How to write SUSY Lagrangians 1st step Take your favorite Lagrangian written in terms of fields 2nd step Replace Field (ϕ ,ψ , Aµ ) ⇒ Superfield (Φ, V ) 3rd step Replace Action = ∫ d x L( x) 4 Grassmannian integration in superspace 26.07.2007 ∫d 4 x d θ L ( x, θ , θ ) 4 ∫ dθα = 0, ∫ θ β dθα = δαβ Pre-conference school, SUSY'07 1 Superfields SUSY Lagrangian (Matter) L = ∫ d 2θ d 2θ Φ i+ Φ i + ∫ d 2θ (λi Φ i + 12 mij Φ i Φ j + 13 yijk Φ i Φ j Φ k ) + h.c.] Kinetic term Components Superpotential µ L = i∂ µ ψ i σ ψ i + Ai* , Ai + Fi * Fi no derivatives + [λi Fi + mij ( Ai Fj − 12 ψ iψ j ) + yijk ( Ai Aj Fk − ψ iψ j Ak ) + h.c.] Constraint δL = Fk* + λk + mik Ai + yijk Ai Aj = 0 δ Fk Fk µ L = i∂ µ ψ i σ ψ i + Ai* , Ai − 12 mijψ iψ j − 12 mij*ψ iψ j * − yijkψ iψ j Ak − yijk ψ iψ j Ak* − V ( Ai , Aj ) 26.07.2007 Pre-conference school, SUSY'07 V = Fk* Fk 2 SUSY Lagrangians (gauge) Gauge fields L= 1 4 α 2 µν µ 1 1 d θ W W + d θ W W = D − F F − i λσ Dµ λ α α 2 4 µν ∫ ∫ 2 α 2 Gauge transformation Φ→e − ig Λ + + ig Λ + Φ, Φ → Φ e , V → V + i (Λ − Λ + ) Gauge invariant interaction with matter (covariant derivative) Φ + Φ → Φ + e gV Φ 26.07.2007 Pre-conference school, SUSY'07 3 Gauge Invariant SUSY Lagrangian α ∫ d θ Tr(W Wα ) + ∫ d θ Tr(W W α ) + ∫ d θ d θ Φ (e ) Φ + ∫ d θ W (Φ ) + ∫ d θ W (Φ ) LSUSY YM = 2 2 ia LSUSY YM = − Fµν F 1 4 α 2 1 4 a a µν gV a b 1 4 b i 2 2 2 i i a µ − iλ σ Dµ λ + 12 D a D a a µ + (∂ µ Ai − igvµ T Ai ) (∂ µ Ai − igvµ T Ai ) − iψ i σ (∂ µψ i − igvµa T aψ i ) a a a † a a − D gA T Ai − i 2 gA T λ ψ i + i 2 gψ i T λ Ai + Fi † Fi a † i a † i a a a 2 ∂W ∂W † 1 ∂ 2W ∂ W 1 ψ iψ j − 2 † † ψ iψ Fi + † Fi − 2 + ∂Ai ∂Ai ∂Ai ∂A j ∂Ai ∂A j ∂W D = − gA T Ai , Fi = − → V= 12 D a D a + Fi † Fi ∂Ai Pre-conference school, SUSY'07 4 a 26.07.2007 j † i a Spontaneous Breaking of SUSY E =< 0 | H | 0 > Energy E= 1 4 ∑ α =1,2 j < 0 |{Qα , Qα }| 0 >= i E =< 0 | H | 0 >≠ 0 26.07.2007 j β {Qα , Q } = 2δ (σ )αβ Pµ i 1 4 ij µ 2 | Q | 0 > | ≥0 ∑ α α if and only if Pre-conference school, SUSY'07 Qα | 0 >≠ 0 5 Mechanism of SUSY Breaking Fayet-Iliopoulos (D-term) mechanism (in Abelian theory) O’Raifertaigh (F-term) mechanism ∆L = ξV |θθ θ θ = ξ ∫ d 4θ V = ξ D ≠ 0 W (Φ ) = λΦ 3 + mΦ1Φ 2 + g Φ 3Φ12 F1* = mA2 + 2 gA1 A2 F2* = mA1 F3* = λ + gA12 < Fi >≠ 0 ∑ bosons D-term 26.07.2007 mi2 = ∑ mi2 fermions F-term Pre-conference school, SUSY'07 6 Minimal Supersymmetric Standard Model (MSSM) SUSY: # of fermions = # of bosons N=1 SUSY: (ϕ ,ψ ) (λ , Aµ ) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. There are no particles in the SM that can be superpartners SUSY associates known bosons with new fermions and known fermions with new bosons Even number of the Higgs doublets – min = 2 Cancellation of axial anomalies (in each generation) 64 Tr Y 3 = 3( 271 + 271 − 27 + 278 ) − 1 − 1 + 8 = 0 colour u L d L u R d R ν L eL eR 26.07.2007 Pre-conference school, SUSY'07 Higgsinos -1+1=0 7 Particle Content of the MSSM Superfield Gauge Bosons Fermions g a g a gluino gluino k k k (w ± ± ± , z , wino zino w Weak W (W , Z ) wino, zino w ( w , z ) ) Hypercharge B(γ ) binobino b (γ )b (γ ) Ga Vk V′ gluon g a Matter LLi == ((νν,,ee))L Li = (ν , e) L Li i L sleptons leptons EEii = eRR Ei = eR Ei i == ((uu,,dd)) L Q Q Qi = (u , d ) L Qi i L quarks U i = u Rc U i squarks UUi i ==uuRR c ==dd Di DD D = d ii RR i R Higgs H1 H2 Higgses 26.07.2007 {H H1 2 higgsinos { H1 1 H H 2 H 2 Pre-conference school, SUSY'07 SU c (3) SU L (2) U Y (1) 8 1 0 1 3 0 1 1 0 1 2 −1 1 1 2 3 2 1/ 3 3* 1 −4 / 3 3* 1 2/3 1 1 2 2 −1 1 8 The MSSM Lagrangian L = Lgauge + LYukawa + LSoftBreaking The Yukawa Superpotential Superfields WR = yU QL H 2U R + yD QL H1 DR + yL LL H1 ER + µ H1 H 2 Yukawa couplings Higgs mixing term WNR = λL LL LL ER + λ LLQL DR + µ LL H 2 + λBU R DR DR ' L Violate: Lepton number ' Baryon number λL , λL' < 10−6 , λB < 10−9 26.07.2007 Pre-conference school, SUSY'07 These terms are forbidden in the SM 9 R-parity R = (−)3( B − L ) + 2 S B - Baryon Number L - Lepton Number S - Spin The Usual Particle : R = + 1 SUSY Particle : R= -1 The consequences: • The superpartners are created in pairs • The lightest superparticle is stable e ip + p e • The lightest superparticle (LSP) should be neutral - the best candidatej is neutralino (photino or higgsino) χ 0 • It can survive from the Big Bang and form the Dark matter in the Universe 26.07.2007 Pre-conference school, SUSY'07 − ip p χj0 χj0 10 Interactions in the MSSM 26.07.2007 Pre-conference school, SUSY'07 11 Creation of Superpartners at colliders Annihilation channel Gluon fusion, ee, qq scattering and qg scattering channels 26.07.2007 Pre-conference school, SUSY'07 12 Decay of Superpartners squarks 0 i q L ,R → q + χ i ± i q L → q '+ χ i q L , R → q + gi sleptons l → l + χ i0 i l L → ν + χ i± i l chargino χi i± → e + ν e + χi i0 ± 0 i i χ i → q + q '+ χ i gluino 26.07.2007 gi → q + q + γ gi → g + γ neutralino Final sates 0 0 i i χ i → χ1 + l+ + l− 0 0 i i χi → χ1 + q + q ' l +l − + ET 2 jets + E T ± 0 i i χ i → χ1 + l± +ν l γ + ET 0 0 i i χ i → χ1 +ν l +ν ET Pre-conference school, SUSY'07 l 13 Soft SUSY Breaking Hidden sector SUSY MSSM Messengers Gravitons, gauge, gauginos, etc Breaking via F and D terms in a hidden sector − LSoft = ∑ M i λii λii + ∑ m02i | Ai |2 + + ∑ A ijk Ai A j Ak + ∑ Bij Ai A j α i gauginos ijk ij scalar fields Over 100 of free parameters ! 26.07.2007 Pre-conference school, SUSY'07 14 We like elegant solutions 26.07.2007 Pre-conference school, SUSY'07 15
© Copyright 2024