LAST (family) NAME: FIRST (given) NAME: ID # : MATHEMATICS 2Q04: SAMPLE FINAL EXAM McMaster University Final Examination Day Class Duration of Examination: 3 hours SAMPLE FINAL EXAM SOLUTIONS Continued. . . Final Exam / Math 2Q04 -2- NAME: ID #: Part I: Provide all details and fully justify your answer in order to receive credit. 1. (a) (8 pts.) For a certain constant A, the vector field F(x, y, z) = (4 x3 y 2 + 8 x y z) i + (A x4 y + 4 x2 z) j + (4 x2 y + 8 z) k is conservative. Find the constant A and, for that particular value of A, express F(x, y, z) as the gradient of some scalar function f (x, y, z). Solution. We have ¯ ¯ ¯ ¯ i j k ¯ ¯ ∂ ∂ ∂ ¯ ¯ = (0) i + (0) j + (4 A x3 y − 8 x3 y) k ∇×F=¯ ∂x ∂y ∂z ¯ ¯ 4 x3 y 2 + 8 x y z A x 4 y + 4 x2 z 4 x2 y + 8 z ¯ For F to be conservative, we need ∇ × F = 0, i.e. A = 2. When A = 2, we can thus write F = ∇f , for some scalar function f or, equivalently ∂f = 4 x3 y 2 + 8 x y z ∂x ∂f = 2 x4 y + 4 x2 z ∂y ∂f = 4 x2 y + 8 z ∂z (1) (2) (3) Using (1), we have f (x, y, z) = x4 y 2 + 4 x2 y z + C(y, z). Using this equation together with (2) yields ∂f ∂C = 2 x4 y + 4 x2 z + = 2 x4 y + 4 x2 z ∂y ∂y = 0, i.e. C(y, z) = C(z). Thus, f (x, y, z) = x4 y 2 + 4 x2 y z + C(z) and using and thus ∂C ∂y this last equation together with (3), we obtain ∂f = 4 x2 y + C 0 (z) = 4 x2 y + 8 z, ∂z which yields C 0 (z) = 8 z or C(z) = 4 z 2 + B, B a constant. Taking B = 0, we have thus f (x, y, z) = x4 y 2 + 4 x2 y z + 4 z 2 . Continued. . . Final Exam / Math 2Q04 -3- NAME: ID #: (b) (4 pts.) For the conservative vector field obtained in part (a) and for the arc of a curve C parametrized by r(t) = (cos 2t) i + (cos 3t) j + (cos2 4t) k, evaluate 0 ≤ t ≤ π, Z F · dr. C Solution. Since the beginning point is r(0) = (1, 1, 1) and the ending point is r(π) = (1, −1, 1), we have, using (a), Z F · dr = f (1, −1, 1) − f (1, 1, 1) = 1 − 9 = −8. C Continued. . . Final Exam / Math 2Q04 -4- NAME: ID #: 2. (a) (6 pts.) Let R be the solid region above the x, y plane and below the paraboloid z = 9 − x2 − y 2 . Let S be the closed surface which forms the boundary of R, oriented using the outward pointing normal. Note that S consists of two pieces, one which is part of the paraboloid and the other one which is part of the x, y plane. Consider the vector field F(x, y, z) = (−y) i + (x) j + (z + 1) k. Compute the integral ZZ F · n dS S using the definition of the integral of a vector-field on a surface. Solution. Note that the paraboloid intersect the x, y plane on the circle x2 + y 2 = 9, z = 0. Let S1 be the part of S on the paraboloid and S2 the part of S on the x, y plane. We can parametrize S1 by r1 (x, y) =< x, y, 9 − x2 − y 2 > where (x, y) ∈ D = {(x, y), x2 + y 2 ≤ 9}. We have ¯ ¯ ¯i j ¯ k ¯ ¯ ¯ N1 (x, y) = ¯1 0 −2 x¯¯ = (2 x) i + (2 y) j + k (outward pointing) ¯0 1 −2 y ¯ and ZZ ZZ < −y, x, 10 − x2 − y 2 > · < 2 x, 2 y, 1 > dx dy ZZ Z 2π Z 3 2 2 (10 − r2 ) r dr dθ = 10 − x − y dx dy = 0 0 D ¸3 · Z 3 99 π r4 3 2 = = 2π 10 r − r dr = 2 π 5 r − . 4 0 2 0 F · n dS = S1 D Also, we can parametrize S2 ¯by r2 (x,¯y) =< x, y, 0 > where (x, y) ∈ D and D is the same as ¯ i j k¯ ¯ ¯ above. We have N2 (x, y) = ¯¯1 0 0 ¯¯ = k (inward pointing) and, after changing the sign of ¯0 1 0 ¯ N2 , ZZ ZZ F · n dS = < −y, x, 1 > · < 0, 0, −1 > dx dy S2 D ZZ Z =− Z 3 1 dx dy = − D Continued. . . 2π 0 0 · r2 r dr dθ = −2π 2 ¸3 = −9 π. 0 Final Exam / Math 2Q04 -5- NAME: ID #: Therefore, ZZ ZZ ZZ F · n dS = F · n dS + S F · n dS = S1 S2 99 π 81 π − 9π = . 2 2 (b) (6 pts.) Compute the surface integral in part (a) using the divergence theorem. Solution. By the divergence theorem, ZZ ZZZ ZZZ F · n dS = ∇ · F dV = 1 dV S R R Since R = {(x, y, z), (x, y) ∈ D, 0 ≤ z ≤ 9 − x2 − y 2 }, ZZZ ZZ Z ZZ 9−x2 −y 2 1 dV = R D 0 2π Z 3 Z = 0 0 3 Z = 2π 0 Continued. . . 9 − x2 − y 2 dA 1 dz dA = D (9 − r2 ) r dr dθ · r2 r4 9 r − r dr = 2 π 9 − 2 4 ¸3 3 = 0 81 π . 2 Final Exam / Math 2Q04 -6- NAME: ID #: 3. Let D be the region in the first quadrant of the x, y plane (i.e. the region where x, y > 0) where x3 ≤ y ≤ 2 x3 and 1 ≤ x y ≤ 5. Consider the change of variables ½ y =u x3 xy = v (a) (5 pts.) Find the region D∗ in the u, v plane that corresponds to D when the change of variable above is used and find expressions for the variables x and y in terms of u and v for a point (x, y) in D. Solution. The equation x3 ≤ y ≤ 2 x3 is equivalent to 1 ≤ equation 1 ≤ x y ≤ 5 is equivalent to 1 ≤ v ≤ 5. Hence, y x3 ≤ 2 or 1 ≤ u ≤ 2. The D∗ = {(u, v), 1 ≤ u ≤ 2, 1 ≤ v ≤ 5}. We have y = v x and thus u = y x3 = v . x4 Hence, x4 = uv . Since x > 0 on D, x = u−1/4 v 1/4 Continued. . . and y = v = u1/4 v 3/4 . x Final Exam / Math 2Q04 NAME: -7ID #: (b) (7 pts.) Use the change of variable in part (a) to compute the area of the region D. Solution. We have ¯ ∂x ∂x ¯ ¯ 1 −5/4 1/4 1 −1/4 −3/4 ¯ ¯ ¯ ¯ ∂(x, y) ¯¯ ∂u v u v ∂v ¯ = ¯− 4 u 4 ¯ = ¯ ∂y ∂y 1 −3/4 3/4 3 1/4 −1/4 ¯ ¯ ¯ u v u v ∂(u, v) 4 4 ∂u ∂v 3 −1 1 −1 1 −1 =− u − u =− u . 16 16 4 By the change of variables formula, ¯ ZZ ZZ ¯ ¯ ∂(x, y) ¯ ¯ ¯ du dv Area(D) = 1 dx dy = ¯ ¯ D D∗ ∂(u, v) Z 2Z 5 1 −1 = u dv du = [ln(u)]21 = ln(2) − ln(1) = ln(2). 1 1 4 Continued. . . Final Exam / Math 2Q04 -8- NAME: ID #: 4. (12 pts.) Let S be the hemisphere given by x ≥ 0, x2 + y 2 + z 2 = 9, oriented so that the normal points away from (0, 0, 0). Let C be the boundary of S, positively oriented relative to S. For the vector field F(x, y, z) = (−y 2 z) j + (y z 2 ) k, use Stokes’ theorem to calculate the line integral I F · dr. C Hint: Is there a simpler looking surface with the same boundary C? Warning: Do not waste your time calculating the line integral directly. No credit will be given for that. Solution. We have ¯ ¯ ¯i ¯ j k ¯∂ ¯ ∂ ∂ ¯ 2 2 ¯ ∇ × F = ¯ ∂x ∂y ∂z ¯ = (y + z ) i. ¯ 0 −y 2 z y z 2 ¯ The boundary of S is the circle y 2 + z 2 = 9 on the y, z plane (x = 0) and the positive orientation corresponds to counterclockwise motion in the y, z plane. That same circle is also the boundary of the surface S1 consisting of the part of the y, z plane inside C, oriented so that the normal point in the direction of the positive x-axis. We can parametrize S1 by r1 (y, z) =< 0, y, z > where (y, z) ∈ D = {(y, z), y 2 + z 2 ≤ 9}. We have ¯ ¯ ¯ i j k¯ ¯ ¯ N1 (x, y) = ¯¯0 1 0 ¯¯ = i. ¯0 0 1 ¯ Using Stokes’theorem we have thus I ZZ ZZ F · dr = (∇ × F) · n dS = < y 2 + z 2 , 0, 0 > · < 1, 0, 0 > dy dz C S D ZZ 1 Z 2π Z 3 Z 2π Z 3 2 2 2 = y + z dy dz = r r dr dθ = r3 dr dθ D 0 0 0 0 · 4 ¸3 4 81 π r 3 = . = 2π = 2π 4 0 4 2 Continued. . . Final Exam / Math 2Q04 NAME: -9ID #: If the original p surface S is chosen instead for the computation, we can parametrize it with r(y, z) =< 9 − y 2 − z 2 , y, z > where (y, z) ∈ D and D is as above. We have ¯ ¯ ¯ i j k¯ ¯ ¯ −y y z ¯ √ 2 2 1 0¯ N(x, y) = ¯ 9−y −z ) j + (p ) k. ¯ = i + (p 2 2 ¯ ¯ √ −z 9−y −z 9 − y2 − z2 0 1 ¯ ¯ 2 2 9−y −z Using Stokes’theorem we have thus I ZZ F · dr = (∇ × F) · n dS C S1 ZZ z y = < y 2 + z 2 , 0, 0 > · < 1, p ,p > dy dz 9 − y2 − z2 9 − y2 − z2 D ZZ 81 π = y 2 + z 2 dy dz = , 2 D as before. Continued. . . Final Exam / Math 2Q04 -10- NAME: ID #: 5. (12 pts.) Find the solution u(x, y) of the Laplace equation ∂ 2u ∂2u + = 0 on the rectangle ∂x2 ∂y 2 0 ≤ x ≤ 3, 0 ≤ y ≤ 2 subject to the boundary conditions ½ u(0, y) = 0, u(3, y) = sin( 5 π2 y ), 0 ≤ y ≤ 2, u(x, 0) = 0, u(x, 2) = 0, 0 ≤ x ≤ 3. ∂ 2u ∂ 2u + = 0 that are of the ∂x2 ∂y 2 form u(x, y) = X(x) Y (y) and satisfy the boundary conditions Solution. We first look for non-trivial solutions u(x, y) of u(x, 0) = 0, u(x, 2) = 0, 0 ≤ x ≤ 3. (4) This yields the equations X 00 (x) Y (y) + X(x) Y 00 (y) = 0, and, dividing both sides by X(x) Y (y), we obtain X 00 (x) Y 00 (y) + = 0 or X(x) Y (y) X 00 (x) Y 00 (y) =− X(x) Y (y) Since the left-hand side of the previous equation is a function of x only while the right-hand side is a function of y only, we deduce that they must both be equal to the same constant C. We have thus X 00 (x) Y 00 (y) =− =C X(x) Y (y) The boundary conditions (4) are equivalent to X(x) Y (0) = X(x) Y (2) = 0, for 0 ≤ x ≤ 3, and show that Y (0) = Y (2) = 0. We thus need to solve the boundary-value problem ½ 00 Y (y) + CY (y) = 0, Y (0) = Y (2) = 0. Non-trivial solutions only exist when C = ( nπ )2 and are of the form Yn (y) = Cn sin( nπy ), 2 2 2 for each integer n ≥ 1. The equation X 00 (x) − ( nπ ) X(x) = 0 has, for each n ≥ 1, solutions 2 of the form nπx nπx ) + Bn sinh( ) Xn (x) = An cosh( 2 2 Continued. . . Final Exam / Math 2Q04 -11- NAME: ID #: We have thus obtained particular solutions of the PDE of the form n nπx nπx o nπy un (x, y) = An cosh( ) + Bn sinh( ) sin( ) 2 2 2 and that satisfy also (4). Using the superposition principle, the series u(x, y) = ∞ n X An cosh( n=1 nπx nπx o nπy ) + Bn sinh( ) sin( ) 2 2 2 is also a solution of the PDE that satisfy (4). The condition u(0, y) = 0 for 0 ≤ y ≤ 2 yields then ∞ X nπy ), 0 ≤ y ≤ 2, 0= An sin( 2 n=1 which shows that An = 0, for all n ≥ 1 and thus that u(x, y) = ∞ X n=1 Bn sinh( nπx nπy ) sin( ) 2 2 The condition u(3, y) = sin( 5 π2 y ) for 0 ≤ y ≤ 2 yields then ∞ X 5πy nπ3 nπy sin( )= Bn sinh( ) sin( ), 2 2 2 n=1 0 ≤ y ≤ 2. By inspection (or, by an explicit computation of the coefficient in the sine Fourier series on 15π the right-hand we £ side), ¤ find that Bn = 0, for n ≥ 1 and n 6= 5 and that B5 sinh( 2 ) = 1, 15π i.e. B5 = 1/ sinh( 2 ) . The solution is thus given by: ) sin( 5πy ) sinh( 5πx 2 2 u(x, y) = . sinh( 5π3 ) 2 Continued. . . Final Exam / Math 2Q04 -12- NAME: ID #: PART II: Multiple choice part. Circle the letter corresponding to the correct answer for each of the questions 6 to 15 in the box below. Indicate your choice very clearly. Ambiguous answers will be marked as wrong. There is only one correct choice for each question and an incorrect answer scores 0 marks. QUESTION # Continued. . . ANSWER: 6. A B C D E 7. A B C D E 8. A B C D E 9. A B C D E 10. A B C D E 11. A B C D E 12. A B C D E 13. A B C D E 14. A B C D E 15. A B C D E Final Exam / Math 2Q04 -13- NAME: ID #: 6. (4 pts.) Compute the directional derivative of the function f (x, y, z) = 3 x ey 2 z − 2z xy at the point ( 12 , 2, 0) in the direction in which f (x, y, z) increases the fastest at that point. Its value is (A) 1 → (B) 5 (C) 7 (D) 9 (E) 11 (ENTER YOUR ANSWERS ON THE CHART ON PAGE 12.) Solution. We have ∇f (x, y, z) = (3 ey 2 z + 2z 2z 2 2 2 ) i + (6 x y z ey z + ) j + (3 x y 2 ey z − )k 2 2 x y xy xy and ∇f (1/2, 2, 0) = 3 i + 4 k. The directional derivative in the direction of fastest increase at (1/2, 2, 0) is √ √ k∇f (1/2, 2, 0)k = 32 + 42 = 25 = 5. Continued. . . Final Exam / Math 2Q04 -14- NAME: ID #: 7. (4 pts.) Let C1 and C2 denote the circles x2 + y 2 = 1 and x2 + y 2 = 4, respectively, both being described in the counterclockwise direction. Let P (x, y) = y 5 + 4 y x4 and Q(x, y) = x5 + 6 x y 4 . Use Green’s theorem to compute Z Z P dx + Q dy − C2 P dx + Q dy. C1 The answer is: (A) 0 (B) − 6π 13 (C) 21 π 3 (D) 9π 7 → (E) 63 π 4 Solution. By Green’s theorem, Z Z ZZ ∂Q ∂P − dx dy P dx + Q dy − P dx + Q dy = ∂y C2 C1 D ∂x ZZ ZZ 4 4 4 4 = (5 x + 6 y ) − (5 y + 4 x ) dx dy = x4 + y 4 dx dy, D D where D = {(x, y), 1 ≤ x2 + y 2 ≤ 4}. Passing to polar coordinates ZZ Z 2π Z 2 4 4 x + y dx dy = r4 (cos4 θ + sin4 θ) r dr dθ D 0 1 µZ 2π ¶ · 6 ¸2 2 (1 + cos(2 θ)) (1 − cos(2 θ))2 r = + dθ 4 4 6 1 0 ¶ µ ¶ µZ 2π Z 2π 21 3 1 21 63 π (1 + cos2 (2 θ)) dθ = + cos(4 θ) dθ = . = 2 2 4 4 2 4 0 0 Continued. . . Final Exam / Math 2Q04 -15- NAME: ID #: 8. (4 pts.) A curve in the x, y, z space is given parametrically by x = t + 1, y = 3 t2 + 2, z = 6 t3 + 3. The length of its arc from the point (1, 2, 3) to the point (2, 5, 9) is: (A) 389 5 (B) 18 √ (C) 46 → (D) 7 (E) 11 Solution. Let r(t) =< t + 1, 3 t2 + 2, 6 t3 + 3 >. Then, r0 (t) =< 1, 6 t, 18 t2 > and p p 1 + (6 t)2 + (18 t2 )2 = 1 + 2 (18 t2 ) + (18 t2 )2 p = (1 + 18 t2 )2 = 1 + 18 t2 . kr0 (t)k = Since (1, 2, 3) = r(0) and (2, 5, 9) = r(1), the length of the arc of curve from the point (1, 2, 3) to the point (2, 5, 9) is Z 1 Z 1 £ ¤1 0 kr (t)k dt = 1 + 18 t2 dt = t + 6 t3 0 = 7. 0 Continued. . . 0 Final Exam / Math 2Q04 -16- NAME: ID #: 9. (4 pts.) The function z(u, v) is given as the composition z= x , where x = u cos v and y = u sin v. x + 2y A correct expression for the partial derivative → (A) ∂z is: ∂v 2x 2y (−u sin v) − (u cos v) 2 (x + 2 y) (x + 2 y)2 (B) cos v cos v + 2 sin v (C) x x (−u sin v) + (u cos v) x + 2y x + 2y (D) −2 (cos v + 2 sin v)3 (E) none of the above Solution. We have, by the chain rule, ∂z ∂z ∂x ∂z ∂y = + ∂v ∂x ∂v ∂y ∂v 2y 2x = (−u sin v) − (u cos v) . 2 (x + 2 y) (x + 2 y)2 Continued. . . Final Exam / Math 2Q04 -17- NAME: ID #: 10. (4 pts.) A surface S is given by the equation x2 + z y 3 + z 4 = 6. The equation for the plane tangent to S at the point (−2, 1, 1) is: x+2 y−1 z−1 = = −4 3 5 (A) → (B) (C) −4 x + 3 y + 5 z = 16 x = −2 + 4 t, y = 1 − 3 t, z = 1 − 5 t (D) −4 x + 3 y + 5 z = 0 (E) 4 (x − 2) − 3 (y + 1) − 5 (z + 1) = 0 Solution. Let f (x, y, z) = x2 + z y 3 + z 4 . We have ∇f (x, y, z) = (2 x) i + (3 z y 2 ) j + (y 3 + 4 z 3 ) k and ∇f (−2, 1, 1) = (−4) i + (3) j + (5) k. The equation for the plane tangent to S at the point (−2, 1, 1) is thus (−4)(x + 2) + 3 (y − 1) + 5 (z − 1) = 0 or −4 x + 3 y + 5 z = 16. Continued. . . Final Exam / Math 2Q04 -18- NAME: ID #: 11. (4 pts.) Let f (x, y) be a continuous function. After a correct change of order of integration, the double integral Z 1 Z ln(1+x) f (x, y) dy dx 0 becomes: Z ln(1+x) Z (A) x ln(2) Z 1 f (x, y) dx dy 0 Z ln 2 x ln(2) 1 (B) f (x, y) dx dy 0 0 Z ln 2 Z y/ ln 2 → (C) f (x, y) dx dy ey −1 0 Z 1 Z ln(1+y) f (x, y) dx dy (D) 0 y ln(2) (E) none of the above Solution. The domain of integration in the x, y plane is the region D = {(x, y), 0 ≤ x ≤ 1, x ln(2) ≤ y ≤ ln(1 + x)} = {(x, y), 0 ≤ y ≤ ln(2), ey − 1 ≤ x ≤ y/ ln(2)}. Therefore, Z 1 Z Z ln(1+x) ln 2 Z y/ ln 2 f (x, y) dy dx = 0 Continued. . . x ln(2) f (x, y) dx dy. 0 ey −1 Final Exam / Math 2Q04 -19- NAME: ID #: 12. (4 pts.) Let V be the solid region bounded by the surfaces z = 18 − 2 [(x − 1)2 + y 2 ] and z = 6 + (x − 1)2 + y 2 . The volume of V can be obtained by computing which one of the following double integrals: Z Z √4−(x−1)2 3 → (A) −1 Z (B) 0 − (C) √ −1 − (D) −1 Z 4 − 0 √ − √ 12 − 2(x − 1)2 − 4 y 2 dy dx 4−(x−1)2 Z √6+(x−1)2 (E) 12 − 3(x − 1)2 − 3 y 2 dy dx 2−(x−1)2 Z √4−(x−1)2 3 12 − 3(x − 1)2 − 3 y 2 dy dx 4−(x−1)2 Z √5−(x−1)2 3 Z √ 12 − 3(x − 1)2 − 3 y 2 dy dx 4−(x−1)2 Z √4−(x−1)2 4 Z − √ 12 − 3(x − 1)2 − 3 y 2 dy dx 18−(x−1)2 Solution. The two surfaces intersect when 18 − 2 [(x − 1)2 + y 2 ] = 6 + (x − 1)2 + y 2 i.e. on the circle (x − 1)2 + y 2 = 4 in the plane z = 10. Letting D = {(x, y), (x − 1)2 + y 2 ≤ 4} p p = {(x, y), −1 ≤ x ≤ 3, − 4 − (x − 1)2 ≤ y ≤ 4 − (x − 1)2 }, we can express V as V = {(x, y, z), (x, y) ∈ D, 6 + (x − 1)2 + y 2 } ≤ z ≤ 18 − 2 [(x − 1)2 + y 2 ] and thus ZZZ vol(V ) = Z 3 = −1 Continued. . . ZZ 1 dV = V Z √4−(x−1)2 √ − 4−(x−1)2 12 − 3 [(x − 1)2 + y 2 ] dA D 12 − 3(x − 1)2 − 3 y 2 dy dx. Final Exam / Math 2Q04 NAME: -20ID #: 13. (4 pts.) Use spherical coordinates to evaluate the triple integral ZZZ z dV, 2 2 2 2 V 1 + (x + y + z ) where V is the solid region above the x, y plane between the spheres x2 + y 2 + z 2 = 1 and x2 + y 2 + z 2 = 4. The answer is: (A) π 6 → (B) π ln 4 µ 17 2 ¶ (C) 0 ¶ 1 (D) 1 + (34)2 µ ¶ 5 π (E) − 6 (1 + (25)2 )2 π 8 µ Solution. In spherical coordinates, V can be expressed at the region where 0 ≤ θ ≤ 2 π, We have thus ZZZ 0 ≤ φ ≤ π/2 1 ≤ ρ ≤ 2. Z 2 π Z π/2 Z 2 z ρ cos(φ) 2 dV = ρ sin(φ) dρ dφ dθ 2 2 2 2 1 + ρ4 V 1 + (x + y + z ) 0 0 1 ÃZ ! µZ ¶ π/2 2 ρ3 = 2π sin(φ) cos(φ) dφ dρ 4 0 1 1+ρ · ¸π/2 · ¸2 ln(1 + ρ4 ) cos(2 φ) = 2π − 4 4 0 1 1 ln(17) − ln(2) = 2π( )( ) 2µ ¶ 4 π 17 = ln 4 2 Continued. . . Final Exam / Math 2Q04 -21- NAME: ID #: 14. (4 pts.) Let S be the part of the cylinder x2 + y 2 = 1 above the x, y plane between the planes z = 0 and z = y. Compute the surface area of S using a suitable parametrization for S. The answer is: (A) 4 π (B) π 2 (C) 3π 4 → (D) 2 √ (E) 2 Solution. The cylinder can be parametrized by r(θ, z) =< cos θ, sin θ, z >, where (θ, z) ∈ D = {(θ, z), 0 ≤ θ ≤ π, 0 ≤ z ≤ sin θ}. We have ¯ ¯ ¯ i j k¯¯ ¯ N(θ, z) = ¯¯− sin θ cos θ 0 ¯¯ = cos θ i + sin θ j ¯ 0 0 1¯ and thus |N(θ, z)| = 1 Z Area(S) = Z 1 dS = Z π Z sin θ S = 0 Continued. . . 0 |N(θ, z)| dθ dz Z π 1 dz dθ = sin θ dθ = [− cos θ]π0 = 2. D 0 Final Exam / Math 2Q04 -22- NAME: ID #: 15. (4 pts.) Let V be the solid region defined by the inequality z 2 + (x2 + y 2 )2 ≤ 1. (Note that V is not a ball !). If the mass density at a point (x, y, z) in V is given by ρ(x, y, z) = x2 + y 2 , compute the total mass of V . Hint: Use cylindrical coordinates. The answer is: (A) π (B) π 2 → (C) (D) 3π 4 (E) 5π 4 2π 3 Solution. In cylindrical coordinates, the region can be described by the inequality z 2 +r4 ≤ 1 or √ √ 0 ≤ θ ≤ 2 π, 0 ≤ r ≤ 1, − 1 − r4 ≤ z ≤ 1 − r4 , Thus ZZZ Z 2 mass(V ) = V 0 1 = 2π 2r 0 Continued. . . Z 1 x + y dV = Z 2π = 3 2π 2 3 √ 0 · Z √ 1−r4 √ − 1−r4 r2 r dz dr dθ (1 − r4 )3/2 4 1 − r dr = 2π − 3 ¸1 0 Final Exam / Math 2Q04 NAME: SCRATCH Continued. . . -23ID #: Final Exam / Math 2Q04 -24- NAME: ID #: Some formulas you may use: T(t) = r0 (t) , kr0 (t)k N(t) = T0 (t) , kT0 (t)k v·a r0 (t) · r00 (t) aT = = , v kr0 (t)k κ(t) = kT0 (t)k kr0 (t) × r00 (t)k = . kr0 (t)k kr0 (t)k3 kv × ak kr0 (t) × r00 (t)k aN = κv = = v kr0 (t)k 2 projb a = a·b b kbk2 d [u(t) r(t)] = u(t) r0 (t) + u0 (t) r(t), dt d d [r1 · r2 ] = r01 (t) · r2 (t) + r1 (t) · r02 (t), [r1 × r2 ] = r01 (t) × r2 (t) + r1 (t) × r02 (t), dt dt d d (cos t) = − sin t, (sin t) = cos t. dt dt 1 1 1 1 cos2 t = + cos(2t), sin2 t = − cos(2t). 2 2 2 2 2 cos α cos β = cos(α − β) + cos(α + β), 2 sin α sin β = cos(α − β) − cos(α + β), et + e−t et − e−t 2 sin α cos β = sin(α + β) + sin(α − β) cosh t = sinh t = 2 2 p ρ = x2 + y 2 + z 2 , x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ p r = x2 + y 2 = ρ sin φ I ZZ ∂Q ∂P P dx + Q dy = − dA ∂y C D ∂x I ZZ F · dr = (∇ × F) · n dS C S ZZ ZZZ F · n dS = S Z L ³ nπx ´ 2 an = f (x) cos dx, 0 < x < L. L 0 L Z L ³ nπx ´ 2 bn = f (x) sin dx, 0 < x < L. L 0 L ³ nπx ´ a0 X + an cos , f (x) = 2 L n=1 ∞ f (x) = ∞ X n=1 *** END *** bn sin ³ nπx ´ L ∇ · F dV T ,
© Copyright 2024