How to TYPE a Formula in MS Word 2007-10?

August 2013
M. Ahmadpour-B.; Kowsar Publications.
How to TYPE a Formula in MS Word 2007-10?
To write a formula in MS Office 2007-10, there are two different ways; amateur way and skilled way. Iโ€™m
sure we all know the non-professional way completely, so in this document only the trained method has
been defined and exemplified. This document works as a handout (or a brochure) and I assume you
have heard my presentation, and are familiar with the method of inserting formulas.
Greek Letters
๐›ผ
๐œ„
๐œš
\alpha
\iota
\varrho
๐›ฝ
๐œ…
๐œŽ
\beta
\kappa
\sigma
๐›พ
๐œ†
๐œ
\gamma
\lambda
\varsigma
๐›ฟ
๐œ‡
๐œ
\delta
\mu
\tau
๐œ€
๐œˆ
๐œ
\varepsilon
\nu
\upsilon
๐œ–
๐œ‰
๐œ‘
\epsilon
\xi
\varphi
๐œ
๐œŠ
๐œ‘
\zeta
\o
\phi
๐œ‚
๐œ‹
๐œ’
\eta
\pi
\chi
๐œƒ
๐œ›
๐œ“
\theta
\varpi
\psi
๐œ—
๐œŒ
๐œ”
\vartheta
\rho
\omega
The same goes on with BIG letters, such as ฮ“ฮ”ฮ˜ฮ›ฮžฮ ฮฃฮฅฮฆฮจฮฉ, the only difference is as these are greek
capital letters, so you have to write their codesโ€™ initial letter in CAPITAL mode.
\Gamma
\Delta
\Theta
\Lambda
\Xi
\Pi
\Sigma
\Upsilon
ฮ“
ฮ”
ฮ˜
ฮ›
\Phi
\Psi
\Omega
ฮž
ฮ 
ฮฃ
ฮฅ
ฮฆ
ฮจ
ฮฉ
Basic Operators
a^b
a_b
a/b
\pm
\infty
\neq
\times
\div
\propto
\ll
\gg
\leq
\geq
๐‘Ž๐‘
๐‘Ž๐‘
๐‘Ž
๐‘
±
โˆž
โ‰ 
×
÷
โˆ
โ‰ช
โ‰ซ
โ‰ค
โ‰ฅ
\mp
\cong
\approx
\equiv
\forall
\sqrt
\cbrt
\qdrt
\partial
\degree
\degf
\degc
\nabla
โˆ“
โ‰…
โ‰ˆ
โ‰ก
โˆ€
๏ฟฝ
3
๏ฟฝ
4
๏ฟฝ
๐œ•
°
โ„‰
โ„ƒ
โˆ‡
\in
\ni
\rightarrow
\leftarrow
\uparrow
\downarrow
\leftrightarrow
\updownarrow
\bullet
\ldivide
\angle
\therefore
\because
โˆˆ
โˆ‹
โ†’
โ†
โ†‘
โ†“
โ†”
โ†•
โˆ™ vs .
โ„
โˆ 
โˆด
โˆต
August 2013
M. Ahmadpour-B.; Kowsar Publications.
A Little More Operators
Some of the operators are a little bit more complicated. They are like these:
\int
\iint
\iiint
\oint
\oiint
\oiiint
a\dot
a\ddot
โˆซ
โˆฌ
โˆญ
โˆฎ
โˆฏ
โˆฐ
๐‘Žฬ‡
๐‘Žฬˆ
a\dddot
\partial a
\partial a/\partial b
3\ldivide4
\int^a_b
\Sigma_a^b
Examples
lim_(a\rightarrow\infty) a/n = 0; \forall
a\in\doubleR
dX/dt=\mu_x X(1- X/X_m)
X=X_m/(1+((X_m/X_0)-1)e^-\mu t)
dS/dt=(dS/dt)_g+(dS/dt)_p+(dS/dt)_m
log_a b
min_a b
๐‘Žโƒ›
๐œ•๐‘Ž
๐œ•๐‘Ž
๐œ•๐‘
3โ„4
๏ฟฝ
max_a b
lim_a b
๐‘
๐‘Ž
ฮฃ๐‘Ž๐‘
๐‘Ž
= 0; โˆ€๐‘Ž โˆˆ โ„
๐‘›โ†’โˆž ๐‘›
๐‘‘๐‘‹
๐‘‹
๏ฟฝ
= ๐œ‡๐‘š ๐‘‹ ๏ฟฝ1 โˆ’
๐‘‘๐‘ก
๐‘‹๐‘š
๐‘‹๐‘š
๐‘‹=
๐‘‹
1 + ๏ฟฝ๏ฟฝ ๐‘š ๏ฟฝ โˆ’ 1๏ฟฝ ๐‘’ โˆ’๐œ‡๐‘ก
๐‘‹0
๐‘‘๐‘†
๐‘‘๐‘†
๐‘‘๐‘†
๐‘‘๐‘†
=๏ฟฝ ๏ฟฝ +๏ฟฝ ๏ฟฝ +๏ฟฝ ๏ฟฝ
๐‘‘๐‘ก
๐‘‘๐‘ก ๐‘”
๐‘‘๐‘ก ๐‘
๐‘‘๐‘ก ๐‘š
lim
Homeworks!
๐‘‘๐บ๐ด3
= ๐›ฝ๐‘‹ โˆ’ ๐‘˜๐‘ ๐บ๐ด3
๐‘‘๐‘ก
๐‘‹
๐‘‘๐‘1
= 0.47๐‘˜ โˆ’ ๐œ‡ ๏ฟฝ
๏ฟฝ
๐‘Œ๐‘‹/๐‘1
๐‘‘๐‘ก
Questions?
๐‘Ž
1 ๐‘‘๐‘‚
๐‘‘๐‘‚
๐‘›โˆ’1
๐‘›โˆ’1
๏ฟฝ + ๏ฟฝ1 โˆ’ ๏ฟฝ . ๐‘‹0 โˆ’ ๐‘Ž. ฮฃ๐‘–=1
๐‘Œ๐‘‹ . ฮ”๐‘ก ๏ฟฝ ๏ฟฝ 2
+ 2 ๏ฟฝ + ฮฃ๐‘–=1
๐‘‹๐‘–
๐‘ก=๐‘–
2
2
๐‘‘๐‘ก
๐‘‘๐‘ก
๐‘ก=0
๐‘ก=๐‘›
๐‘‚
๐‘‹๐‘› =
๐‘Ž
1+
2
[email protected]
Extension line #108
Good luck dear colleagues!
log ๐‘Ž ๐‘
min ๐‘
๐‘Ž
max ๐‘
๐‘Ž
lim ๐‘
๐‘Ž