceleration l o o p a t a low t a p e of the frequency < Dote transport, I recorcwq on top* loop, lAmplltler i i * j 4 Amplitude spectrum Oirtcl paprr recorder Colibrotion '/ana control \ 1 Fig an 100 t i m e s h i g h e r when r e p l a y i n g calculation t h e range A technique of frequency transformation i . e . r e c o r d i n g on a t a p e a computer showed out over i n f r e q u e n c y bands 0.06 Hz wide used, using up a n a l y s i s was c a r r i e d Acceleration 2.5 E q u i p m e n t and methods f o r r e c o r d i n g and a n a l y z i n g random vibration . 1 2 14 Vehicle II 12 k m / h •Vehicle body beneath the seat Seat B | O o & e s e a t u n 40 60 a e r th«> driver -Seat C Z-axis RMS —1,87 —1,40 — 1.33 m/s m/s, m/s' 2 '29 X-axis Z RMS s •if • J i 1' M 2 2 o A. ,i A .•rt III ICO H 120 80 i 1 2 * 10 6 >1 1* IS '8 20 Y-axis 0.2 OA RMS .—-1.90 m/s? 0.2 U-K-4 r , ~ 1 1 l,50m/s. 0.90 m/'s K»1S_ • 0 20 40 a m y 60 00 100 11 >3Hx20 Frequency Fig 2.6 V i b r a t i o n i n t h r e e d i r e c t i o n s o f two t r a c t o r d r i v i n g on a bad r o a d . 1 2 seats while 1 5 The frequency spectra VDI-guidelines 2057 were (K-value)". - v i b r a t i o n s above 20 interfere - on with 2.5 and are 4.5 usually from 0.3 t o 2.5 influence on amplitude dominant the with to c o l l e c t field Institute a Bruel and accelerations 70%) drawn: did the not frequency with dominant direction) and direction). (8,12,16 km/h) distribution, with between horizontal directions (right-to-left speed dominating appeared vertical (chest-to-back speed, had however particularly t o be was conducted of C a n a d a " 1 only, l o a d e r s . The Kjaer (B+K) of more t h a n the exposed no the at to the values by the (FERIC). from three weighted (rms) for Forest D a t a was collected, operators Level front-end Engineering s i g n a l (ISO) Statistical 2g greater ones. r e p r e s e n t a t i v e v i b r a t i o n data direction different (about the s t r e s s e s than h e a v i e r vertical four vehicles d r i v e r s appeared i n the Research seat, German frequencies vibration loaders of driving the the (z) d i r e c t i o n 1 t o 4 Hz increased lightweight study 1/2 Hz in main c o n c l u s i o n s V i b r a t i o n i n the to to the operation. tired Hz. from - variation A vehicle 1/4 The measured on for v e r t i c a l frequencies - Hz, pneumatically frequencies interpreted in r e l a t i o n working was in on analyzed Analyzer. Peak were o b s e r v e d . More commonly c l u s t e r e d around 0.05 to 0.3g rms. 1 6 STANDARDS ISO 2631 The Standard standard of e x p o s u r e human body B). It d e f i n e s and g i v e s n u m e r i c a l for vibration i n the frequency defines vibration transmitted the in relation x-axis: range three Separate is in limits the direction. for respect Three The allow (z) and the limits reduced (right according direction one for expression Appendix subjects, to l e f t ) (foot t o head) t o whether or the horizontal f o r two w e i g h t i n g the z-axis, of the l e v e l on man by a s i n g l e the v i b r a t i o n (x,y) n e t w o r k s , one are given. The of v i b r a t i o n with quantity. are set according t o the to i n t e r f e r e n c e with basic criteria: comfort boundary; such as e a t i n g , fatigue-decreased limits; relates reading, w r i t i n g . proficiency working e f f i c i e n c y the and s t a n d i n g as a f u n c t i o n of f r e q u e n c y operations - exposure 1 t o 80 Hz ( s e e vertical characteristics to i t s effects t h r e e main human - are s p e c i f i e d x- and y - a x e s networks - longitudinal, vertical s u r f a c e s t o the (back t o c h e s t ) y-axis: anteroposterior z-axis: from solid for limits m a j o r a x e s i n w h i c h t o measure t h e to s i t t i n g lateral from values may be exceeding boundary; above which the impaired. these limits s a f e t y and/or h e a l t h of t h e s u b j e c t . c a n pose a t h r e a t to 17 VDI 2057 The K-Factor f o r a German a s d e v e l o p e d by Dieckmann p r o v i d e d national standard (VDI 2057) h a r m f u l e f f e c t s of v i b r a t i o n . K i s d e f i n e d the amount ( i . e . power) of the concerned the b a s i s with the as the c o e f f i c i e n t of physiological stress during exposure t o v i b r a t i o n . Thus: K=0.1 threshold of s e n s i t i v i t y to v i b r a t i o n K=0.3-1.0 v i b r a t i o n a c t i n g over a long p e r i o d may be unpleasant K=1.0-3.0 v i b r a t i o n i s unpleasant K=3.0-10 serious disorders but bearable appear d u r i n g several hours exposure K=l0-30 work K=30-100 human p r e s e n c e The K-factor frequency is i s hardly calculated possible i s impossible from amplitude i n cm) ( f , i n Hz) a s : horizontal vert ical to For (d, 5Hz R=d*f 2 t o 2Hz K=2*d*f 5-40HZ K=5*d*f 2-25HZ K=4*d*f 40-100Hz K=200*d 25-100HZ K=l00*d simultaneous a c t i o n s K = ( K + K + K ] + . . . )> 2 2 y 2 2 and Pa- «* loteroricc o te prion tt Travel in vehicles for short time efiretnety Physical work with longer interruptions. Travel in vehicles during longer lime Physical' work with short interruptions H G F K strong!/ Physical work vrithaul interruptions perceptable definitelyPresent* in housings with longer interruptions • perrephbl* Presence in housings with c perceptebte short or no interruptions O t hordly B percepletii hot A perctprable Fig 2.7 K - v a l u e s a f t e r VDI-2057 1.0 r / — 0.1 t—\ in E f 00.1 y 0.001 / // / J 10 Fig /f / / J/ Hz 25 2.8 ISO 2631 v s . VDI 2057 50 80 19 EFFECTS OF As WBV with most physiological other field, it emotional situations may the strain It 1 5 may . is difficult s p i t e of single this, WBV also c o n c e r n s not lead to These p s y c h o l o g i c a l human o r g a n i s m and influence to d i v i d e m e t h o d i c a l l y physiological-objective In stresses and most of physiological, the the only different psycho- reactions together proficiency. the effects into psychological-subjective experimental psychological, the reports field. describe pathological or the only physical react ions. The reported effects fall mostly into the following classes: Acute: a) mechanical behaviour b) physiological muscular subjective d) decrease p a r t i c u l a r parts reactions system or c) of nervous i n t e n s i t y of of of the circulation, body respiration, system vibration perception i n performance Chronic: e) damages t o Mechanical The Behaviour in is 8-10 large the highly Hz of Parts d i f f e r e n t r e s o n a n c e s of been n o t e d . The other health input force of the selected is also the c a v i t y , which a l l o w s susceptible to v i b r a t i o n have been o b s e r v e d . The limbs transmitted body o r g a n s . B e c a u s e of thoracic Body 1 6 to have the arrangement i t to heart and of the heart "recoil", the heart . Resonances at swing of already the heart 3-4 in Hz and response 20 to vibration producing may further parameter the change of mean dynamics of reaction central of fluid the nervous pressure a first and computer contribution i n the a r t e r i a l of thereby flow. A model lumped of flow, and organism, the the hormonal from flows was remaining the to was due via the system and were with as due 75% metabolic experiments and t h a t of 25% findings was fluid i . e . mechano-receptors the approximation the suggested approximately v e s s e l s and system, of p r e s s u r e s and the data p s y c h o - p h y s i o l o g i c a l mechanisms. T h e s e to ejection, the p a s s i v e c a r d i o v a s c u l a r system analysis aortic the ventricular in blood relative i n d o g s . The in left analogue system t o changes measured to aspects to estimate vessel' changes closed-loop hydrodynamic used also affect confirmed anaesthetized animals. Physiological The range most are typical c o n s e q u e n c e s of WBV disorders particular, and Reactions in symptoms electro-encephalographic shows p r e d o m i n a n t with of frequency/low a nervous neurasthenic examination changes i n the i.e. considerable amplitude central frequency s y s t e m and, vegetative dysfunction with angiodystonic, cardiac brain; the i n the h i g h depression t h e waves and cerebral background . of prevalence activity by activity WBV of the alpha-rhythm, of An 5 of p a t i e n t s a f f e c t e d bioelectric in the lower with high amplitude. Confirming other significant increase displacement (0.625 reports, in cm) Sharp oxygen sinusoidal et uptake a l . 1 7 under vibration. As recorded a constant Table 2.3 21 shows, no significant at and rest during however, t h e r e increasing and an 2.4). The declined frequencies control rest increase results d i f f e r e n c e that (Tablel v i b r a t i o n at obtained 2 and which 4 Hz. was with the At 8 and 6, fairly subject 10 linear Hz, with frequency. Similar the was d i f f e r e n c e was the heart period. f o u n d by heart observed towards the were the rate measuring heart seems i n c r e a s e was end rate during of the to greatest rate, with adapt somewhat after 5 minutes v i b r a t i o n p e r i o d . At a l l recovery was lower than in the 22 Recovery at Rest a f t e r 5 min vibrat ion a f t e r 10 min vibrat ion 0.299 0.278 0.280 0.317 0.277 0.301 0.274 0.388 0.472 0.525 0.270 0.271 0.390 0.476 0.505 0.302 0.274 0.272 0.292 0.260 0.313 0.287 0.282 0.302 0.278 0.283 0.270 0.372 0.476 0.518 0.278 0.274 0.332 0.509 0.531 0.272 0.261 0.269 0.272 0.274 Frequency of v i b r a t i o n (Hz) 1 RESTRAINED 2 4 6 8 10 UNRESTRAINED 2 4 6 8 10 Table Frequency of v i b r a t i o n (Hz) 2.3 Mean v a l u e at Rest o f oxygen a f t e r 5 min vibration uptake a f t e r 10 min v i b r a t ion Recovery RESTRAINED 2 4 6 8 10 84. 1 79. 1 81.2 84.6 84.8 82.5 78.0 86.3 89.2 97.0 81 .3 75.5 78.9 85.2 92.3 80. 1 76.7 77.5 79.5 82.6 82.2 81.0 83.4 85.0 84.0 84.6 79.5 86.0 89.3 96.2 80. 1 80.2 79.2 84.7 92.2 79.5 77.4 78.4 80.0 80. 1 UNRESTRAINED 2 4 6 8 10 Table 2.4 Mean v a l u e of heart rate 23 Damage To It appears that little or no vibration lead Health to blood of direct large functional pressure, As common of equipment operators tentative indications 2 0 A the of marked 78 changes changes The to pain, high definite statistical c l a i m s of heavy extract only could with switch due and velocity. establish (primarily hand, weakness, services study poses other a complex prostatitis), to to i n the discs designed contributes concrete less the workers i n bone s t r u c t u r e intervertebral well vibration as discomfort Russian intervertebral "A i n WBV, operators w i l l of the nerve c o n d u c t i n g difficult a pattern onset On muscular 3900 h e a l t h the . WBV exposed vibrational . deformations, of of show t h a t study showed is showed. 1 9 1 8 to p r o d u c e a n n o y a n c e and s u c h as relationships the 2 1 it exposure health decreased approximately with disease and before, analysis jobs to alterations effect i t could level) m a g n i t u d e can c a u s e and but risk fatigue noted (low to thoracic Schmorl's German project gastric disorders and involving osteochondritis and lumbar exposed and nodes 2 2 vertebrae." WBV spondylitis calcification . suggests and to that tractor premature bone 2 3 CONCLUSION The range of the simulations interest human are and f o r WBV complex laboratory i s from and 1 to not effects result partly reaction of neuro-physiological the from t h e experiments 80 merely energy Hz, and show t h a t its effects mechanical, input system. and partly the on i.e. the from the 24 Therefore flexible indices and in the quantities the order relating at human an i n s t r u m e n t to same time frequency vibrations provide to frequency, and p o s s i b l e are f o r t h e measurement o f WBV could i t t o changes indicators. dependent be computation exposure-duration relate stress for be of v i b r a t i o n and amplitude i n other The must ergonomic effects on the and i t would be a d v a n t a g e o u s i f examined within narrower frequency bands. As a result determined a) of t h i s study f o r the v i b r a t i o n I t should measure three primary monitor vibrations requirements system: along a l l three axes simultaneously; b) it should meet t h e ' ISO 2631 whole-body filter requirements; c) i t should exposure result be a b l e index t o be reprogrammed ( s e t of frequency of i n v e s t i g a t i o n s vibration. on t h e t o a new weighting effects vibration filters) of as a whole-body were 25 3. SYSTEM DESIGN HARDWARE To be vibration some a n a l y z e r had preprocessing. based' i.e. compatible sampling, a value new value allows time period, frequency For chosen and The by capacity would as processing the accordance range. to The against is be time raw from To digital with 'difference- recorded the with relative the ISO high the 2631 value. over a longer higher standard. was linearity capacity overloads. i f the rms-value force, To measure t h e transducer sufficient only previous p r o p o r t i o n a l to the operator. sampling; preprocessing signal was The and rms hence acceleration, chosen with over the a 1Og frequency a l s o gave some p r o t e c t i o n The resulting a c c e l e r a t i o n s were q u i t e s m a l l of incorporate data. vibration piezoresistive attain vibration amplified using a d i f f e r e n t i a l a gain are necessitate directly destructive actual works the and to r e c o r d slowly v a r y i n g s i g n a l s but triaxial, data-logger t h e more u s u a l t i m e - b a s e d a p r e s e t amount energy, d e l i v e r e d to the a existing data-logger i t s corresponding one acceleration already t o have a n a l o g u e o u t p u t s i n p u t s such in the r a t h e r than differs This with voltages (0.125 mV/lOg) and instrumentation from had amplifier to with 2000. implement route flexibility, the was freedom filtering chosen. and The from d r i f t signal processing advantages and were insensitivity (rms) low to the power, external noise. The from t h e voltages, proportional a c c e l e r a t i o n transducers to the a b s o l u t e a c c e l e r a t i o n , ( F i g . 3.1) are band limited to 26 the N y q u i s t frequency filtering, the analogue t o resolution to full signals digital results scale, The by a 3 r d o r d e r The i n a conversion is sufficient processing conversion for this of the d i g i t a l signal i s handled and flow, a n d a 16 b i t s t a c k - o r i e n t e d a r i t h m e t i c f o r t h e p r o g r a m and t h e f i l t e r random a c c e s s cannot memory h o l d s the data 8 bit by a d u a l control processor EPROM s e r v e s coefficients as a n d 1/4 K o f and i n t e r m e d i a t e values that be h e l d on t h e APU s t a c k . An different external filter switch allows the s e l e c t i o n o f one o f s e v e n sets. The computed analogue signals presented t o the data-logger, and f o r the relative f o r the f o r the a r i t h m e t i c o p e r a t i o n s . A 2 K byte storage After application. s y s t e m : an 8 b i t CMOS m i c r o - p r o c e s s o r (APU) with n o i s e o f -59 dB(rms) processor data filter. a r e sampled a t 160 Hz a n d h e l d conversion. which Butterworth rms v a l u e s with the corresponding (over 10 sec) are converted to an 8 b i t d i g i t a l - a n a l o g u e c o n v e r t e r a n d time which on an records the changing incremental samples cassette tape recorder. The a the full complete data w o r k i n g d a y , c a n be removed a n d f u r t h e r a n a l y z e d i n laboratory graphs.(Also c a s s e t t e , w h i c h c a n h o l d t h e combined d a t a o f with a computer to see A p p e n d i x A: Hardware) produce statistics and 27 SOFTWARE The program channels implements the d i g i t a l ( x - , y - and z - d i r e c t i o n ) implemented filters filters sequentially a r e o f t h e same g e n e r a l f o r a l l three (Fig. form 3.2). A l l with a cascaded structure: z -1 z -1 2 2 G(z) = * z +pz+q z +rz+s 2 Having all t h e same form filters changed filter selecting the filter-calculations for the next channel converted The CPU By value task and hardware time at a t the the be channel APU. The CPU h a n d l e s time switch. the conversion i s , the conversion beginning the f i l t e r s t h e APU e x e c u t e s that calculation f o r the f o l l o w i n g while initialization o f t h e A/D c o n v e r t e r of is a filter finished the between the i s ready. i s divided the c o n t r o l ( s u c h a s A/D's and DAC's) a n d shifts), easily c o e f f i c i e n t s . The a p p r o p r i a t e are interleaved; of c a l c u l a t i n g the can then of the e x t e r n a l s e l e c t i o n i s started the response selected low speed and calculation. frequency are on t h e s e t t i n g to t h e use o f t h e same program f o r different coefficients Due allows and t h e f i l t e r by depending 2 the of the a u x i l i a r y data flow (delay- the a r i t h m e t i c operations ( F i g . 3.3). At t h e end o f a f i l t e r and summed CPU waits for 'interrupt' interval beginning for calculation t h e rms c a l c u l a t i o n . an interrupt t h e program f a l l s from through has e l a p s e d . I f n o t , t h e of the f i l t e r the outputs After the sampling and checks program calculations. a full loops are squared sequence t h e clock. On i fa full rms- back to the 28 If a calculated external full and interval the switch results is change h a s o c c u r r e d , segment of resumed w i t h Software) the the has passed, output scanned for to the the a change rms same if (Also then the in setting not, the f i l t e r coefficients. are DAC's; the program branches t o the program; values and i f a initialisation c a l c u l a t i o n s are see Appendix A: 29 i i Fig 3. 1 Vibration Analysis System 30 Reset Initialize Convert Scan x-input ext. Switch F 1—I Set Coeff.1 3_i Convert t Set C o e f f .7 L E y-input 1 x-filter S q u a r e and Sum Convert z-input 1 y-filter S q u a r e and Sum Convert x-input z-filter S q u a r e and Sum , <T RMS 1 > lOsec T vf" wait ?/— interrupt calculation . Fig. 3.2 LI <(change of e x t . S w i t c h Output Flow Chart V T ? /— 3 . 3 Structure Fig. < of a 2nd o r d e r Filter Section x(n) t J J } Data Constant Operation Fig. 3.4 D a t a flow w i t h i n a 2nd o r d e r Filter Section 32 4. DIGITAL The design a) whole to g o a l was t o implement body defined filters in arrive at a v i b r a t i o n bandpass examination guideline DESIGN two s e t s o f f o r the v e r t i c a l t h e ISO 2631 b) a s e t of o c t a v e field FILTER t h e ANSI and h o r i z o n t a l s t a n d a r d . These exposure index. filters, which of the v i b r a t i o n S1.11 s t a n d a r d filters: filters would axes as a r e used allow the i n n a r r o w e r b a n d s . As a was c h o s e n . ISO WHOLE-BODY FILTERS The filter for of 2631 with c u t - o f f the 1OdB/dec for ISO standard frequecy horizontal rolloff axes respectively, the are allowed than 4 8 Hz. F o r b o t h passband and i n the standard Hz roll-off filter with a - and -20dB/dec filters, the a lowpass dB/dec (x+y) and a b a n d p a s s for frequencies less in f o r two f i l t e r s ; o f 2 Hz and a -20 f r e q u e n c i e s g r e a t e r than ±1dB and ±2dB calls deviations transition (Fig. 4.1). band, 0.1 Fig 0.5 02 4.1a Fig 2 ISO 2631 Whole-Body 02 Q1 1 4.1b 0.5 1 ISO 2631 2 5 10 Filter; 5 Whole-Body 20 x- and 10 Filter; 20 50 Hz y-direction 50 Hz z-direction 34 OCTAVE BANDPASS FILTERS Specifications the ANSI Band extrapolated lower Sets" ". 2 The f o r t h e low f r e q u e n c y r a n g e form of a t o 80 Hz standard octave f i l t e r s a r e s e t out i n Octave recommended t h e r a n g e f r o m 0.1 limits graphic o c t a v e bandpass S1.1l Standard "Octave, H a l f Filter covering for and center in 6 #1 #2 #3 #4 #5 #6 Table f filter are 0.71 1.41 2.82 5.60 11.2 22.4 4.1 f l ANSI 1 .0 2.0 4.0 8.0 16.0 32.0 S I . 11 4.2 O c t a v e Bandpass Filter filters reproduced u 1 .41 2.82 5.60 1 1.2 22.4 44.7 Filters -45dB Fig were 4 . 1 ) . The u p p e r and i n f i g 4.2. Filter Octave frequencies resulting (table Third after ANSI S1.11 in 35 DESIGN The Bilinear Transform (BLT) was chosen t r a n s f o r m s s u c h a s " t h e matched z" and i m p u l s e The BLT i s v e r s a t i l e view. It guarantees stable d i g i t a l mapped i n t o If and easy a stable filter the unit the BLT since 2 5 circle i s used the design parameters, factor(s) damping and the approximation inspection and to digital filter filter full to project filter by point i f started left hand the l i n e s of from a s-plane is onto inspection. design to corresponding to frequency (t^.) a n d the z-plane coefficients extent predict stages as method. of the z - p l a n e . of the f i n a l a certain the the s-plane f i g 4.3b) t h e d i g i t a l first analogue other invariant t o u s e from an a l g e b r a i c namely t h e b r e a k from over ( f i g 4.3a c a n be f o u n d The mapping further to overshoot, gain a allows i n t e r m s o f p o l e s and the behaviour the zeroes of the d i f f e r e n t and coefficient quantisation. As decided already mentioned in the t o have t h e same g e n e r a l 2 * G(z)= z +pz+q z +rz+s 2 both filter The a 2 a l l f i l t e r s t o keep t h e p r o g r a m l o g i c l o w ) . Hence band i t was z -1 2 time chapter, form z -1 for previous t h e same a p p r o a c h simple was t a k e n (and the run i n t h e d e s i g n of sets. ISO low p a s s pass filter, filter ( x - and y - a x e s ) but having outside t h e range specified filter (z-axis) was by t h e lower the transformed by was implemented as corner frequency f a r standard. placing The band t h e lower pass corner 36 frequency, specified The way BLT. using trial roll-off ANSI and error, o f 10/dB w i t h i n bandpass from the analogue filters so as to the s p e c i f i e d were f o u n d in a form by p r e w a r p i n g and t h e n result in the range. straightforward applying the 37 38 SCALING Because arithmetic, digital the of the limited s p e c i a l a t t e n t i o n was signal at each p o i n t largest possible ratio due i t s large distortion To find arithmetic and amplifier band signal the on the a gain and equal l e s s than The numerator the difference represents Hence the scaling denominator after the summation The the of inputs input was the had of the one hand signal to be to avoided contribution. the a the first input any each approximation represented point the number the as (G^G™) maximum g a i n at to an within digital M: < M (4.1) where: w(n)=cfj*x(n) (4.2) y(n)=GJy*w(n) (4.3) poses two denominator summation and consists keep point no problem, closely following w i t h a max. inserted gain between since it involves s i g n a l s . Further of at 1/2 the it 0=0^/2. numerator and for overflow were stage. the The to factors if y(n) stage of scaling largest expressible a differentiator the In to fixed s t r u c t u r e . On f o r e a c h s t a g e was w(n), only noise 0 < u < u ^ ( f i g . 4 . 4 ) . Then, must be the the e x a m i n e d . As denominator with to of hand o v e r f l o w scaling was range desired other optimal operation numerator the high, paid within s i g n a l was noise to dynamic stage p o t e n t i a l p o i n t s after multiplication. again was quite alternate additions were l i m i t e d so was has t o be limited. and the m u l t i p l i c a t i o n involves safe since subtractions in and reality as it long as output. known c o n s t a n t s ( r , s ) and only 39 Thus (with reference to f i g . 4 . 5 ) : 4*y(n)*max(p,q) < M y(n)=x(n)*G^*c * (4.4) ; (4.5) *G™ c=M/[x(n)*G^*G™*max(p,q)*4] (4.4+4.5) where: M=max. e x p r e s s i b l e x(n)=max. O^o^u^ r,s=denominator that argument holds the input x(n) i s a l r e a d y for a l l following attenuated 1 input (^max.(G(o)); A similar number=2-2" " coefficients stages ( k ) , only by k-1 IT «£!* c. * G':: 'Di ) (4.6) i =1 ^A correction factor integer multiplication Arithmetic Noise) of 4 i s required for fixed point b e c a u s e o f t h e use of m u l t i p l i c a t i o n (see 40 w(n) F i g . 4 . 4 S i m p l i f i e d G a i n Model Y(n) o f a Second O r d e r Filter points of overflow Fig.4.5 Detailed Model for Scaling of a Second O r d e r Filter 41 BILIN.C To c a l c u l a t e the p r o g r a m was w r i t t e n . The coefficients frequencies direct for for the stage coefficients a general program second scaling first order coefficients zeroes and is calculated filter and scaling the are from t h e found, The the break are and the then poles are maximum g a i n scaling converted response given which the analogue transform zeroes find frequency the bilinear and f a c t o r s are final the stages to f a c t o r s a FORTRAN calculates poles. i n 2 second order check and prewarping). Using filter 'reassembled' each a (after digital solved coefficients for factors. to binary The and as is calculated. COEFFICIENT QUANTISATION After length the the coefficients solution characteristic can corresponding to the is (0.5%), the error quite small but real the equation, respectively, The of are only quantized f o r most of increases the variables r to a p p r e c i a b l e 2 and within and poles, by a 2rcos(o). filter the i n the word denominator given t o the levels limited and locations region a zeroes a p p l i e s only the with numerator i . e . the access introduced expressed grid 2 6 shape. I t unit circle band c l o s e to axis. ARITHMETIC NOISE The execution and effects of of finite arithmetic s u b t r a c t i o n s are w o r d l e n g t h a r e most n o t i c e a b l e operations. accurate as long The as no in the fixed-point additions over- or underflow 42 occurs. In numbers multiplication i s truncated multiplication 2=1. show 2 7 to noise that the N 2N-bit bits. and The increased f o r a second product order error as was the filter of two N-bit evident poles as approached the v a r i a n c e of the error i s : 2q 1+b 2 g l 12 The reduces the e f f e c t i v e processor actually that noise point processes point Thus expect relative from In This binary that fixed-point by t h e u s e r , leads i s assumed f i x e d multiplication while to relative multiplication o f two r e a l set the to the numbers R ,R^we t E b b 2 the product bits. imagined E=R, *R =I*2- * I * 2 " yet by an e f f e c t t o t h e number. the the product 2 integers. point word, b u t t h e m e c h a n i c s o f binary by i s only the b i n a r y (4.7) 2 i s compounded wordlength the binary discrepancy the 2 multiplication arithmetic the (!-b)[(b+l) -a ] returned =1,1/2" 2 b by t h e p r o c e s s o r P = I * I * 2 - *2"" returned E _L P i s too small II*2" 2 b - _2 ' N ii_*2- *2b is ( f i g 4.6) b Hence t h e p r o d u c t ( f i g 4.5) N b by a f a c t o r of E/P A3 0 0 0 0 0 0 0 0 0 0 0 0 N N 0 0 0 0 0 0 0 0 0 0 0 0 N truncate (b) Fig 4.6 Ideal fixed point multiplication and truncat ion b 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 N N 0 0 0 0 0 0 0 0 0 0 0 0 0 N truncate (N) error Fig 4.7 Fullword truncation in integer multiplication 44 This 'implicit result bits by 2 c a n be corrected by , b u t t h e i n f o r m a t i o n o f t h e N-b are lost increases for division' and t h e e f f e c t i v e to q=2" . Table 1 2 the v a r i o u s f i l t e r s 0.8 1.2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0 19.9 26.3 39.9 Table 4.2 least the significant error therefore shows t h e m u l t i p l i c a t i o n noise implemented. • damped f req. multiplication multiplying r I coef f ic i e n t s noise [dB] s -37.1 -43.7 -46.0 -52.6 -54.9 -61 .2 -63.6 -69.7 -72.0 -77.3 0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266 -1 .984795 -1 .973893 -1 .968009 -1 .943436 -1 .930540 -1.872726 -1.837728 -1.686829 -1.590760 -1.184247 -0.918180 0.065113 4.2 M u l t i p l i c a t i o n Noise -79.4 -81.7 (Equation 4.7) LIMIT CYCLES After filters displayed truncation poles steady an i n i t i a l latching behaviour, i n the m u l t i p l i c a t i o n s approached state quantisation determined a d i s t u r b a n c e f o l l o w e d by a z e r o and z=1. By s o l v i n g q/2, t h e l e v e l and assuming of the l i m i t was increased the c h a r a c t e r i s t i c [y(n-2)=y(n-1)=y(n)] of again which input cycle the due as to the equation at an average output ^ was as: y(n)=6(n)-Q[r*y(n-1)]-Q[s*y(n-2)] y(n)=[r*y(n-1)-q/2]-[s*y(n-2)-q/2] y(n)(1+r+s)=q q y = 1 1+r+s (4.8) 45 The the DC limit c y c l e outputs i n t r o d u c t i o n of s m a l l small zero inputs input remains the output limit m a g n i t u d e o f t h e DC effect remains e s s e n t i a l l y is until the i d e a l limit c y c l e . Above approaches the i d e a l output 4.3 0.8 1 .2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0 19.9 26.3 39.9 Table - 1 2 with ) output approaches the level smaller the and levels filter as the smaller. f o r the filters. calc [dB] coef f i c i e n t s s r -1 .984795 -1 .973893 -1 .968009 -1 .943436 -1 .930540 -1 .872726 -1 .837728 -1 .686829 -1 .590760 -1 .184247 -0 .918180 0 .065113 output the more and more c l o s e l y i damped f req. is, 0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266 4.3 C a l c u l a t e d DC L i m i t C y c l e to t h e same a s f o r t h e this shows t h e c a l c u l a t e d ( q = 2 of t h e implemented b a n d p a s s respect That increased filter of t r u n c a t i o n becomes r e l a t i v e l y Table stages t o the f i l t e r . c y c l e . As t h e i n p u t unchanged output inputs are stable with -17. 2 -26. 0 -29. 2 -38. 0 -41 . 1 -49. 7 -52. 8 -61 . 3 -64. 2 -72. 3 -74. 8 -82. 2 Levels (Equation 4.8) two 46 5. PERFORMANCE LABORATORY TESTS No suitable constant found shake-table amplitude over i n the u n i v e r s i t y (pure, the and sinusoidal range the from testing acceleration 0.1 had t o 80 t o be with Hz) could be done in two DAC's and phases. First the software) and digital the d i g i t a l sinusoidal input that performance the specifications t h e ANSI however to the #3 from of filters would have t o be analysis Sensor Diff. (thermal Amplifier Amp The output) octave f o r the of the judged modified noise were low results filters the filters conform to stopband performance frequency filters for f i e l d to give b e t t e r sources the show meet suitable indicated digital #1 use, stopband that filters the (see (output Magnitude noise) -88 (output noise) noise) (injection noise) (conversion noise) Digital DAC The whole-body Source Sample/Hold A/D ISO The Improvements). Noise Op generator. Although p o i n t f o r improvement Performance p e r f o r m a n c e were t e s t e d u s i n g a the 5.2). processors, w i t h i n the passbands, the to 5.7). p e r f o r m a n c e . An to filter short, especially ( F i g . 5.3 (A/D, a function ( F i g . 5.1, standard falls primary system Filter (DC Limit -17 (conversion noise) second at phase t e s t e d the complete rms -68 dB -130 dB -72 dB -59 Cycle) dB dB t o -82 -59 dB system some p o s s i b l e f r e q u e n c i e s . A S c o t c h rms dB rms (accelerometer yoke shaking 47 apparatus was Department available which resulting in had an ( F i g . 5.9). changing the factor 10. The frequencies harmonic The gains one with Mechanical Engineering large, possible fixed in content testing to function for allowed of t h e n o t be c a l i b r a t e d the manufacturer's of t h e a n a l o g u e and be this with apparatus higher generator use system of specified and Thus digital by a lower due to the 5.11b). shaker for rendered it the full system c o n s t a n t s were transducer s e n s i t i v i t y and by the 5.11a, the only purposes. at input (Fig. the c a l i b r a t i o n amplifiers acceleration t o use the full calibration displacement, instrumentation amplifiers tended the UBC increase g a i n of the results than harmonic inapplicable from fixed I t was the c o n t e n t of t h e s h a k i n g a p p a r a t u s qualitative could only exponential frequency of from filters. found and the dB dB Fig 5.4 #2 Filter Response from Function Generator Input Fig. 5.10 #4 Filter Response w i t h Shaker Input 57 i Fig Q33 s 5.11a Sample Waveform 1 of S c o t c h Yoke 4Hz 8Hz 12 Hz Fig 5.11b F r e q u e n c y Content of S c o t c h Yoke 58 PERFORMANCE To IMPROVEMENT investigate the inherent, digital the fixed point actual Fortran was noise-sources arithmetic programs c o v e r e d A/D conversion represented by 2 -1 a n d from and by which r e s u l t e d a l l operations were 8 i n the was were handled checked o u t p u t s were c o n v e r t e d desired executed the a r i t h m e t i c multiplication a l l operations results showed t h a t ( F i g . 5.13a attenuation the i n the processor. through for to real output over- byte and numbers a n d level chapter indicated was a one-sample on t o a DC l i m i t c o r r e l a t e d to the distance (Table 5.1). due that the to the stage. after locked 5.20a) the passband of t h e l a s t the output state to outside a n d i n c l o s e agreement w i t h previous the input b i t A/D were c a l c u l a t e d . Done. Examining z=1 input multiplying c y c l e behaviour steady including simulated Thereafter insufficient limit system 8 truncation The digital domain, a s t h e y would be w i t h values in S I N ( X ) f u n c t i o n . The u n d e r f l o w . The f i l t e r rms the by t h e F o r t r a n the r e s u l t to integer, extraction was w r i t t e n and t h e rms c a l c u l a t i o n . The a n a l o g u e converting The of 470 (SIMI16 a n d SIMI16D). The the f u l l was integer effects implementation converter truncation. and more c l o s e l y , a s i m u l a t i o n o f and r u n on t h e UBC Amdahl simulation the characteristics the levels impulse cycle input with the of t h e p o l e s from calculated i n the 59 i Table 5.1 C a l c u l a t e d and M e a s u r e d DC L i m i t C y c l e Reasoning DC, the stages last The stage over the order. not kept a differentiator were r e a r r a n g e d was a numerator The the implementation filters with by by t h e A/D in assumption inputs. mind t h e A/D c o n v e r s i o n converter that that showed a the marked ( F i g . 5.12b t o 5.19b) a zero-pole-zero-pole structure did I t seems t h a t a f l o o r n o i s e . The t h e o r e t i c a l i s a t -59 dB this residual (= d i f f e r e n t i a t o r ) . performance of the improved improve b e y o n d t h e 50-55 dB l i m i t . Levels remove any zero-pole-pole-zero implementation stopband would i n the s i m u l a t i o n such f o r t h e low f r e q u e n c y previous established set that simulation with improvement -17.3 -25.8 -27.4 -37.7 -41 . 1 -48.2 t o -51.0 -44.5 -64.3 -66.2 -70.2 t o -78.3 -78.3 (-inf.) -17.2 -26.0 -29.2 -38.0 -41 . 1 -49.7 -52.8 -61 .3 -64.2 -72.3 -74.8 -82.2 0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266 -1.984795 -1.973893 -1.968009 -1.943436 -1.930540 -1.872726 -1.837728 -1.686829 -1.590760 -1.184247 -0.918180 0.065113 0.8 1 .2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0 19.9 26.3 39.9 found [dB] calc. [dB] coef f i c i e n t s s r Damped Freq. (rms), but i s for uncorrelated, w h i c h does not h o l d c o m p l e t e l y for it is limit should be random i n p u t , an pure sine wave Fig 5.12a Zero-Pole-Zero-Pole Structure Fig 5.12b Zero-Pole-Pole-Zero Structure dB Fig Fig 5.14a F i l t e r 5.14b F i l t e r #2 #2 Z-P-Z-P Z-P-P-Z dB 0-10- ,20' -?0- -AO- -50- , QI 1 02 1 — — — i 05 1 Fig 2 — — i 1 5 1— 10 5.18a F i l t e r #6 20 Z-P-Z-P dB 0-10-20-30- -AO-50-I 0.1 Q2 05 1 Fig 5.18b F i l t e r 5 10 #6 20 Z-P-P-Z 67 F I E L D TRIALS The used vibration analyzer t o o b t a i n some d a t a complete (Fig. system 5.20, was under machine used to haul felling site to an is a (MacMillan harvesting a.s.l.) uphill site and and The rubber Vibration to the cab the suspension weighting including cab was shift by the operator that the area the production Logging Division Island. The (800-1000 done ( F i g . 5.23). D a t a during rest or i n both m the an a integral adjusted to the spring. the t o the full s t r u c t u r e by had be with was three tower seat could p r e - t e n s i o n i n g the s t r u c t u r e ( F i g . 5.22) hr l o g s from normal was from t h e measurements were t a k e n 1/2 a Shawnigan isolated and filters a Yarder harvesting near Duncan on V a n c o u v e r suspension weight The directions. mat damper-spring was measurements l o c a t e d i n a mountainous downhill operator's the Grapple forest During within logger conditions. de-branched y a r d i n g during a working operator one-inch road. at Ltd.) was and operated Bloedel field data in a Madill-044 cut access environment, h a u l i n g logs the track-mounted the machine with actual installed 5.21), w h i c h harvesting together sensor operator collected working attached seat with shifts after the of ISO 8 hrs, period. DATA EVALUATION The collected acceleration limits valid measurements levels, at that against vibration which time. the data showed perodically Comparing ISO the Standard widely exceeded the straight exposure varying exposure vibration limits would 68 indicate that the exposure limits d o e s not take i n t o account the have been e x c e e d e d , 'rest periods' but of lower this vibration levels. A better reference outlined based a procedure level and calculate i n t h e ISO level A' 'equivalent that a vibration tj i s e q u i v a l e n t t o an e x p o s u r e f o r a time where exposure (Fig. the limits t' ; valid for The exposure levels as procedure i s at l e v e l Tj" and and to a time' at a s e l e c t e d t ' = t ( V<j-') the levels exposure s t a n d a r d ( p a r a g r a p h 4.4.3). on t h e a s s u m p t i o n time i s t o c o n v e r t the v a r y i n g Aj f o r reference Tare the Aj and A', respectively d a t a A' was selected 5.24). For 0. 03g the e v a l u a t i o n (the 'equivalent operator 8 vibration exposure exposure instance, short was exceeded that level, together 1 . e. cumulative the s e t by The t h e ISO fulfilled. than 8 to weighted give some a was loss total then the method the information. levels, that method detailed and the time limits data can then be s h o u l d be Standard f o r a l l l e v e l s could for picture: time the measured calculated time hrs, of with exposure the averaging A second more of the t o t a l if as the s t a n d a r d . are l o s t . a given l e v e l levels. t o be a hence b u r s t s of h i g h v i b r a t i o n used vibration greater time' e n t a i l e d cumulative d i s t r i b u t i o n level and exceeded the s t a n d a r d l i m i t s , evaluation limits limit) t i m e ' was essentially 'equivalent exceed exposure exposure Being For hr of t h e a c q u i r e d plotted valid evaluated below t h e the the vibration against for the visually exposure i-f t h e s t a n d a r d i s F i g . 5.20 Madill-044 Grapple Yarder Data Logger Recording U n i t •Vibration A n a l y z e r F i g . 5.21 I n s t a l l a t i o n of the F u l l Data A c q u i s i t i o n System 70 F i g . 5.23 Attachment of the Sensor to the Seat 71 Fig 5.24 E q u i v a l e n t Exposure Times 72 RESULTS F i g u r e s 5.25a to 5.33a show the a c c e l e r a t i o n x-, y- the and z - d i r e c t i o n f o r each of the three days with the ISO ' f a t i g u e decreased p r o f i c i e n c y superimposed on boundary' the graphs. The 8 hr exposure possibility limit. and exposure limits 10 sec rms a c c e l e r a t i o n vary widely (from O.Olg to 0.l2g rms) the l e v e l s in The and levels periodically sudden variations of s i g n i f i c a n t energy c o n t r i b u t i o n exceed indicate a t o the rms value exposure time' from shock impulses. The results calculations are from the tabulated in 'equivalent Table 5.2. The values from d i f f e r e n t days vary due to d i f f e r e n t machine-down times, but a l l are well the below the 8 hr l i m i t . A l l v a l u e s are a p p r o x i m a t e l y i n same range, except f o r the higher value from the z - d i r e c t i o n measured at the cab, which seat i n d i c a t e s the effectiveness the i n that d i r e c t i o n . Sensor Date Day Day Day #1 #2 #3 @ Seat @ Seat <§• Cab X z y 168.9 181 .7 171.6 . 175.0 17 1.4 184. 1 1 66.0 1 66.6 203.7 Table 5.2 E q u i v a l e n t Exposure Times The vibration shows limit of [min] cumulative d i s t r i b u t i o n of the t o t a l time the measured l e v e l exceeded a given l e v e l 5.25b that the exposure (Fig. time i s w e l l below and the f a t i g u e decreased p r o f i c i e n c y to 5.33b) both the exposure boundary, for a l l levels. • • A comparison of the d i s t r i b u t i o n s from measurements taken 73 at t h e c a b and a t removes the seat show t h e low l e v e l v i b r a t i o n directions. that (0.001 the seat effectively t o 0.005 g) i n a l l t h r e e 0 30 60 90 130 150 180 210 TIME Fig 240 5.25a x - A x i s V i b r a t i o n 0 Fig 2?0 300 330 360 390 420 450 480 Cmln] Measurement Day Crres] 5.25b x - A x i s D i s t r i b u t i o n Day #1 #1 Fig 5.26a y - A x i s V i b r a t i o n Fig 5.26b y - A x i s Measurement Distribution Day Day #1 #1 Fig 5.27a z - A x i s V i b r a t i o n Fig Measurement 5.27b z - A x i s D i s t r i b u t i o n Day Day #1 #1 0 30 60 90 120 150 180 TIME Fig 210 240 2?0 5.28a x - A x i s V i b r a t i o n g Fig 300 330 360 390 420 450 4 30 Cmin] Measurement Day [rms] 5.28b x - A x i s D i s t r i b u t i o n Day #2 #2 .200 r 0 30 60 90 120 15B 180 TIME Fig 210 240 5.29a y - A x i s V i b r a t i o n Fig 2?0 300 330 3S0 390 420 458 480 Cmin] Measurement 5.29b y - A x i s D i s t r i b u t i o n Day Day #2 #2 Fig 5.30a z-Axis V i b r a t i o n Measurement Day g [rmsD Fig 5.30b z - A x i s D i s t r i b u t i o n #2 + Day #2 Fig 5.31b x-Axis D i s t r i b u t i o n Day #3 • 2B0 r 0 30 60 90 120 150 160 2 10 3 4 0 TIME Cmtn] 270 300 330 360 390 420 456 490 i Fig 5.32a y - A x i s V i b r a t i o n g Fig 5.32b y - A x i s Measurement Day [rms] Distribution Day #3 #3 Fig 5.33a Fig z-Axis V i b r a t i o n Measurement 5.33b z - A x i s D i s t r i b u t i o n Day Day #3 #3 83 6. A whole-body filtering as programmable as The and field vibration e l i m i n a t e s the 'industrial The the by results results. the need Finally, the First, sudden large contribution w h i c h may inducing observed in be research the used during the of be The being standard applied is for with full the it whole-body recording system telemetry 'stand under e n v i r o n m e n t ; and tool the the is of self- moving v e h i c l e s links. alone' The for Secondly, vibration same long-term The shock ISO work the levels results l e v e l s along i n the impulses an is rms showed z-axis. vibration indicate (high c r e s t role valid allowed also the field) important Standard showed machine i n v e s t i g a t e d , i n t h e measured shock b e h a v i o u r play field i s w e l l below t h e variations from initial particular exposure themselves factors. production Since on attenuates (and i t can monitoring. obtained levels filter in size. the l a b o r a t o r y and a I n t e r n a t i o n a l Standard. seat that flexibility c h a n g e d as for expensive easily vibration the are s u i t a b l e f o r measurements on health' operator that as be digital analogue smaller conjunction variables. is could in tested, using is the whole-body research. i t s u s e f u l n e s s as a it and t e s t e d i n the in and 2631 available also ongoing measurements contained, system of ISO processing s y s t e m can conditions ergonomic three currently has the a result demonstrated and to manufacture s y s t e m was actual other to the been d e v e l o p e d implementation modified meeting a d v a n t a g e s of d i g i t a l expensive present has opposed s y s t e m s . The less filter, standard filters CONCLUSION only a factor), as for stress crest 84 factors of l e s s operator the than exposure 3 and, i n t h e i n s t a n c e in forest scope of t h e s t a n d a r d . method showing perfectly high safe speed harvesting, The 'lethal problem accelerations of heavy equipment the problem i s outside of the from shock (and v i c e v e r s a ) ' has appeared boat travel and alternate existing in rms impulses as the evaluations case of have been order) was proposed . 28 An estimate calculated the frequency that forpractical of These ongoing will operators, - Examination relation the of and main-line Also the using with incorporate during i n an using the forth-coming working c o n d i t i o n s , such as distribution in v e h i c l e s and t e r r a i n s . the vibration level t o t h e work c y c l e . cable t h e system, regard aspects between v i b r a t i o n levels tension. vibration Modifications light investigations I n v e s t i g a t i o n of the c o r r e l a t i o n seat frequency. and i n c l u d e : 5 different evaluated, i t by p o l e - z e r o purposes the lowest be r e p o r t e d - Measurements under d i f f e r e n t - (zero RECOMMENDATIONS analyzer. Thesis cycle exceed 20% of the Nyquist should T h e r e a r e a number vibration limit was f o u n d t o m i n i m i z e I t was f o u n d FUTURE WORK AND Ph.D. DC and a t e c h n i q u e reordering. break of within the to pinpoint octave the bands can be effectiveness of to attenuation. to the present system a r e recommended t o o f o n - s i t e v i b r a t i o n a n a l y s i s w h i c h came t h e development and e v a l u a t i o n of t h e system: to 85 - Recording values of of of field - Use an of exposure to decide in forest vibration, or if the the harvesting peak problem is really i f i t r e l a t e s more t o the shock measurements. piezoelectric (subject to the frequency range, l e v e l s : measurement of investigator vibration whole-body of low vibration would a l l o w operator one peak will instead of availability response), strain gage of a s e n s o r which, accommodate h i g h , having transient transducers with a sufficiently larger dynamic peak v a l u e s without clipping. - D i s p l a y of the i n p u t peak levels together p r e a m p l i f i e r s to monitor adjust the gains best possible the with v a r i a b l e gains inputs while a c c o r d i n g l y . T h i s would a l l o w S/N ratios under for o n - s i t e and to a t t a i n different to the measurement conditions. A l a r g e p r o p o r t i o n of handling; w i t h i n a second order instructions are data from t h e A/D t o and b a s e d on the devices inception processor be and delay APU. shifts and and use this 25% for 35% of a l l to moving project, available dedicated problem 'switched improvements c o u l d be automatic since signal of memory r e f e r e n c e o p e r a t i o n s . A n o t h e r of a data A r e - d e s i g n would p o s s i b l y be the the and w h i c h have become c o m m e r c i a l l y of used s e c t i o n about (INTEL 2920), w h i c h would a v o i d I/O operation. to the filter is as Other clock related time such consuming could processor time approach capacitor' device. the a d d i t i o n shut-down for of a week-long, real time unattended 86 7. REFERENCES P.L. C o t t e l l and P.D. L a w r e n c e E l e c t r o n i c D a t a l o g g e r f o r Man-Machine S t u d i e s i n F o r e s t r y A paper p r e s e n t e d a t t h e Annual Meeting o f t h e Human Factors A s s o c i a t i o n o f Canada a t Lake o f B a y s , O n t a r i o , S e p . 1980. Human F a c t o r s A s s o c i a t i o n o f Canada,1980 1 K. H u s c r o f t F o r e s t H a r v e s t i n g O p e r a t i o n s Data Logger I n t e r n a l Report Dept. of E l e c . E n g i n e e r i n g U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1979 2 ISO 2631-1978 Guide f o r the Vibration 3 International Evaluation of Human Exposure to Whole-body S t a n d a r d s O r g a n i s a t i o n , Geneva, 1978 • VDI 2057 B e u r t e i l u n g der Einwirkung mechanischer Schwingungen a u f den Menschen DIN V e r z e i c h n i s , Normen und N o r m e n t w u e r f e B e u t h V e r l a g GmbH, B e r l i n , 1976 A. De Souza Study of Production and E r g o n o m i c F a c t o r s i n G r a p p l e Yarding O p e r a t i o n s u s i n g a D a t a L o g g e r System Ph. D. T h e s i s ( i n p r o g r e s s ) F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia 5 C. Zenz Occupational Medicine Yearbook M e d i c a l P u b l i s h e r s , C h i c a g o , [WA 400 023; Woodw] 6 1975 T.P. A s a n o v a C l i n i c a l Aspects of V i b r a t i o n D i s e a s e s V i b r a t i o n a n d Work Proc. of the F i n n i s h - S o v i e t - S c a n d i n a v i a n Vibration 1 975 I n s t , o f O c c u p a t i o n a l H e a l t h , H e l s i n k i , 1976 7 R.R. Coermann The Mechanical Impedance o f t h e Human S t a n d i n g P o s i t i o n a t Low F r e q u e n c i e s Human F a c t o r s 4:227,1962 [BF1 H8; M a i n ] Symposium, 8 Body i n S i t t i n g and D. Dieckmann M e c h a n i s c h e M o d e l l e f u e r den s c h w i n g e n d e n m e n s c h l i c h e n I n t . Z e i t s c h r i f t f u e r angew. P h y s i o l o g i e 17:67,1958 [QP1 168; Woodw] 9 Koerper 87 C. H a r r i s and C. C r e d e Shock a n d V i b r a t i o n Handbook M c G r a w - H i l l , 1976 [TA355 H35; MechR] 1 0 D.E. Wasserman e t a l . Whole-body V i b r a t i o n E x p o s u r e o f W o r k e r s d u r i n g Heavy Equipment Operat ion US D e p t . o f H e a l t h , E d u c a t i o n a n d W e l f a r e , C i n c i n n a t i , 1978 1 1 L. S j ^ f i o t Measuring and E v a l u a t i n g Low F r e q u e n c y V i b r a t i o n s A c t i n g on Machine O p e r a t o r s i n A c r i c u l t u r e and F o r e s t r y R e p o r t No. 19 N o r w e g i a n I n s t i t u t e o f A g r i c u l t u r a l E n g i n e e r i n g , A, 1970 1 2 ibid Some Methods a n d R e s u l t s f r o m T r a c t o r V i b r a t i o n Methods i n E r g o n o m i c R e s e a r c h i n F o r e s t r y INFRO D i v i s i o n 3, P u b l . No. 2, 1973 1 3 • M.G. Mowat Exposure of Front-end Log Loader Operators V i b r a t ion FERIC T e c h . Note TN 25, December 1978 Studies 1 to Whole-body H. D u p u i s Human E x p o s u r e t o Whole-body V i b r a t i o n i n M i l i t a r y V e h i c l e s a n d E v a l u a t i o n by A p p l i c a t i o n o f ISO 2631 AGARD (NATO) C o n f e r e n c e P r o c e e d i n g s No. 145 on V i b r a t i o n and Combined S t r e s s e s i n A n v a n c e d S y s t e m s , O s l o , A p r i l 1974 [WD735 N67; WCB] 1 5 C.F. Knapp Models o f t h e C a r d i o v a s c u l a r System under Whole Body V i b r a t i o n Stress AGARD (NATO) C o n f e r e n c e P r o c e e d i n g s No. 145 on V i b r a t i o n and Combined S t r e s s e s i n A n v a n c e d S y s t e m s , O s l o , A p r i l 1974 1 6 G.R. S h a r p The Respiratory and M e t a b o l i c Whole-body V i b r a t i o n i n Man AGARD (NATO), O s l o , 1976 1 7 Effects of C o n s t a n t Amplidude R e p o r t o f W o r k i n g Group 79 The E f f e c t s o f Whole-body V i b r a t i o n on H e a l t h N a t i o n a l Academy o f S c i e n c e , W a s h i n g t o n DC, 1979 1 8 T.H. M i l b y e t a l . R e l a t i o n s h i p s between Whole-body among Heavy Equipment O p e r a t o r s NIOSH, 1974 1 9 Vibration and M o r b i d i t y Patters 88 R.C. S p e a r M o r b i d i t y S t u d i e s of W o r k e r s e x p o s e d t o Whole-body A r c h i v e s of E n v i r o n m e n t a l H e a l t h ( C a l i f o r n i a ) , May 2 0 R.C. Spear e t a l . M o r b i d i t y P a t t e r n s among Heavy E q u i p m e n t Whole-body V i b r a t i o n ( F o l l o w - u p S t u d y t o NIOSH, 1975 Vibration 1976 2 1 1 Operators ") exposed to D.E. Wasserman e t a l . V i b r a t i o n and i t s R e l a t i o n t o O c c u p a t i o n a l H e a l t h and S a f e t y B u l l e t i n of t h e New York Academy of M e d i c i n e , V o l 49, O c t 1973 2 2 Editorial Whole-Body V i b r a t i o n The L a n c e t , May 1977 2 3 ANSI SI.11-1966 O c t a v e , H a l f - o c t a v e and T h i r d - o c t a v e F i l t e r S e t s A m e r i c a n N a t i o n a l S t a n d a r d s I n s t i t u t e , I n c . , 1979 2 W K. S t e i g l i t z The E q u i v a l e n c e of D i g i t a l and A n a l o g S i g n a l P r o c e s s i n g I n f o r m a t i o n C o n t r o l , V o l . 8 , pp. 455-467, 1965 2 5 0. Herrmann On t h e A c c u r a c y P r o b l e m i n t h e D e s i g n of N o n - r e c u r s i v e Filters D i g i t a l S i g n a l P r o c e s s i n g , I E E E P r e s s , pp. 385-386,1972 2 6 Digital A. Oppenheim and R.W. Shaefer D i g i t a l Signal Processing P r e n t i c e - H a l l , p. 246, 1975 2 7 P.R. Payne Method t o Q u a n t i f y R i d e C o m f o r t and A l l o w a b l e A c c e l e r a t i o n s A v i a t i o n , S p a c e , and E n v i r o n m e n t a l M e d i c i n e , 4 9 ( 1 ) , pp 262-269, J a n 1978 2 8 APPENDIX A HARDWARE 90 Layout [DRWG #13 CHIP # PART # FUNCTIONS SOURCE I 1 12 13 14 15 16 17(D) I8(D1) I9(D2) Discrete LH0038CD LH0038CD LH0038CD LM324 LM324 Discrete Discrete Discrete - NS NS NS NS NS 110 I1 1 112 I1 3 114 I1 5 I1 6 117 118 119 D i f f . Amp D i f f . Amp D i f f . Amp Op-Amp Op-Amp - - — — IH5111-JE IH5111-JE IH5111-JE HD14011-BP HD14016-BP MC14023-BC AD0808-CCN MC14020B-PC MC14520 CP MC14001B-CP S/H S/H S/H Quad (2)NAND Hex I n v e r t e r T r i (3)Nand A/D C o n v e r t e r Freq.Divider D i v i d e by N Quad (2)NOR Intersil Intersil Intersil Hitachi Hitachi Motorola NS Fairchild Motorola Motorola 120 121 122 123 124 125 126 127 128 129 MC14504B-CP D271 6 MC14528B-CP MC14584B-CP Discrete CD4012-BE Discrete CD4012-BE AM9511-1DC Levelshi f t EPROM(2K) Dual One-shot Schmitt T r i g g e r Motorola INTEL Motorola Motorola Dual RCA 130 131 132 134 135 136 137 138 139 140 141 142 143 145 - (4)NAND - - D u a l (4)NAND Arith.Proc.Unit Spare RCA AMD CDP1802-D CD4042-BE HD14011-BP MWS5101-DL MWS5101-DL MCI4028-CP MWS5101-DL MWS5.101-DL AD558KN CPU Quad Quad RAM RAM Port RAM RAM DAC RCA RCA Hitachi RCA RCA Motorola RCA RCA Analog Devices AD558KN AD558KN UA7805 UA7810 Discrete DAC DAC +5V R e g u l a t o r +10V R e g u l a t o r — - Latch (2)NAND Select — Analog Devices Analog Devices Fairchild Fairchild - 42 DRWG #1 Layout A3 92 Analogue The Inputs acceleration (KYOWA AS-TB, arranged the and S i g n a l C o n d i t i o n i n g [DRWG #2; #2A] i s measured w i t h a t r i a x i a l l O g ) . The s e n s o r consists o r t h o g o n a l l y . The s t r a i n vibration/acceleration of 3 l i n e a r gage b a s e d into a accelerometer transducers transducers convert proportional electrical signal. Each of the three t r a n s d u c e r outputs conditioning the signals The circuit The frequency filter also for i t s own up t o t h e A/D c o n v e r t e r a f t e r signal which p o i n t are multiplexed. transducer outputs instrumentation coupling has amplifier i s necessary are with Hz) i s implemented a fixed t o e l i m i n a t e output pre-amplified signal (80 AC-coupled with a i s band 3rd to a differential g a i n o f 2000. The ACdue t o g r a v i t y . limited to the order Butterworth i n two s t a g e s , where t h e f i r s t i n c l u d e s an o f f s e t input to o f f s e t t h e u n i p o l a r A/D c o n v e r t e r . the s i g n a l Nyquist f i l t e r . The order by 2.5 stage volts DRWG # 2 A Transducers 95 Analogue t o D i g i t a l The sample and sample c l o c k p u l s e system are clock. Conversion hold [DRWG #3; #4] f o r each (SCLK) w h i c h On is the p o s i t i v e derived going i s controlled directly signals contains channel an are converted integral i s selected 8 channel and gated The with data conversion. Conversion time enables select i s decoded line from (Q) i s ready t o memory t h r o u g h t h e A/D t r i - s t a t e the data register signals pulse. The l i n e s D0-D2, through the t h e N - l i n e s (OUT CHANL) timing. controls t a k e s up t o 100 the converted value transferred from t h e TPB p u l s e f o r p r o p e r serial the m u l t i p l e x e r . The a p p r o p r i a t e which a r e l a t c h e d i n t o the channel p u l s e . The ALE p u l s e by a w i t h an 8 - b i t A/D c o n v e r t e r , w h i c h under CPU c o n t r o l ALE from edge t h e a n a l o g u e sampled a n d l a t c h e d a t t h e n e g a t i v e edge o f t h e sampled is channel the micro-sec, i n the data start of after register. the which The d a t a INP DATA, w h i c h d e c o d e d a s SEL4 drivers. •»| xsn Ui-zc) pi-z) -t/f -ri ft" (svt)-L 7-n _ ->r 7 2,-SJ: J'J>- 2f» J2 L -If DRWG #3 Sample and H o l d cn aw raisr 136-1} b »» JM>A AW* •fp* (M-W 2 t VOL- Ate lit / — — — I* Z-SH It • *, Lib Ti if 1 • »s A T A 7 If 23 n SoaHx. lo - CUL use. J» Kl-t) if (Zi-zo) 1 (21-H? K it 3y Ii 3 V 2t> 0&-O Di EX 7 ZC • T»o *•$» a. tw-/*••> Jfr V 6*& ty "77777- DRWG #4 A/D C o n v e r s i o n ^1 98 Central Processor The [DRWG #5] control of data CD1802E m i c r o p r o c e s s o r access can and be d e s i g n a t e d accumulator, and an timing can modify and . Within 16 g e n e r a l as index a Flip-Flop interrupt-enable c a n be c o n t r o l l e d , program flow i t s architecture registers register interface the user o r program c o u n t e r , (Q) t o c o n t r o l Flip-Flop. a To since the f u l l by a can (16 b i t ) e a c h o f w h i c h serial a an 8 b i t output certain operation be s u s p e n d e d and resumed t o w i t h i n a c l o c k To i s handled line, extent the of the CPU cycle. with e x t e r n a l systems the f o l l o w i n g l i n e s a r e available: 8 D a t a L i n e s (D0-D7) An 8 b i t b i - d i r e c t i o n a l d a t a b u s . T h e s e l i n e s a r e used f o r data transfer between t h e memory, t h e p r o c e s s o r and t h e I/O devices. 8 A d d r e s s s L i n e s (A0-A7) The h i g h e r o r d e r b y t e o f a 16 b i t memory a d d r e s s appears on t h e a d d r e s s bus f i r s t . The b i t s r e q u i r e d f o r t h e memory s p a c e are strobed into an e x t e r n a l a d d r e s s l a t c h by t h e t i m i n g p u l s e TPA. The lower order byte i s then presented after negation o f TPA. U s i n g a l l eight high order address b i t s a l l o w s a d d r e s s i n g o f up t o 65K b y t e s . I/O S e l e c t i o n L i n e s (N0-N2) T h e s e l i n e s a l l o w t h e s e l e c t i o n o f up t o 7 I/O d e v i c e s . The N-lines a r e low u n t i l an I/O i n s t r u c t i o n i s e x e c u t e d , a t w h i c h t i m e t h e y r e f l e c t i n b i n a r y form t h e n u m e r i c a l operand of t h e I/O i n s t r u c t i o n ( i . e . INP 3, OUT 7 ) . The d i r e c t i o n o f t h e d a t a f l o w i s i n d i c a t e d by t h e MRD l i n e . E x t e r n a l F l a g s (EF1-EF4) The f o u r l i n e s a r e i n t e n d e d f o r e x t e r n a l s t a t u s - o r control inputs. The instruction s e t i n c l u d e s c o n d i t i o n a l branches d e p e n d i n g on t h e s t a t u s o f t h e l i n e s . The l i n e s are active low and a r e i n t e r n a l l y i n v e r t e d , i . e . BN3 w i l l c a u s e t h e program t o branch i f the E F 3 - l i n e i s h i g h . T i m i n g P u l s e s (TPA,TPB) P o s i t i v e p u l s e s t h a t o c c u r e v e r y machine c y c l e . They a r e u s e d t o t i m e t h e i n t e r a c t i o n w i t h t h e d a t a - and a d d r e s s b u s . TPA signals t h a t t h e h i g h o r d e r b y t e i s a v a i l a b l e on t h e a d d r e s s bus. D u r i n g TPB h i g h , d a t a i s t r a n s f e r r e d from t h e d a t a bus t o t h e CPU. 99 Memory W r i t e (MWR) During e x e c u t i o n o f a memory-write o r o u t p u t i n s t r u c t i o n , a f t e r t h e a d d r e s s l i n e s have s t a b i l i z e d , a n e g a t i v e p u l s e on t h e MWRline i s u s e d t o l a t c h d a t a from t h e d a t a bus i n t o memory o r t h e selected device register Memory Read (MRD) MRD goes low d u r i n g a memory r e a d c y c l e , i t a l s o indicates the d i r e c t i o n o f t h e d a t a t r a n s f e r d u r i n g I/O i n s t r u c t i o n s : MRD=0: D a t a from I/O t o CPU a n d memory MRD=1: D a t a from memory t o I/O It should be n o t e d t h a t t h e M R D - l i n e i s a l w a y s h i g h d u r i n g t h e f i r s t 2 c l o c k p e r i o d s o f an e x e c u t e c y c l e , w h i c h c a n l e a d to g l i t c h e s . S e r i a l o u t p u t (Q) A s i n g l e b i t o u t p u t t h a t c a n be s e t and r e s e t under software c o n t r o l . The s t a t e t r a n s i t i o n o c c u r s a b o u t h a l f w a y d u r i n g t h e execute c y c l e . S t a t e Codes (SC0,SC1) The lines indicate operating in what Cycle SCO Fetch(SO) Execute(S1) DMA(S2) Interupt(S3) C o n t r o l (WAIT,CLR) The l i n e s p r o v i d e state SC1 0 0 1 1 4 modes t o c o n t r o l CLEAR WAIT 1 1 1 0 1 0 0 0 (cycle) the processor i s 0 1 0 1 t h e CPU o p e r a t i o n : Mode Run Pause Reset Load * R e s e t : R e g i s t e r s I and N and t h e Q flip-flop are reset, interrupt i s enabled and a l l O's a r e p u t on t h e d a t a b u s . A f t e r l e a v i n g t h e r e s e t mode, t h e f i r s t machine c y c l e i s an initialisation cycle, during w h i c h t h e CPU r e m a i n s i n a S1 s t a t e and X, P and RO a r e s e t t o 0. I n t e r r u p t s a n d DMA requests a r e suppressed. The n e x t cycle i s SO i f no DMA requests a r e pending. * P a u s e : A l l i n t e r n a l CPU o p e r a t i o n s a r e s u s p e n d e d , b u t t h e c l o c k continues to run. *Run: The r u n mode c a n be e n t e r e d e i t h e r from t h e p a u s e o r w a i t mode. If initiated from p a u s e t h e CPU resumes o p e r a t i o n on 100 t h e f i r s t h i - l o t r a n s i t i o n of t h e c l o c k . From t h e r e s e t mode t h e f i r s t c y c l e w i l l be an i n i t i a l i s a t i o n c y c l e , f o l l o w e d by a DMA c y c l e or a f e t c h from l o c a t i o n OOOO(HEX). *Load: The CPU i s h e l d i n an d e v i c e t o l o a d memory. IDL execute l o o p and allows A s y n c h r o n o u s I/O (INT, DMA-IN, DMA-OUT) A s s e r t i o n of e i t h e r l i n e w i l l c a u s e t h e CPU t o e n t e r s t a t e upon e x e c u t i o n of t h e p r e s e n t i n s t r u c t i o n . an S2 or I/O S3 * I n t e r r u p t : X and P ( t h e i n d e x and p r o g r a m c o u n t e r designators) are stored in T; X and P are then set to 2 and 1, r e s p e c t i v e l y . F u r t h e r i n t e r r u p t s a r e d i s a b l e d (IE=0) and the next i n s t r u c t i o n i s f e t c h e d from M[R1]. *DMA: After finishing the current instruction, data is t r a n s f e r r e d between t h e bus and t h e memory location pointed to by RO, then RO is incremented. The priorities for simultaneous requests are in decreasing order: DMA-IN, DMAOUT, interrupt. Address- and Four I/O Decode of the demultiplexed with [1-31] 8 the resulting s p a c e of high TPA order pulse in address 2048 b y t e s control 00 512 1024 1536 2048 511 - 1024 - 1535 - 2047 - 2559 Table The decoder, select the three I/O giving lines are appropriate instruction. lines the used I/O bits (PA0-PA3) a r e i n t o a quad D - t y p e b i t s A8-A11. The the data RAM. Bytes address access usable i n the Type Start End ROM ROM ROM ROM RAM 0000 0200 0400 0600 0800 01FF 03FF 06FF 07FF 09FF 2 Memory to enable, address EPROM and Map N0-N2 a r e d e c o d e d device control register in a lines together SEL1 with device during execution binary-to-BCD t o SEL7. MRD of an and INP or The MWR OUT 101 Function Port Mnemonic 0 1 2 3 4 5 6 7 i l l e g a l ; quiescent state INP 1 not u s e d INP 2 not u s e d INP 3 not u s e d e n a b l e c o n v e r t e d d a t a t o bus INP DATA INP 5 not u s e d INP APU r e t r i e v e r e s u l t s from APU INP CMND r e a d APU s t a t u s 0 1 2 3 4 5 6 7 i l l e g a l ; quiescent state s e l e c t 1 s t DAC s e l e c t 2nd DAC s e l e c t 2 r d DAC not u s e d s e l e c t 1 o f 8 A/D C h a n n e l s l o a d d a t a o n t o APU s t a c k i s s u e APU command Table The the PAUSE l i n e ripples The wait l i n e TPB p u l s e which in turn by a instruction single-step putting cycle the wait l i n e by a 4 MHz c l o c k , of 4 micro-seconds b r a n c h e s a n d NOP's). A p u l s e d e r i v e d (see Clock Circuit) exact synchronisation drives resets the interrupt r u n mode. the second and c a u s e s t h e the clock. which results (6 m i c r o - s e c o n d s from and step button t h e CPU i n t o instruction negates circuit from t h e s i n g l e execution without stopping CPU i s d r i v e n DAC 1 DAC 2 DAC 3 4 CHANL APU CMND Assignments from t h e APU. A p u l s e a t t h e end o f an t o suspend The i s controlled t h r o u g h two f l i p - f l o p ' s , flip-flop, CPU 3 I/O P o r t OUT OUT OUT OUT OUT OUT OUT i n an f o r long the processor line clock and p r o v i d e s t h e of t h e program e x e c u t i o n t o the sampling frequency. The and Q-line i s tied i s used t o i n i t i a t e t o t h e START p i n o f t h e A/D c o n v e r t e r the conversion. It.- <**-»»> I* m 1 te At s Jet* r* tex.i Z » J ' t S*d.<l SuC » * DRWG #5 Central Processing «*» <»-») Unit o to 1 03 The Arithmetic All Processing arithmetic Arithmetic Unit (APU) [DRWG #6] operations Processing Unit are handled (APU). The s t a c k executes 16 b i t and 32 b i t i n t e g e r s and 32 numbers depending bytes over result data for 32 the i n s t r u c t i o n s . an 8 b i t d a t a of The on the l a s t stack bus, operation proper according t o the r u l e s of r e v e r s e is command/status p o r t s . The d a t a with the instruction least OUT APU w i l l select (SHMRD) which w i l l register THE APU execution b i t floating onto into the transfer the point i s loaded, i n the stack. The processor stack execute byte with accessed over and the a s two an 8 b i t entered data first. The the data enable clocked with the shortened After the operands i s initiated appropriate can device i n bytes register. words notation. data i s then 4 numbers. By p l a c i n g t h e I/O the c h i p arithmetic operation command with to are an OUT CMND, the command (C/D h i g h ) . is driven by a 2MHz c l o c k resulting i n the f o l l o w i n g times: and F u n c t i o n Time of i n t e g e r multiplication 42-47 h i - b y t e of i n t e g e r multiplication 40-48 Mnemonic FIXMULLO: l o b y t e FIXMULHI: the significant MRD the an i s entered (C/D l o w ) . The d a t a loaded processor to the depth of the stack) polish as and register pulse the (limited configured register point sequence, operand o p e r a t i o n s bus, oriented i s a v a i l a b l e on t o p o f t h e s t a c k . multiple separate AM9511A i s 8 words d e e p f o r 16 b i t i n t e g e r s and operands i n the APU a The d a t a directly b i t i n t e g e r s and f l o a t i n g The by FIXADD: i n t e g e r a d d i t i o n 8-9 (usee) 104 FIXSUB: i n t e g e r subtraction FIXFLT: convert integer FIXCOPY: d u p l i c a t e FLTMUL: m u l t i p l y FLTADD: add top stack floating point FLTFIX: convert No most inputs an the to the arithmetic CPU of under hardware c o n t r o l to from t h e For APU difference between a CPU APU software. an are are provided, immediately operations, CPU APU completely and 45-107 integer capabilities from t h e of i n the point s u s p e n d e d . The operation ignored the 391-435 exceeds the is 10 (f.p.) root operation. operation execution 77-92 stack square results next 73-82 27-184 processing the 8 (integer) division floating parallel cases top point 31-78 point point point FLTCOPY: d u p l i c a t e SQRT: f l o a t i n g floating of floating FLTDIV: f l o a t i n g to 15-16 APU where the instruction suspension (PAUSE). transparent execution since in needed as time cycle of This time, the CPU makes and cycle for the can is the time be 18 AcUK CS an (ti- »•) - /A 'T) /2 1 X2g Zl T A ze> IV- »»)• <*-'*> OK. IS PAUSE k_JL v.Ese.r \22~~ TPS DRWG #6 A r i t h m e t i c P r o c e s s i n g U n i t (APU) -carl*; 106 Clock Circuit The [DRWG processor is divided the A/D down #7] c l o c k , which to give converter and t h e pulse. The clock further division The 2 1 3 is ", APU timing 13 into the t h e SCLK l i n e An interrupt 8 to give and division S/H by 2. A o f 500 KHz. are created by a "modulo 3" c o u n t e r ; crystal, s i g n a l s f o r t h e APU, by a s i m p l e t h e A/D c l o c k Hz. from a 4 MHz clock for i s obtained by 8 g i v e s 4 MHz/(2 *3)=162.76 polarity. the proper S/H and i n t e r r u p t p u l s e followed inserted i s derived by a "divide the r e s u l t i n g micro-second frequency one-shot t h e needed p u l s e by is w i d t h and *£</ *fr US-2V u +1* Ol J/8 Ui 0, tTAC r 0<L I" DRWG #7 C l o c k /«<b r f*>k»t 1 ZfOkJh. 6 em Circuit xsr 1 3 I 108 Memory [DRWG #8] The a d d r e s s a b l e memory s p a c e consists of 2048 bytes of EPROM and 256 b y t e s o f RAM. The 2K EPROM coefficients. byte holds A11 A10 s e l e c t s the program t h e c h i p and AO and to the f i l t e r A9 access a w i t h i n t h e ROM. For the variables, implemented with lower bytes 256 t h e upper going (121) 516 bytes o f RAM (1-34 t o 1-37) a r e f o u r 256 by 4 b i t c h i p s . A11 A8 (2 c h i p s i n p a r a l l e l ) , 256 b y t e s . The d a t a low; t h e r e a d i n g o f d a t a w h i l e A11 A8 i s clocked into i s enabled addresses addresses t h e memory by by t h e MRD the line. MWR (CM 2±- 1111 s\ >J »1 ni al i n »l al al iw *A n\ h.. ex.1 JL (JM) upnvt 'At*. LT L T 4r * T'8 <9 *l *l "\ \ \^\"] *\ a a / _u_ 3< Ob*?. DRWG #8 Random A c c e s s Memory «UI 4Sr <M-<«3 L ' DRWG #8A Read O n l y Memory 111 Digital to Analogue Conversion Each of interface with appropriate clocked is channels t h e TPB driver #9] has i t s own logger. A converter line immediately output connectors. three the data select in with almost integral the [DRWG (SEL1,SEL2,SEL3) p u l s e . The (20 and connect (139-141) t o i s selected and corresponding nsec) a v a i l a b l e . DAC The directly the by the value analogue value DAC's c o n t a i n to the is an output Sen •flV (it-*) TP/i lf-12) Sett - a 0.1/if Hi— lO (to-io) • if {*>-*) . MSB DRWG #9 D i g i t a l t o Analogue C o n v e r s i o n NJ 11 3 Function Selection The external switch, flag of flags whose 8 p o s i t i o n s inputs the [DRWG are different then #10] EF1-EF3 are binary are encoded s o f t w a r e d e c o d e d and filters. controlled by [ 1 2 7 ] . The used f o r the a rotary external selection £20 2ifc MS Mi j i 22 k 13 BfZ 1 I 7*7T BXT. SW" Hi. i£j_G J *F3 DRWG #10 F u n c t i o n Selection 115 SOFTWARE The program (x,y,z). Due analogue to the to d i g i t a l execution and initialized the implements long runs conversion at the beginning value filters conversion conversion the calculations converted the for the i s ready in time concurrent for t h e next of a f i l t e r present sequential (100 with usee), the the channel s e q u e n c e . By channel order program i s always the time a r e executed, the f o r the f o l l o w i n g channel (fig. 1). Sample Pulse A/D Conversion Program Fig F o r most bit efficient memory coefficients 1 A/D and P r o g r a m S y n c h r o n i z a t i o n address use of t h e i n s t r u c t i o n registers, the data set and (delayed and APU commands) a r e s t o r e d i n c o n t i g u o u s The data can then the indirect, be a c c e s s e d auto-increment through the 16 samples, blocks. dedicated p o i n t e r s using memory reference and I/O instructions. At initialization, 0000 a n d t h e f i r s t 'fake return'. the instruction Then the program s t a r t s a t memory disables interrupt workspace the i n RAM location with a i s c l e a r e d and t h e 1 16 p o i n t e r s common t o a l l f i l t e r s a r e input the from filter first the external flags) selected coefficient set. A binary i s travelled, and s e t s t h e c o e f f i c i e n t tree which pointer of the a p p r o p r i a t e c o e f f i c i e n t (with determines (R6) t o t h e block (fig. 2). EF3 EF2 EF 1 EF2 EF1 °/\ °l\ CHECK #6 Fig In a case small through #4 2 Filter which EF 1 ° | \ ° #3 #2 Selection 'CHECK' i s s e l e c t e d routine, puts l \ #1 ISO Tree (EF1-EF3=111) t h e p r o g r a m the values from t h e A/D t o t h e DAC's and b r a n c h e s back t o t h e s t a r t . the c h e c k i n g input #5 EF1 of the sensors and t h e o f f s e t runs straight This adjustments allows of the amplifiers. The filtering program proper reads the data from t h e A/D (INP DATA) a n d s t o r e s i t i n memory f o r t h e d e l a y - s h i f t s and D-register. stack From t h e r e g i s t e r (OUT A P U ) . Then subtracted, the r e s u l t Before further filter channel is initialized. the the value x(n-2) (still i s loaded value on t h e s t a c k ) calculations is also on t o t h e APU loaded i s multiplied the conversion the and by C1. f o r t h e next 1 17 The denominator c a l c u l a t i o n s executed in for correct the output shifts. placement of The Using bytes) the t h e APU R8 R9 output stack, running Two of as samples a r e time delay, rms and synchronized waiting for through' and In case squares' are is multiplied result, APU) by which f o r the 4 is delay- above. shifted by one location i . e . x(n-1) to x ( n - 2 ) , selection. reset the s t a g e ) , which to f l o a t i n g sequences x(n) is s t i l l p o i n t , squared, value (2 to added on to r e - s t o r e d i n memory. implement the filtering the filtering sequences to the b e g i n n i n g has sample to the not elapsed pointer sample c l o c k by clock p u l s e . On (R7) that a f u l l rms retrieved for rms the rms I f no the are has memory of The interrupt the program the and 'falls program. passed, and program i s the the to 'sum rms of values the DAC's f o r a change of t h e filter o c c u r r e d the program branches t o sequence, program. calculations v a l u e s have been o u t p u t change has interrupt' If i s reset. interrupt - DAC3), t h e p r o g r a m c h e c k s of the pointers block. e n a b l i n g the interval from the of e a c h d a t a b r a n c h e s back t o t h e b e g i n n i n g After for beginning (second t h e new three interval are calculated. DAC1 filter identical all sec skipped the (SSQX) and (R6,R12,R14) a r e 'wait the (INP ] z-channel. After (OUT result i s saved i s executed i s converted sum more, t h e y- and 10 stage, stage the the of t h e b i n a r y p o i n t . The first and d1*y(n-1)+d2*y(n-2) etc. The the manner and second to e f f e c t x(n-1), the a similar [ otherwise i t branches to the the 1 2 3 4 5 6 7 8 9 10 1 1 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ' 56 57 58 59 60 TITLE ' * * RCA.2B * * 06.NOV 1981' ; * RCA.2B * , ********** ;* 4MHZ CLOCK 4MICSEC/INSTR (6MICSEC/LBR+N0P) ;* DOUBLE PRECISION, 2 S COMPLEMENT, AM9511 ARITHM.PROCESSING UNIT ;* EXT.FLAGS 1 TO 3 SELECT 1 OF 8 FILTERS ;* 3 CHANNELS LABELED X,Y & Z ; CASCADED FORM ;W = = = = ( 1 ) = >< + > = (C1)=>< + > = = = (4) = = = = = = = = = = ( 1 ) = = >.< + > = (C2)=>< + } = = = (4) = = = = = > V ; ; ; ; ; I 1 [T] <=(-d1)=[T] [T] <=(-d1)=[T] | [T]=(-1)=> <=(-d2)=[T] [T]=(-1)=> <=(-d2)=[T] 1 ' DEFINITIONS ; APU COMMANDS FIXMULLO EOU 6EH FIXMULHI EOU 76H FIXADD EOU 6CH F i ' x S U B E O U 6 D H FIXFLT EOU 1DH FIXCOPY EOU 77H FLTCOPY FLTMULT FLY ADD FLTDIV SORT FLT F I X E EOU 17H EOU 12H E O U 1 0 H EOU 13H EOU 01H O U 1FH I/O PORT DEFINITIONS DAC 1 DAC2 DAC3 DATA CHANL APU CMND EOU EOU EOU EOU EOU EOU EOU 1 2 3 4 5 6 7 ; REGISTER DEFINITIONS PC ISPC SP TIMER COUNT ;R5 ;R6 ;R7 ;R8 ;R9 EOU EOU EOU EOU EOU EOU EOU EOU EOU EOU 0 1 2 3 4 5 6 7 8 9 ;PROGRAM COUNTER ;INTRPT-SERVICE PC ;STACK POINTER GENERAL PURPOSE SAMPLE PTR COEFFICIENTS PTR DELAY POINTER DELAY POINTER 1 oo 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 85 86 R10 R11 R12 R13 R14 R15 0AH 0BH 0CH ODH OEH OFH EOU EOU EOU EOU EOU EOU ;SUM SQUARES PTR ;COMMAND-POINTER :GENERAL PTR ; CONSTANTS INTRV.HI INTRV.LO WASTE.HI WASTE.LO ; ; EOU EOU EOU EOU 06H 5CH 3H 2EH === ;SUMMING INTERVAL ;WASTE INTERVAL FOR 10 SEC FOR 5 SEC START OF PROGRAM ======================= INITIALISATION ; ON POWER-UP RO IS PC AND RX ;DISABLE INTERUPTS DIS 10H ;[X,P]-ARGUMENTS FOR FAKE-RETURN BYTE REO J POINTERS . START LDI HI (W01X.LO) 88 89 LDI PLO L0(WO1X.LO) R6 91 92 LDI PHI HI(CHSEL) R5 PLO R5 PHI LDI R12 LO(SSQX) LDI PHI LDI PLO HI (BAND) RIO LO(BAND) R10 ;R10 > BAND SELECTED LDI PHI LDI PLO HI(SCRTCH) R1 1 LO(SCRTCH) R1 1 ;R11 > SCRATCH PAD LDI PHI LDI PLO HI(INSTR) R14 LO(INSTR) R14 ;R14 > THE FIRST APU-INSTR LDI PHI LDI PLO HI(ENDWS) R15 LO(ENbWS) R15 94 95 ; 103 104 106 107 108 109 1 10 1 12 1 13 1 14 115 1 16 117 118 1 19 120 ;R5 > CHANEL SELECTED ; 97 98 100 101 ;R6 > LO BYTE OF FIRST X-SAMPLE ; ; ;R12 > LSB OF SUM OF SQUARES ACCUMULATOR vO ;R15 > END OF WORKSPACE 121 122 123 . ; SET COUNTERS LDI INTRV.HI 125 126 LDI PLO INTRV.LO 128 129 LDI PHI WASTE.HI 131 132 PLO TIMER 134 135 137 138 ; INITIAL: R15 LDI STXD 0 140 141 XRI BNZ 08H 143 144 XRI BNZ 01H 146 147 L00P1 ; START FIRST CONVERSION 149 150 LDI STR 0 R5 152 153 DEC R5 155 156 158 159 161 162 REO ;START CONVERSION ; DEPENDING ON ; CORRESPONDING FILTER SEQUENCE.(FLAGS LOW ACTIVE) 164 165 BN2 BN1 F10X FILTR1 167 168 F10X BN1 FILTR3 170 171 FOXX BN2 FOOX 173 174 BR FILTR4 176 177 BR FILTR6 179 180 ;TIMER=(495*SAMPLING)=3 SEC ISO LDI HKC1XI.L0) • 18 1 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 21 1 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 PHI LDI PLO R7 L0(C1XI.LO) R7 LDI STR BR 1 R10 OFILTER ;R7 > FIRST COEFFICIENT J ;BAND = 1 ; ; SET FILTER #2 COEFF-POINTERS FILTR1 LDI PHI LDI PLO HI(CIX1.LO) R7 L0(C1X1.LO) R7 LDI STR BR 2 R10 OFILTER ;R7 > FIRST COEFFICIENT ;BAND = 2 J ; SET FILTER #3 COEFF-POINTERS FILTR2 LDI PHI LDI PLO HI(C1X2.LO ) R7 L0(C1X2.LO) R7 LDI STR BR 3 R10 OFILTER ;R7 > FIRST COEFFICIENT ; ; ;BAND = 3 ; SET FILTER #4 COEFF-POINTERS FILTR3 LDI PHI LDI PLO HI (C1X3.LO) R7 L0(C1X3.L0) R7 LDI STR BR 4 R10 OFILTER ;R7 > FIRST COEFFICIENT ;BAND = 4 ; SET FILTER #5 COEFF-POINTERS FILTR4 LDI PHI LDI PLO HI(C1X4.LO) R7 L0(C1X4.L0) R7 LDI STR BR 5 RIO OFILTER ;R7 > FIRST COEFFICIENT ;BAND = 5 ; SET FILTER #6 COEFF-POINTERS FILTR5 LDI PHI LDI PLO HI(C1X5.Lbj R7 L0(C1X5.L0) R7 LDI 6 ; ;R7 > FIRST COEFFICIENT 24 1 " 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 . 291 292 293 294 295 296 297 298 299 300 STR BR ; ; SET FILTER FILTR6 R10 OFILTER #7 COEFF- POINTERS LDI PHI LDI PLO HI (C1X6 .LO) R7 L0(C1X6 .LO) R7 LDI STR BR 7 R10 OFILTER LDI PHI LDI PLO 00 R15 25 R15 DEC GLO BNZ R15 R15 C0N1 SEX INP OUT DEC R1 1 DATA DAC 1 R1 1 J ; CHECK J CHECK ;BAND = 6 ;R7 > FIRST COEFFICIENT ;BAND = 7 ;SET TIMER TO ABOUT 120 uSEC ; C0N1 ; LDI STR 1 R5 R5 CHANL SEX OUT DEC ;GET DATA ;AND DUMP IT ;SELECT Y-CHANNEL R5 SEO REQ C0N2 LDI PHI LDI PLO 00 R15 30 R15 DEC GLO BNZ R15 R15 C0N2 SEX INP OUT DEC R11 DATA DAC2 R1 1 LDI STR ;SET TIMER TO ABOUT ;GET DATA ;AND DUMP IT 2 R5 ; R5 CHANL SEX OUT DEC ; R5 ;SELECT Z-CHANNEL 120 uSEC SEO REO 301 302 303 304 305 306 307 308 LDI PHI LDI PLO C0N3 00 R15 30 R15 310 31 1 DEC GLO LBNZ R15 R15 C0N3 313 314 SEX INP DEC R1 1 DATA DAC3 R1 1 LBR RECHCK 316 317 J ; X-CHANNEL ********************* 322 323 ; -(Y1*D1)-(Y2*D2) 325 326 ; V=OUTPUT; W= INPUT D=DENOMINATOR ; 328 329 334 335 ;GET DATA ;AND DUMP IT * 319 320 331 332 ;SET TIMER TO ABOUT 120 uSEC ; ' INITIAL: R5 > CHAN2 R7 > C1X LO R14 > FIXSUB ; ; ; INPUT v » 337 338 LDI STR 0 R6 ;SET LO BYTE TO ZERO 340 341 INC INP R6 DATA ;R6 > HI BYTE ;READ SAMPLE FROM ADC 343 344 SHR STR R6 346 347 BNF LDI STR NEXTX 80H R6 349 350 ; 352 353 354 355 356 NEXTX 358 359 360 ;SHIFT RIGHT ;STORE AT HI BYTE ;R6 > LO BYTE ;IF NO OVERFLOW LEAVE LO BYTE ;ELSE SET LO BYTE TO 80H = 0 ; SUM=(W01-W21)*C1 SEX OUT OUT R7 APU APU SEX R6 APU APU •;LOAD C1 to ; OUT IRX ;LOAD W01X LO-BYTE ; " W01X HI-BYTE 361 362 363 364 365 366 367 368 369 370 37 1 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 . 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 41 1 412 413 414 415 416 417 418 419 420 IRX OUT OUT APU APU ; SKIP OVER W11X ; LOAD W21X LO BYTE ; LOAD W21X HI BYTE SEX OUT OUT R14 CMND CMND ;SUBTRACT :MULT I PLY : START NEXT CONVERSION ; LDI STR SEX OUT DEC 1 R5 R5 CHANL R5 ; SELECT A/D CHANNEL tt\ SEQ REQ ; SUM =SUM-(V11*D11) SEX IRX IRX OUT OUT R6 APU APU ;SKIP OVER V01X HI&LO ;LOAD V11X LO BYTE ;LOAD V11X HI-BYTE SEX OUT OUT R7 APU APU ;LOAD D11X LO-BYTE ;LOAD D11X HI-BYTE SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT * ; SUM= SUM-(V21*D21) SEX OUT OUT R6 APU APU ;LOAD V21X LO-BYTE ;LOAD V21X HI-BYTE SEX OUT OUT R7 APU APU ;LOAD COEFFICIENT ; " " SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT ; ; ; MULTPLY BY 4 . OUT OUT APU CMND ;LOAD 4 ;MULLO ; SAVE 1ST STAGE OUTPUT ; ; INITIAL: R6 > V12X LDI PLO LO-BYTE L0(VWOX.HI) R6 ;R6 > V01X HI-BYTE LO BYTE HI BYTE 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 J ; NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY SEX INP R6 APU ;GET HI-BYTE DEC INP R6 APU ;GET LO-BYTE ; ; ; 2ND STAGE (X) ; ; SUM=(W02-W22)*C2 ' ; INITIAL: R7 > C2X J R6 > W02X( =V01X) LO-BYTE SEX OUT OUT R7 APU APU SEX OUT OUT R6 APU APU ;LOAD W02X LO-BYTE ; " W02X HI-BYTE IRX IRX OUT OUT APU APU ;SKIP OVER W12X ;LOAD W22X LO BYTE ;LOAD W22X HI BYTE SEX OUT OUT R14 CMND CMND ;SUBTRACT ;MULTIPLY ;LOAD C2 j j j ; SUM=SUM-(V12*D12) SEX OUT OUT R6 APU APU ;LOAD V12X LO BYTE ;LOAD V12X HI BYTE SEX OUT OUT R7 APU APU ;LOAD D12X LO-BYTE ;LOAD D12X HI-BYTE SEX OUT OUT R14 CMND CMND ;MULT I PLY ;SUBTRACT ; j ; ; SUM =SUM-(V22 *D22) SEX OUT OUT R6 APU APU ;LOAD V22X LO-BYTE ;LOAD V22X HI-BYTE SEX OUT OUT R7 APU APU ;LOAD D22X LO-BYTE ;LOAD D22X HI-BYTE SEX OUT R14 CMND ;MULTIPLY ; j 481 482 483 OUT CMND J ; MULTPLY BY 4 485 486 OUT OUT 488 489 ; 491 492 ; V12 TO V22 ; SUBTRACT CMND APU ;FIRST COPY FOR SSOX ;LOAD 4 ; DELAY-SHIFT THE SAMPLES . • 494 495 LDI PHI HI (V12X.HI ) R8 PLO R8 PHI LDI R9 L0(V22X.HI) SEX R9 506 507 STXD DEC R8 509 510 STXD DEC R8 512 513 ; V02 (ON TOS) TO V 12 515 516 ; 497 498 503 504 j DEC INP ; ; 533 534 536 537 539 540 R9-1 ;STORE IT, R9-1 HI-BYTE R9 APU ;GET LO BYTE INITIAL: R9 > V12X LO-BYTE RX =R9 ; 527 528 530 531 INITIAL.R9 > V12X ;STORE IT, ; 518 519 524 525 ;R8 > V12X.HI ; 500 501 521 522 - • DEC DEC R8 R9 ;R8 > VW1X HI-BYTE ;R9 > VW2X HI-BYTE LDN STXD R8 ;GET VW1X HI-BYTE ;STORE @ VW2X HI-BYTE LDN STXD R8 ;GET VW1X LO-BYTE ;STORE @ VW2X LO-BYTE R8 ; GET VWOX HI-BYTE ;STORE @ VW1X HI-BYTE ; VWO TO VW1 LDN STXD — 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 DEC LDN STXD DEC R8 R8 ;GET VWOX LO-BYTE ;STORE 9 VW1X LO-BYTE R8 * ; W1 1 TO W21 DEC DEC DEC DEC LDN STXD DEC LDN STXD DEC ; ;R8 > W11X HI-BYTE ;R9 > W21X HI-BYTE ;GET W11X HI-BYTE ;STORE 9 W21X HI-BYTE R8 R8 ;GET W11X LO-BYTE ;STORE 9 W21X LO-BYTE R8 W01 TO W1 1 LDN STXD DEC LDN STXD DEC ; FOR START-UP ; R8 R8 R9 R9 R8 R8 R8 R8 ;GET W01X LO-BYTE ;ST0RE 9 W11X LO-BYTE R8 (TIMER.GT .0) GHI BNZ GLO BNZ SKIP SUM OF SQUARES TIMER YYY TIMER YYY ; SUM OF SQUARES ; INITIAL: ;GET W01X HI-BYTE ;ST0RE 9 W1IX HI-BYTE (X) R14 > CONVERT R12 > SUM OF SQUARES; (SSQX) SEX OUT OUT OUT R14 CMND CMND CMND ;CONVERT TO FLOATING POINT ;COPY TOS (FLOATING) ;FLOATING MULT (SQUARE) SEX OUT OUT OUT OUT DEC R12 APU APU APU APU R12 ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQX SEX OUT R14 CMND ;FLOATING ADD SEX INP DEC INP DEC INP R12 APU R12 APU R12 APU ;STORE NEW SSQX AND CONTINUE 601 602 603 604 605 606 607 608 609 610 61 1 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 DEC INP ; R12 APU ;R12 > LSB OF SSOX ; FILTER FOR Y-CHANNEL ********************* ; ; 1ST STAGE V0=(W0-W2)*C1 - ( Y 1 * D 1 ) - ( Y 2 * D 2 ) ; V=OUTPUT; W= INPUT ; N=NUMERATOR; D=DENOMINATOR J ; I N I T I A L : R5 > CHAN3 ; R6 > W01Z.L0 ; R7 > D22X.HI+1 R14 > FIXSUB ; SET POINTERS YYY ; GLO SMI PLO R7 12 R7 ;OFFSET BACK ;R7 > C1X.L0 ** NOTE! C O E F F I C I E N T BLOCK MUST NOT L I E ACROSS A PAGE BORDER HI(INSTR) R14 LO(INSTR) R14 ;R14 > FIRST OF LDI PHI LDI PLO COMMANDS * ; INPUT SEX LDI STR R6 0 R6 ;SET LO BYTE TO ZERO INC INP R6 DATA ;R6 > HI BYTE ;READ SAMPLE FROM SHR STR DEC BNF LDI STR R6 R6 NEXTY 80H R6 ;SHIFT RIGHT ; STORE AT HI BYTE ;R6 > LO BYTE ; I F NO OVERFLOW SKIP TO N4 ;ELSE SET LO BYTE TO 80H ; SUM=(Wbl-W2i)*C1 NEXTY ; ADC SEX OUT OUT R7 APU APU SEX OUT OUT R6 APU APU ;LOAD W01Y ; " W01Y LO-BYTE HI-BYTE IRX IRX OUT OUT APU APU ;SKIP OVER ;LOAD W21Y ;LOAD W21Y W11Y LO BYTE HI BYTE ; LOAD CI 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 71 1 712 713 714 715 716 717 718 719 720 SEX OUT OUT R14 CMND CMND J ; START NEXT CONVERSION ; LDI STR SEX OUT DEC 2 R5 R5 CHANL R5 ;SUBTRACT ;MULT IPLY ; SELECT A/D CHANNEL Ir2 SEO REO ; SUM =SUM-(V11*D11) SEX IRX IRX OUT OUT R6 APU APU ;SKIP OVER V01Y HI&LO ;LOAD V11Y LO BYTE ;LOAD V11Y HI-BYTE SEX OUT OUT R7 APU APU ;LOAD D1 IY LO-BYTE ;LOAD D11Y HI-BYTE SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT ; ; ; SUM =SUM-(V21*D21) ; j SEX OUT OUT R6 APU APU ;LOAD V21Y LO-BYTE ;LOAD V21Y HI-BYTE SEX OUT OUT R7 APU APU ;LOAD COEFFICIENT ; " " SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT j ; MULTPLY BY 4 OUT OUT APU CMND LO BYTE HI BYTE ;LOAD 4 ;MULLO ; SAVE 1ST STAGE OUTPUT ; INITIAL: R7 > V12Y LO-BYTE LDI PLO L0(VWOY.HIj R6 ;R6 > V01Y HI-BYTE ; ; * * NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY ; SEX R6 721 722 723 724 725 726 727 728 729 730 731 732 733 734 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 INP APU ;GET HI-BYTE DEC INP R6 APU ;GET LO-BYTE ; 2ND STAGE (Y) ; SUM= ( W 0 2 - W 2 2 ) * C 2 ; INITIAL: ;j — ~ ~ — ; R7 R6 > C2Y > W02Y(=V01Y) SEX OUT OUT R7 APU APU SEX OUT OUT LO-BYTE ;LOAD C2 R6 APU APU ;LOAD ; " W02Y L O - B Y T E W02Y H I - B Y T E IRX IRX OUT OUT APU APU ;SKIP ;LOAD ;LOAD OVER W12Y W22Y LO B Y T E W22Y H I B Y T E SEX OUT OUT R14 CMND CMND ;SUBTRACT ;MULTIPLY ; ; ; ;; SUM = S U M - ( V 1 2 * D 1 2 ) SEX OUT OUT R6 APU APU ;LOAD ;LOAD V12Y V12Y SEX OUT OUT R7 APU APU ;LOAD ;LOAD D12Y LO-BYTE D12Y H I - B Y T E SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT LO HI BYTE BYTE SUM= S U M - ( V 2 2 * D 2 2 ) SEX OUT OUT R6 APU APU ;LOAD ;LOAD V22Y LO-BYTE V22Y HI-BYTE SEX OUT OUT R7 APU APU ;LOAD ;LOAD D22Y D22Y SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT J • J ; . MULTIPLY BY 4 LO-BYTE HI-BYTE o oo oo 03 00 00 00 00 00 00 00 co CO 00 00 00 oo co oo co co 00 oo oo oo oo oo co co 00 00 oo co oo oo oo co 00 00 03 00 00 ^1 ~1 ~4 - J ~4 ^1 ^1 ^1 ~J -~l -J -J -J -J -J -J U CO CO CO CO CO CO CO CO to to to to to to to to to to O O CO CO CO CO CO CO CO CO CO CO 00 oo 00 CO co oo 00 CO IO -•• O CO CO -J cn Ul CO 00 - J cn Ol •b CO to CO 00 ^1 cn Ul u CO to O CO CO cn o i A CO to - » O (D 00 ~4 cn Ol CO to o CO 00 ~1 CT) Ol CO o o oo o oo o o -* o •H Z CO r~ o to r- O X Z H a m H o X z o o 70 TO 1 < 1 £ 1 ^ 70 00 oo CO n X z H o m o x z TO oo r O CO r - O -m n o TO 70 oo CO oo - —1 o 7} oo o o o o o o m m m 71 73 CO oo oo •• i i < £ 1 < 1 £ 70 70 1 tO 00 CO V V << o to ro •< -< I X (—1 HH o m z TI o 1—< z 70 > > •o CO TJ c c o TO m © CD m H < £ o X < r~ £ -k o < C1O r™ -< o -1 CD -I m O -1 CD H m CO CO o TO m < © 70 m £ o < £ -< X < I £ 1—1 -< 1 CO X < 1— -1 -1 < £ P" to o -< 1 CO r~ -< o H CD H m CD m H TO m V V I o —1 < £ •© — t •< < £ *-H I to < C1O X -< »—1 -1 < £ < £ to -< < X I 1—1 —* l-H 1 •3 00 -< -< m m to -< C I 2 i -1 i a O Z H 1 1 < 1 1 M CO r o m -i o m O O - X z o o -1 X Z • 73 73 00 oo O m CO r - X 73 7) 00 00 03 CO TI I- T3 I - r- O X ,—1 o o « »H 73 r - 70 I co a CO (—1• < ro ro -< I l-H a T3 rr- a x o o 73 r - 73 oo .—. o 00 < ro ro -< X < to ro X t—1 l-H I l-H <L. < O O 2 z o c 2 r- oo C C 1—1 O C TI 2 z o < I l-H m -n -• TO 70 CO CO CO < < H •• 00 -1 J> CO CO 00 CO CO 00 -< < -1 -1 m m -• -• ^ 1 o 1 1 -• 1 1 -1 1 o 1 C/l V CO 1 w TO I 1—1 - o -• -- •. CD m > -o c »• * • CD H m CO Ta TO CO -1 o -1 o 1—< I m ra CO -< CO -1 m m - -( < -1 - 1 CO -c -1 73 m CO 1 -1 o »* »• »• CD m 73 7) -1 m I HH 1—f \ —1 00 -< H » 7) m CO 1 CO 00 V V < to < to to X 1—1 l-H -< < X c o r -- > r o O > < m o 71 00 C O O 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 ; ; W1 1 TO W21 DEC DEC DEC DEC LDN STXD DEC LDN STXD DEC • R8 R8 R9 R9 R8 ;R8 > W11Y HI-BYTE ;R9 > W21Y HI-BYTE ;GET W11Y HI-BYTE ;STORE 0 W21Y HI-BYTE R8 R8 ;GET W11Y LO-BYTE ;STORE 0 W21Y LO-BYTE R8 ; ; ; W01 TO W1 1 LDN STXD DEC LDN STXD DEC ; FOR START-UP R8 ;GET W01Y HI-BYTE ;ST0RE 0 W11Y HI-BYTE R8 R8 ;GET W01Y LO-BYTE ;STORE 0 W11Y LO-BYTE R8 (TIMER.GT .0) ,GHI BNZ GLO BNZ TIMER zzz TIMER ZZZ ; SUM OF SQUARES ; INITIAL: ; ; SKIP SUM OF SQUARES (Y) R14 > CONVERT R12 > LSB OF SUM OF SQUARES; (SSQX) SEX OUT OUT OUT R14 CMND CMND CMND SEX IRX IRX IRX IRX OUT OUT OUT OUT DEC R12 APU APU APU APU R12 ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQY SEX OUT R14 CMND ;FLOATING ADD SEX INP DEC INP DEC INP R12 APU R12 APU R12 APU ;CONVERT TO FLOATING POINT ;COPY TOS (FLOATING) ;FLOATING MULT (SQUARE) j ; ; ;R12 > LSB OF SSQY ;STORE NEW SSQX AND CONTINUE 901 902 903 904 905 906 907 908 909 910 91 1 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 DEC INP R12 APU ;R12 > LSB OF SSQY ; FILTER FOR Z-CHANNEL . ********************* ; 1ST STAGE V0=(W0-W2)*C1- (Y1*D1 )-(Y2*D2) ; V=OUTPUT; W= INPUT ; ENUMERATOR; D=DENOMINATOR J ; INITIAL: R5 > CHAN3+1 ; R6 > W01X LO ; R7 > D22X.HI+1 = C1Z.L0 ; R14 > FIXSUB ; SET POINTERS ZZZ HI(INSTR) R14 L0(INSTR) R14 ;R14 LDI PHI LDI PLO > FIRST OF COMMANDS J ; INPUT SEX LDI STR R6 0 R6 ;SET LO BYTE TO ZERO INC INP R6 DATA ;R6 > HI BYTE ;READ SAMPLE FROM ADC SHR STR DEC BNF LDI STR R6 R6 NEXTZ 80H R6 ; ;SHIFT RIGHT ;STORE AT HI BYTE ;R6 > LO BYTE ;IF NO OVERFLOW SKIP TO NEXTZ ;ELSE SET LO BYTE TO 80H ; SUM=(W01-W21)*C1 NEXTZ SEX OUT OUT R7 APU APU SEX OUT OUT R6 APU APU ;LOAD W01Z LO-BYTE ; " W01Z HI-BYTE IRX IRX but OUT APU APU ;SKIP OVER W1 1Z ;LOAD W21Z LO BYTE ;LOAD W21Z HI BYTE SEX OUT OUT R14 CMND CMND ;SUBTRACT ;MULTIPLY ;LOAD C1 ; ; ; START NEXT ; CONVERSION - 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 LDI STR SEX OUT DEC ;SELECT A/D CHANNEL #0 SEQ REO ; SUM=SUM-(V11 *D1 1 ) SEX IRX IRX OUT OUT R6 APU APU ;SKIP OVER V01Z HI&LO ;LOAD V11Z LO BYTE ;LOAD V11Z HI-BYTE SEX OUT OUT R7 APU APU ;LOAD D11Z LO-BYTE ;LOAD D11Z HI-BYTE SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT ; SUM=SUM-(V21 *D21 ) SEX OUT OUT R6 APU APU ;LOAD V21Z LO-BYTE ;LOAD V21Z HI-BYTE SEX OUT OUT R7 APU APU ;LOAD COEFFICIENT ; " " R14 CMND CMND ;MULTIPLY ^SUBTRACT OUT OUT 997 998 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 101 1 1012 1013 1014 1015 1016 1017 1018 1019 1020 00 R5 R5 CHANL R5 v LO BYTE HI BYTE ; MULTIPLY BY 4 OUT OUT APU CMND ; LOAD 4 ;MULLO ; : SAVE 1ST STAGE OUTPUT ; INITIAL: R7 > V12Z LO-BYTE LDI PLO L0(VWOZ.HI) R6 ;R6 > V01Z HI-BYTE ; NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY SEX INP R6 APU ;GET HI-BYTE DEC INP R6 APU ;GET LO-BYTE ; ; J ; 2ND STAGE (Z) ; ====-======= 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 SUM=(W02-W22)*C2 INITIAL: R7 > C2Z R6 > W02Z(=V01Z) LO-BYTE SEX OUT OUT R7 APU APU SEX OUT OUT R6 APU APU ;LOAD W02Z LO-BYTE ; " - W02Z HI-BYTE IRX IRX OUT OUT APU APU ;SKIP OVER W12Z ;LOAD W22Z LO BYTE ;LOAD W22Z HI BYTE SEX OUT OUT R14 CMND CMND ;SUBTRACT ;MULTIPLY ;LOAD C2 SUM=SUM-(V12*D12) SEX OUT OUT R6 APU APU ;LOAD V12Z LO BYTE ;LOAD V12Z HI BYTE SEX OUT OUT R7 APU APU ;LOAD D12Z LO-BYTE ;LOAD D12Z HI-BYTE SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT SUM=SUM-(V22*D22) SEX OUT OUT R6 APU APU ;LOAD V22Z LO-BYTE ;LOAD V22Z HI-BYTE SEX OUT OUT R7 APU APU ;LOAD D22Z LO-BYTE ;LOAD D22Z HI-BYTE SEX OUT OUT R14 CMND CMND ;MULTIPLY ;SUBTRACT MULT if PLY' BY 4 OUT OUT OUT CMND APU CMND DELAY-SHIFT THE SAMPLES V12 TO V22 ;FIRST SAVE FOR SSOZ ; LOAD 4 ;MULLO 1081 1082 1084 1085 PHI LDI P.8 L0(V12Z.HI) 1087 1088 LDI HI(V22Z 1090 1091 LDI PLO L0(V22Z.HI ) R9 ;R9 > V22Z.HI 1093 1094 SEX LDN R9 R8 ;GET HI-BYTE 1096 1097 DEC LDN R8 R8 ;GET LO-BYTE 1099 1 100 DEC R8 1 102 1 103 • V02 IS 1 105 1 106 1 108 1 109 1111 1112 1114 1115 ; {AS SUM} ON T0S;0F APU INP APU ;GET HI BYTE INP APU ;GET LO BYTE INITIAL: R9 > V12Z LO-BYTE DEC R8 1117 1 1 18 DEC R9 1 120 1121 STXD DEC R8 1 123 1 124 STXD DEC R8 1 126 1 127 HI) ; STORE <a VW2Z HI-BYTE ; VWO TO VW1 1 129 1 130 STXD DEC R8 1 132 1 133 sfxb DEC R8 1 135 1 136 ; W11 TO W21 1 138 1 139 1 140 DEC DEC DEC - R8 R9 R9 . ;R9 > W21Z HI-BYTE UJ ON 1 1 1 1 1 1 141 142 143 144 145 146 LDN STXD DEC LDN STXD DEC 1 148 1 149 ; . 154 155 156 157 158 LDN STXD DEC LDN STXD DEC R8 R8 :GET W11Z LO-BYTE :STORE «> W21Z LO-BYTE R8 R8 ;GET WOiZ HI-BYTE ;STORE # W11Z HI-BYTE R8 R8 ;GET W01Z LO-BYTE ;STORE 9 W1 1Z LO-BYTE R8 ; ; FOR START-UP 1 160 1 161 1 163 1 164 1 165 1 166 1 167 1 168 1 169 1 170 1 171 1 172 1 173 1 174 1 175 1 176 1 177 1 178 1 179 1 180 1 181 1 182 1 183 1 184 1 185 1 186 1 187 1 188 1 189 1 190 1 191 1 192 1 193 1 194 1 195 1 196 1 197 1 198 1 199 1200 ;GET W11Z HI-BYTE ;STORE 9 W21Z HI-BYTE W01 TO W1 1 1151 1 152 1 1 1 1 1 R8 ; CDOWN ; (TIMER.GT .0) GHI LBNZ GLO BZ TIMER CDOWN TIMER SQZ DEC LBR TIMER RESET ; SUM OF SQUARES ; INITIAL: j soz (Z) R14 > CONVERT R12 > SUM OF SQUARES; (SSQX) SEX OUT OUT OUT R14 CMND CMND CMND SEX R12 IRX IRX IRX IRX OUT OUT OUT OUT DEC APU APU APU APU R12 ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQZ SEX OUT R14 CMND ;FLOATING ADD SEX INP DEC INP DEC INP DEC INP DEC R12 APU R12 APU R12 APU R12 APU COUNT ; ; SKIP SUM OF SQUARES ;CONVERT TO FLOATING POINT ;CbPY TOS (FLOATING) ;FLOATING MULT (SQUARE) ;R12 ; > LSB OF SSQZ ; ;STORE NEW SSQX AND CONTINUE ;R12 > LSB OF SSQZ 1201 1202 1203 1204 1205 ; RESET ALL POINTERS LDI PHI LDI PLO HI(WOIX.LO) R6 LO(WOIX.LO) R6 LDI PHI LDI PLO HI(INSTR) R14 L0(INSTR) R14 1213 1214 LDI HI (SSQX) 1216 1217 LDI PLO LO(SSQX) R12 1207 1208 1209 1210 1211 1219 1220 RESET ;R6 > FIRST SAMPLE J ;R14 ;R12 > THE FIRST APU-INSTR > LSB OF SSOX • ; CHECK FOR END OF INTERVAL BNZ GLO 1222 1223 WAIT COUNT ;IF 1225 1226 ; 1228 1229 ; INITIAL: R12 > LSB OF SSOX RMSX SEX R12 NOT ZERO SKIP RMS CALCULATION ; RMS CALCULATION AND OUTPUT 1231 1232 OUT OUT APU APU 1234 1235 SEX PC 1237 1238 BYTE OUT INTRV.LO APU 1240 1241 OUT BYTE CMND FIXFLT 1243 1244 BYTE OUT FLTDIV CMND 1246 1247 SEX OUT R7 APU 1249 1250 OUT OUT APU APU 1252 1253 SEX OUT PC CMND 1255 1256 OUT BYTE CMND FLTFIX ;CONVERT TO FIXPOINT 1258 1259 1260 SEX INP OUT R1 1 APU DAC 1 ;GET HI BYTE OF RMSX ;AND DUMP ON DAC1 - ; GET TOTAL SUM OF SQUARES ; LOAD INTERVALUb) ;LOAD INTERVAL(HI) ;CONVERT TO FLOATING PT ;MEAN OF SQUARES ; LOAD FACTOR (X) 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289' 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 131 1 1312 1313 1314 1315 1316 1317 1318 1319 1320 RMSY DEC INP R1 1 APU ;WASTE LO BYTE SEX OUT OUT OUT OUT R12 APU APU APU APU ;GET TOTAL SUM OF SQUARES (Y) SEX OUT BYTE OUT BYTE OUT BYTE OUT BYTE OUT BYTE SEX DEC DEC DEC DEC OUT OUT OUT OUT PC APU INTRV.LO ;LOAD INTERVAL(LO) APU ;LOAD INTERVAL(HI) INTRV.HI CMND FIXFLT jCONVERT TO FLOATING PT CMND FLTDIV ;MEAN OF SQUARES CMND SORT R7 R7 R7 R7 R7 ;RESET FOR CORRX APU APU APU APU ;LOAD FACTOR SEX OUT BYTE OUT BYTE PC CMND FLTMULT CMND FLTFIX SEX INP OUT DEC INP R1 1 APU DAC2 R1 1 APU SEX OUT OUT OUT OUT R12 APU APU APU APU SEX OUT BYTE OUT BYTE OUT BYTE OUT BYTE OUT BYTE SEX PC APU INTRV.LO APU INTRV.HI CMND FIXFLT CMND FLTDIV CMND SORT R7 ;CONVERT TO FIXPOINT ;GET HI BYTE OF RMSX ;AND DUMP ON DAC2 ;WASTE LO BYTE • RMSZ ;GET TOTAL SUM OF SQUARES (Z) • ; LOAD INTERVAL ;CONVERT TO FLOATING PT ;MEAN OF SQUARES OUT OUT OUT OUT APU APU APU APU 1327 1328 OUT BYTE CMND FLTMULT 1330 1331 BYTE FLTFIX ;CONVERT TO FIXPOINT 1333 1334 INP OUT APU DAC3 ;GET HI BYTE OF RMSX ;AND DUMP ON DAC3 1336 1337 INP APU ;WASTE LO BYTE 132 1 1322 1324 1325 ;LOAD FACTOR 1339 1340 LDI INTRV. HI 1342 1343 LDI PLO INTRV. LO COUNT SEX LDI R12 0 1348 1349 GHI XRI R12 HI(SSOBGN) 1351 1352 GLO XRI R12 LO(SSOBGN) 1354 1355 IRX 1345 1346 1357 1358 1360 1361 1363 1364 LOUPE N3 N2 LDI 1 ADI B2 4 N2 B1 ADI N1 1 ;D=D+4 ;D=D+1 ;PRESENT FILTER - PREVIOUS FILTER SD ;NEW FILTER: GO TO START 1369 1370 1372 1373 1378 1379 1380 > SSOX . 1366 1367 1375 1376 ;R12 GLO R7 PLO R7 ;SAME FILTER, OFFSET FOR USED CORR.FACTORS ;OFFSET BACK ;R7 > LAST COEFF +1 MSEC) TO SYNCRONIZE WAIT GLO R7 PLO R7 ;R7 > LAST COEFF+1 ;RESET ;R7 > FIRST COEFF ; ; ** NOTE! COEFFICIENT BLOCKS MUST NOT LIE ACROSS PAGE BORDERS 138 1 1382 LDI HI (ISR) 1384 1385 LDI PLO LO(ISR) ISPC 1387 1388 SEX RET PC 1390 1 39 1 IDL 1393 1394 PHI LDI PC LO(OFILTER) 1396 1397 SEX ISPC 1399 1400 BYTE OOH 1402 1403 PAGE ;WAIT FOR INPTHS 1405 1406 ; * DATA -AREA 1408 1409 ; ROM 1411 1412 SPAZE CHAN1 BYTE BYTE OOH OOH 1414 1415 CHAN3 BYTE 02H 1417 1418 INSTR BYTE BYTE FIXSUB FIXMULHI 1420 1421 BYTE BYTE FIXSUB FIXMULHI 1423 1424 BYTE BYTE 4H FIXMULLO 1426 1427 BYTE BYTE FIXSUB FIXMULHI 1429 1430 BYTE BYTE FIXSUB FIXMULHI 1432 1433 BYTE BYTE FIXCOPY 4H 1435 1436 BYTE FIXFLT 1438 1439 1440 ;SET INTERUPT-PC (ON INPT ISPC BECOMES PC) FLTMULT BYTE FLTADD BYTE ; COEFFICIENTS FROM BILIN C16 OF NOV 3. 81 — 1441 1442 1444 1445 ; ISO FILTER COEFFICIENTS BYTE OCDH C1XI.LO 1447 1448 D11XI.LO D11X1.HI BYTE BYTE OAEH 85H 1450 1451 D21XI.HI BYTE 3AH ;0.9150... 1453 1454 C2XI.HI D12XI.LO BYTE BYTE 40H OOH ; 10 1456 1457 D22XI.LO D22XI.HI BYTE BYTE OOH OCOH 1459 1460 C1ZI.LO C1ZI.HI BYTE BYTE OBH 09H 1462 1463 D11ZI.HI D21ZI.LO BYTE BYTE 93H 0E8H 1465 1466 C2ZI.LO BYTE OOH 1468 1469 D12ZI.LO D12ZI.HI BYTE BYTE OOH OOH 1471 1472 D22ZI.HI BYTE OCOH 1474 1475 CORXI.MM CORXI.MS BYTE BYTE 28H 0B8H 1477 1478 CORZI.LS CORZI.MM BYTE BYTE OOH 0D2H 1480 1481 CORZI.EX BYTE 02H 1483 1484 C1X1.LO C1X1.HI BYTE BYTE OEEH OOH 1486 1487 D1 1X1.HI D21X1.LO BYTE BYTE 80H 15H 1489 1490 C2X1.LO BYTE OADH 1492 1493 D12X1.LO D12X1.HI BYTE BYTE OABH 81H 1495 1496 D22X1.HI BYTE 3EH 1498 1499 1500 C1Z1.HI D11Z1.LO D11Z1.HI BYTE BYTE BYTE OOH OF AH 80H ;-1 .91 12. . . ;-1.0 ;0. 1413. . . ;0.0 ;-1 .0 ;2*0.007277 . . . ;-1.973... ;-1.984... . — • 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 D21Z1.LO D21Z1.HI BYTE BYTE 15H 3FH C2Z1 .LO C2Z1.HI D12Z1 .LO D12Z1.HI D22Z1 .LO D22Z1.HI BYTE BYTE BYTE BYTE BYTE BYTE OADH OOH OABH 81H 7CH 3EH C0RX1.LS C0RX1.MM C0RX1.MS C0RX1.EX C0RZ1.LS C0RZ1.MM C0RZ1.MS C0RZ1.EX BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE 1BH 42H 0D4H 04 H 1BH 42H 0D4H 04H ;0.9856... ;0.0105 ;0.0105... ;-1.9738... ;0.9763... ; 13.266 ;13.266 ; FILTER 02 COEFFICIENTS ( 1 41-2 82 HZ) C1X2.LO BYTE ODFH ;2*0.0146... C1X2.HI BYTE 01H D1 1X2.LO BYTE OCH D1 1X2.HI BYTE 82H D21X2.L0 BYTE 2DH 3EH D21X2.HI BYTE C2X2.LO C2X2.HI D12X2.LO D12X2.HI D22X2.LO D22X2.HI BYTE BYTE BYTE BYTE BYTE BYTE 057H 01H 9EH 83H OFFH 3CH C1Z2.L0 C1Z2.HI D1 1Z2 . LO D1 1Z2.HI D21Z2.LO D21Z2.HI BYTE BYTE BYTE BYTE BYTE BYTE ODFH 01H OCH 82H 2DH 3EH C2Z2.L0 C2Z2.HI D12Z2.LO D12Z2.HI D22Z2.LO D22Z2.HI BYTE BYTE BYTE BYTE BYTE BYTE 057H 01H 9EH 83H OFFH 3CH C0RX2.LS C0RX2.MM C0RX2.MS C0RX2.EX C0RZ2.LS C0RZ2.MM C0RZ2.MS C0RZ2.EX BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE 54H 003H 0D2H 04H 54H 03H 0D2H 04H ; ;0.4211... ;2*0.0146... ;0.04211... ;13.125 ;13.125 ; FILTER 03 COEFFICIENTS (2 82-5 6 HZ) OBAH C1X3.LO BYTE 03H ;0.02923... C1X3.HI BYTE 1561 1562 D11X3.LO D11X3.HI BYTE BYTE 72H 84H 1564 1565 D21X3.HI BYTE 3CH 1567 1568 C2X3.HI D12X3.LO BYTE BYTE 02H 25H 1570 1571 D22X3.L0 D22X3.HI BYTE BYTE 03AH 3AH 1573 1574 C1Z3.LO C1Z3.HI BYTE BYTE ODAH 03H 1576 1577 D11Z3.HI D21Z3.LO BYTE BYTE 84H 070H 1579 1580 C2Z3.LO BYTE 075H 1582 1583 D12Z3.LO D12Z3.HI BYTE BYTE 25H 88H 1585 1586 D22Z3.HI BYTE 3AH 1588 1589 C0RX3.MM C0RX3.MS BYTE BYTE 0C7H 0D7H 1591 1592 C0RZ3.LS C0RZ3.MM BYTE BYTE OABH 0C7H 1594 1595 C0RZ3.EX BYTE 04H 1597 1598 C1X4.LO C1X4.HI BYTE BYTE ODCH 03H 1600 1601 D11X4.HI D21X4.LO BYTE BYTE 8AH OFEH 1603 1604 C2X4.LO BYTE OCDH 1606 1607 D12X4.LO D12X4.HI BYTE BYTE 25H 94H 1609 1610 D22X4.HI BYTE 34H 1612 1613 C1Z4.HI D11Z4.LO BYTE BYTE 03H 6AH 1615 1616 D21Z4.LO D21Z4.HI BYTE BYTE OFEH 38H 1618 1619 1620 C2Z4.LO C2Z4.HI D12Z4.L0 BYTE BYTE BYTE OCDH 09H 25H ;0.03844... ;0.02923 ;3.5587 ;0.0603. . . ;-1.6852. . . ;0.8905... ;0.1531 145 in O CO CO CO co 01 O O Ol m i 6 •- ro co CO t- Ol CO O O CD CO oo o CO i CM CO co CD cn CD CO 6 O in O 01 LO ,_ i •- CO CO co i> 01 CD O O CD CO co ^~ o CO r i •* ** •* . CM 00 CO co o in in CO 00 CM CM CM CM 6 CO CD O CO CM CN 01 6 IO 00 in O Ni I I I I CO LU co o LU LU LU H r- 1 >- > > 03 CO CD I i o »-l -1 I I I o < o I I I i O CM I I I: O iCJ CN CN: : : < _ > o oit Q o ;o O Oi i I- I I I I t z < 00 O CO U i 03 CJ 1 1 < T CM o O CO O LU LU LU LU LU iLU LU LU 1- 1- i i - 1- 1- i l - h h O CO 03 CO in co 00 CO CO CO CO > > > > :> > > CO :C0 03 CO (/) E ic/1 X (/) E _ l E i s LU _1 j S cn x S Ui 1i f •3X X X N : N N N N IM N Or or :or or or i or or or CM CM CM o o io o a io o o CM CM Q Q Q i •- CJ c j iCJ CJ CJ iCJ CJ o LU LU LU LU :LU LU CJ K r- rr- i l - H >->->- •>• 0£ UJ O l-t I O —I • M > i o i-< I i-J I • in ini m in •~* in in x x i x X *U- X x CJ o iCM CM oiO Q • •X I I I Ii iio CO u . t o o i< — CO co CN ;o o o LU LU UI iLU UJ LU i l - 1— 1- i l - 1- H :> >- > ••>• > > CO CO CO : 00 0 0 CO io i_l ; o I -J i l O -J 1 1 I I I < oo 1 < ca O CO 01 O I in in in in in in X X X X X X CM : CM CM CM iCM CM i * - CN CM iCJ CJ a i O O D : t- UJ UJ iLU UJ LU LU 1 - r- i l - 1 - 1 - i l — > >- :> > > :>co caICQ co CO ica HH o -i i o w o : i—I « i — 1 1 —J i l i iin in in iio in in ;IM N N ; N IM IM •- O CJ:o a i l l I X o CO U - T o CO 00 O CM f X X I o o O UJ iLU UJ UJ iLU LU 1- i K 1 - i H t- > ••>• > > > > ca ica CO ca CO CO o _j i l o •~i i o -J I i-J in in iin in in :in IM IM :|M N in CD ••- CN co i in ID r- co cnO »- CN co f in CO t - 00 01 O *- CM CO f in CD i - oo cn O *- CM CO •* f t t t •a- i- in in in in in in in in CM CN CN CM CM CN CM CM CM CO CO CO co co co CO CO CO CD CD CD CO CD CO CD CD CD CD CD CD CO CD co CD CD IP Id CD ID ID CD ID CD CD CD CD CD CD CD CD CO CD CD CO CD oi O O h o < O o • in I- I I X X X I I CJ CO f co in O O u . O r~ CM z o -LU O M CJ Id O o o UJ LU 1- i l V ;> CO CO iLU UJ LU LU LU LU iLU LU i l - r- 1 - i l — K - 1—i l - 1- LU :U1 io i O O h ilor >- :> ^CD O CO i CO in LU 1> CO il/) s 00 i x cn s t/> X i-> s E ;LU -1 E i E UJ :QT :LU O " io - 1 1 :_l :> > > >- > > >- > ica ca ca i CO CO 03 ica ca « x N :IM CM CM :CM CM CN iCM CN iCM iCM CM O i o •- CJ i C J O a ;a o I X I I I CN O 0 ) CO CN il- im LO in iin in in i m in ;_i :x X X : X IM IM :|M N or iu_ :OT O. a.-.a aioc a. iO O o io o o io o i o CJ o i U U O iCJ CJ • O _l i l CD COiCD 1 0 iCD X X i X X iX iCN ^~ o io o o :o in ID I N co oi O co oi O — CM co f in CD t" 00 01 O *- CM co tn in CD CD CO CD CD CD CD CD CD CD IN t- t~ t~ f~ i-~ r— t— i> r- co co co CD CD CD CD CD CD CD CO CO 10 CD CD CD CD ID CD CO CD CD CD CD 1681 1682 C2X6 . LO C2X6 . HI BYTE BYTE OOH 20H 1684 1685 D12X6 .HI D22X6 . LO BYTE BYTE 04H ODBH 1687 1688 C1Z6 . LO BYTE 0D1H 1690 1691 01 1Z6 . LO D1 1Z6 .HI BYTE BYTE 0F3H 0C4H 1693 1694 D21Z6 .HI BYTE 25H ;0.5851... 1696 1697 C2Z6 . HI D12Z6 . LO BYTE BYTE 20H 20H ;0.5 1699 1700 D22Z6 . LO D22Z6 .HI BYTE BYTE ODBH 20H 1702 1703 C0RX6 . LS C0RX6 .MM BYTE BYTE OOH OOH 1705 1706 C0RX6 .EX C0RZ6 .LS BYTE BYTE 01H OOH 1708 1709 C0RZ6 .MS C0RZ6 . EX BYTE BYTE OCOH 01H 1711 1712 ; RAM 1714 1715 BAND SCRTCH 1717 1718 ; X-SAMPLES 1720 1721 W01X. HI W1 1X . LO BYTE BYTE 0 0 1723 1724 W21X. LO W21X .HI BYTE BYTE 0 0 1726 1727 VWOX . LO VWOX .HI BYTE BYTE 0 0 1729 1730 VW1X . HI VW2X . LO BYTE BYTE 0 0 1732 1733 V12X . LO BYTE 0 1735 1736 V22X . LO V22X . HI BYTE BYTE 0 0 1738 1739 1740 ; Y-SAMPLES W01Y . LO BYTE W01Y .HI BYTE 0 0 ;0.5 ;0.0644... ;-0.9226... ;0.0644... ;0.5133... ; 1 .5 ;1 5 ; — BYTE BYTE 0 0 ;V01 = W02 ;VI 1 = W12 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 W1 1 YLO W1 1Y HI W2 IY I n W21Y HI BYTE BYTE BYTE BYTE 0 0 0 0 i n HI LO HT LO HI BYTE BYTE BYTE BYTE BYTE BYTE 0 0 0 0 0 0 V12Y LO V12Y HI BYTE BYTE 0 0 1756 1757 V22Y HI BYTE 0 1759 1760 W01Z LO W01Z HI BYTE BYTE 0 0 1762 1763 W1 1Z HI W21Z LO BYTE BYTE 0 0 1765 1766 vwoz LO BYTE 0 1768 1769 VW1Z LO VW1Z HI BYTE BYTE 0 0 ; V1 1 = W12 1771 1772 VW2Z HI BYTE 0 ;V21 1774 1775 V12Z HI V22Z LO BYTE BYTE 0 0 1777 1778 SSQBGN BYTE 0 1780 1781 SSQY SSQZ BLOCK BLOCK 4 4 1783 1784 ENDWS LAST BYTE ORG End of ; VWOY VWOY VW1Y VW1Y VW2Y VW2Y ; V01 = W02 ; V1 1 = W12 ; V21 = W22 ; V01 = W02 . = W22 ; 0 9FFH File 4> 148 APPENDIX B INTERNATIONAL STANDARD ISO 2631 For reasons of c o p y r i g h t Evaluation t h e ISO s t a n d a r d o f Human E x p o s u r e t o Whole-body be r e p r o d u c e d 'Guide t o t h e V i b r a t i o n ' can not here. C o p i e s c a n be o b t a i n e d from: International Standard Organisation Central Secretariat 1 Rue de Varembe CH-1211 Geneva Switzerland In Canada c o p i e s c a n be o r d e r e d from: S t a n d a r d s C o u n c i l o f Canada Foreign Standard 2000 A r g e n t i n a S u i t e 2-401 Mississauga L5N 1P7 ONT Sales Road Section
© Copyright 2024