∫ How to write SUSY Lagrangians ϕ ψ

How to write SUSY Lagrangians
1st step
Take your favorite Lagrangian written in terms of fields
2nd step
Replace
Field (ϕ ,ψ , Aµ ) ⇒ Superfield (Φ, V )
3rd step
Replace
Action = ∫ d x L( x)
4
Grassmannian integration in superspace
26.07.2007
∫d
4
x d θ L ( x, θ , θ )
4
∫ dθα = 0, ∫ θ β dθα = δαβ
Pre-conference school, SUSY'07
1
Superfields
SUSY Lagrangian (Matter)
L = ∫ d 2θ d 2θ Φ i+ Φ i + ∫ d 2θ (λi Φ i + 12 mij Φ i Φ j + 13 yijk Φ i Φ j Φ k ) + h.c.]
Kinetic term
Components
Superpotential
µ
L = i∂ µ ψ i σ ψ i + Ai* , Ai + Fi * Fi
no derivatives
+ [λi Fi + mij ( Ai Fj − 12 ψ iψ j ) + yijk ( Ai Aj Fk − ψ iψ j Ak ) + h.c.]
Constraint
δL
= Fk* + λk + mik Ai + yijk Ai Aj = 0
δ Fk
Fk
µ
L = i∂ µ ψ i σ ψ i + Ai* , Ai − 12 mijψ iψ j − 12 mij*ψ iψ j
*
− yijkψ iψ j Ak − yijk
ψ iψ j Ak* − V ( Ai , Aj )
26.07.2007
Pre-conference school, SUSY'07
V = Fk* Fk
2
SUSY Lagrangians (gauge)
Gauge fields
L=
1
4
α
2
µν
µ
1
1
d
θ
W
W
+
d
θ
W
W
=
D
−
F
F
−
i
λσ
Dµ λ
α
α
2
4 µν
∫
∫
2
α
2
Gauge transformation
Φ→e
− ig Λ
+
+ ig Λ +
Φ, Φ → Φ e
, V → V + i (Λ − Λ + )
Gauge invariant interaction with matter (covariant derivative)
Φ + Φ → Φ + e gV Φ
26.07.2007
Pre-conference school, SUSY'07
3
Gauge Invariant SUSY Lagrangian
α
∫ d θ Tr(W Wα ) + ∫ d θ Tr(W W α )
+ ∫ d θ d θ Φ (e ) Φ + ∫ d θ W (Φ ) + ∫ d θ W (Φ )
LSUSY YM =
2
2
ia
LSUSY YM = − Fµν F
1
4
α
2
1
4
a
a µν
gV a
b
1
4
b
i
2
2
2
i
i
a
µ
− iλ σ Dµ λ + 12 D a D a
a
µ
+ (∂ µ Ai − igvµ T Ai ) (∂ µ Ai − igvµ T Ai ) − iψ i σ (∂ µψ i − igvµa T aψ i )
a
a
a
†
a
a
− D gA T Ai − i 2 gA T λ ψ i + i 2 gψ i T λ Ai + Fi † Fi
a
†
i
a
†
i
a
a
a
2
∂W
∂W † 1 ∂ 2W
∂
W
1
ψ iψ j − 2 † † ψ iψ
Fi + † Fi − 2
+
∂Ai
∂Ai
∂Ai ∂A j
∂Ai ∂A j
∂W
D = − gA T Ai , Fi = −
→ V= 12 D a D a + Fi † Fi
∂Ai
Pre-conference school, SUSY'07
4
a
26.07.2007
j
†
i
a
Spontaneous Breaking of SUSY
E =< 0 | H | 0 >
Energy
E=
1
4
∑
α
=1,2
j
< 0 |{Qα , Qα }| 0 >=
i
E =< 0 | H | 0 >≠ 0
26.07.2007
j
β
{Qα , Q } = 2δ (σ )αβ Pµ
i
1
4
ij
µ
2
|
Q
|
0
>
|
≥0
∑ α
α
if and only if
Pre-conference school, SUSY'07
Qα | 0 >≠ 0
5
Mechanism of SUSY Breaking
Fayet-Iliopoulos (D-term) mechanism
(in Abelian theory)
O’Raifertaigh (F-term) mechanism
∆L = ξV |θθ θ θ = ξ ∫ d 4θ V = ξ D ≠ 0
W (Φ ) = λΦ 3 + mΦ1Φ 2 + g Φ 3Φ12
F1* = mA2 + 2 gA1 A2
F2* = mA1
F3* = λ + gA12
< Fi >≠ 0
∑
bosons
D-term
26.07.2007
mi2 =
∑
mi2
fermions
F-term
Pre-conference school, SUSY'07
6
Minimal Supersymmetric
Standard Model (MSSM)
SUSY: # of fermions = # of bosons
N=1 SUSY:
(ϕ ,ψ ) (λ , Aµ )
SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f.
There are no particles in the SM that can be superpartners
SUSY associates known bosons with new fermions
and known fermions with new bosons
Even number of the Higgs doublets – min = 2
Cancellation of axial anomalies (in each generation)
64
Tr Y 3 = 3( 271 + 271 − 27
+ 278 ) − 1 − 1 + 8 = 0
colour u L d L u R d R ν L eL eR
26.07.2007
Pre-conference school, SUSY'07
Higgsinos
-1+1=0
7
Particle Content of the MSSM
Superfield
Gauge
Bosons
Fermions
g a g a
gluino
gluino
k
k k (w
±
± ± , z
,
wino
zino
w
Weak W (W , Z ) wino, zino w ( w , z ) )
Hypercharge B(γ ) binobino
b (γ )b (γ )
Ga
Vk
V′
gluon g a
Matter
LLi == ((νν,,ee))L
Li = (ν , e) L
Li
i
L
sleptons
leptons
EEii = eRR
Ei = eR
Ei
i == ((uu,,dd)) L
Q
Q
Qi = (u , d ) L
Qi
i
L
quarks U i = u Rc
U i squarks UUi i ==uuRR
c
==dd
Di
DD
D
=
d
ii
RR
i
R
Higgs
H1
H2
Higgses
26.07.2007
{H
H1
2
higgsinos
{
H1 1
H
H 2
H
2
Pre-conference school,
SUSY'07
SU c (3) SU L (2) U Y (1)
8
1
0
1
3
0
1
1
0
1
2
−1
1
1
2
3
2
1/ 3
3*
1
−4 / 3
3*
1
2/3
1
1
2
2
−1
1
8
The MSSM Lagrangian
L = Lgauge + LYukawa + LSoftBreaking
The Yukawa Superpotential
Superfields
WR = yU QL H 2U R + yD QL H1 DR + yL LL H1 ER + µ H1 H 2
Yukawa couplings
Higgs mixing term
WNR = λL LL LL ER + λ LLQL DR + µ LL H 2 + λBU R DR DR
'
L
Violate:
Lepton number
'
Baryon number
λL , λL' < 10−6 , λB < 10−9
26.07.2007
Pre-conference school, SUSY'07
These terms are
forbidden in
the SM
9
R-parity
R = (−)3( B − L ) + 2 S
B - Baryon Number
L - Lepton Number
S - Spin
The Usual Particle : R = + 1
SUSY Particle :
R= -1
The consequences:
• The superpartners are created in pairs
• The lightest superparticle is stable
e
ip
+
p
e
• The lightest superparticle (LSP)
should be neutral - the best candidatej
is neutralino (photino or higgsino) χ 0
• It can survive from the Big Bang and
form the Dark matter in the Universe
26.07.2007
Pre-conference school, SUSY'07
−
ip
p
χj0
χj0
10
Interactions in the MSSM
26.07.2007
Pre-conference school, SUSY'07
11
Creation of Superpartners at
colliders
Annihilation channel
Gluon fusion, ee, qq scattering
and qg scattering channels
26.07.2007
Pre-conference school, SUSY'07
12
Decay of Superpartners
squarks
0
i
q L ,R → q + χ i
±
i
q L → q '+ χ i
q L , R → q + gi
sleptons
l → l + χ
i0
i
l L → ν + χ
i±
i
l
chargino χi i± → e + ν e + χi i0
±
0
i
i
χ i → q + q '+ χ i
gluino
26.07.2007
gi → q + q + γ
gi → g + γ
neutralino
Final sates
0
0
i
i
χ i → χ1 + l+ + l−
0
0
i
i
χi → χ1 + q + q '
l +l − + ET
2 jets + E T
±
0
i
i
χ i → χ1 + l± +ν l
γ + ET
0
0
i
i
χ i → χ1 +ν l +ν
ET
Pre-conference school, SUSY'07
l
13
Soft SUSY Breaking
Hidden
sector
SUSY
MSSM
Messengers
Gravitons, gauge, gauginos, etc
Breaking via F and D terms in a hidden sector
− LSoft = ∑ M i λii λii + ∑ m02i | Ai |2 + + ∑ A ijk Ai A j Ak + ∑ Bij Ai A j
α
i
gauginos
ijk
ij
scalar fields
Over 100 of free parameters !
26.07.2007
Pre-conference school, SUSY'07
14
We like elegant solutions
26.07.2007
Pre-conference school, SUSY'07
15