1 i ANSWER OF SAMPLE PAPER ANSWER OF SAMPLE PAPER – 01 SECTION – A 1. 2. Every composite number can be expressed as the product of primes, and this factorization is unique, apart from the order in which they occur. [1] 2 [1] 3. Perimeter of the given figure Now ⇒ = 28 + π . 14 + 28 + π . 14 5. 6. 13 12 13 5 = ⇒ = 3 EA 3 ED ⇒ EA = 36/13 cm.⇒ ED = 15/13 cm. In ∆ ABC, AC = 5 cm, BC = 12 cm ⇒ AB = 13 cm. SECTION – B + CD + BEC = AB + AED 4. AB BC AB AC = and = AD EA AD ED [1] 11. Given the zeroes are 4 and -3 2 So the quadratic equation is x – x – 12 22 22 = 56 + .14 + .14 7 7 = 56 + 44 + 44 = 144 cm. Median [1] [1] 9 1 or 18 2 [1] Given an = 3 – 4n a1 = 3 – 4 = -1 a2 = 3 – 8 = -5 [1] So sum of zeroes = 4+(-3) = 1 = −1 −coefficient of x = 1 coefficient of x 2 [½] Product of zeroes = 4(-3) = -12 = −12 cons tan t term = 1 coefficient of x 2 [½] 12. cos 70° + cos 57° · cosec 33° - 2cos60° sin 20° 13. cos(90° − 20°) + cos 57°icos ec(90° − 57°) − 2 cos 60° sin 20° [1] sin 20° = + cos 57°isec 57° − 2cos 60° sin 20° 1 = 1 + 1 – 2 · = 2- 1 = 1 [1] 2 12 3 (i) P(face card) = = [1] 52 13 24 6 (ii) P(neither king nor a red card) = = [1] 52 13 OR 1 (i) P(a queen) = [1] 5 1 (ii) (a) P(ace) = (b) P(queen) = 0 [1] 4 ∴ d = -5 – (-1) = -4 ∴ S 25 = = 7. 25 [2.(−1) + 24.(−4)] 2 = 25 25 [−2 − 96] = ( −98) = 25 (-49) = - 1225. 2 2 A Here OA = OP2 − AP2 15 cm = 172 − 152 = 289 − 225 P 17 cm = 64 = 8 cm 8. O [1] The system of equations is inconsistent if it has no solution. For no solution; if a1 b1 c 1 = ≠ a2 b2 c 2 [½] 2 k 11 2 k = ≠ ⇒ = ⇒ 5k = -14 5 −7 5 5 −7 ⇒ k = -14/5. ∴ for k = -14/5, the system of equations is inconsistent. [½] 16 cot A = 12. ⇒ cot A = 12/16. sin A cos A sin A + cos A sin A + sin A = (divide by sin A) sin A − cos A sin A cos A − sin A sin A 12 1 + cot A 1 + 16 28 = = = = 7. [1] 1 − cot A 12 4 1− 16 ∴ 9. [1] 10. In ∆ ABC and ∆ ADE, ∠ACB = ∠AED (= 90°) ∠BAC = ∠EAD (Common) ∴ ∆ ABC ~ ∆ ADE (By AA criterion) 14. Suppose the line 2x + y – 4 = 0 divides the line segment joining A(2, -2) and B(3, 7) in the ratio k : 1 at point C. 3k + 2 7k − 2 , [½] Then the coordinates of C are . k +1 k +1 But C lies on the line 2x + ky – 4 = 0 3k + 2 7k − 2 ⇒ 2 −4 =0 + k +1 k +1 ⇒ 6k+4+7k – 2–4k – 4 = 0 ⇒ 9k – 2 = 0 ⇒ k = 2/9 [1] So the required ratio is 2 : 9 24 4 Now the coordinate of C are , − 11 11 [½] 15. Given ABC is an isosceles triangle in which AB = AC 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 2 i ANSWER OF SAMPLE PAPER A We know that AD = AF [1] BD = BE; CE = CF We have AB = AC D F B C E [1] [1] -2 0 0 1 2 y -1 0 1 The quadratic equation has equal roots when D = 0 [1] 2 2 ⇒ [-(k – 2)] – 4 × 2 × 1 = 0⇒ k + 4 – 4k – 8 = 0 2 2 2 ⇒ k – 4k – 4 = 0⇒ k – 2.k.(2) + 4 = 8⇒ (k – 2) = 8 [1] ⇒ k . 2 = ± 2√2⇒ k = 2 ±2√2 So k = 2 + 2√2 or 2 – 2√2 19. Let ‘a’ be the 1 st [1] term of the given A.P. Given a=4, d=7 Now S12 = = [1] [1] n st (1 term + last term) 2 12 ( 4+81)=6(85)=510 2 [1] 20. L.H.S = sinθ(1+tanθ) + cosθ(1+cotθ) 1 = sinθ(1+tanθ) + cosθ 1 + tan θ [1] tan θ + 1 = sinθ(1+tanθ) + cosθ tan θ 1 = (1+tanθ) sin θ + cos θ tan θ 6 5 4 3 2 1 -3 -2 -1 2 2x – (k – 2) x + 1 = 0 So there are 12 term in the given AP Y -5 -4 [1] OR ⇒ 7n = 84⇒ n = 12 Here x = 4, y = 4 X' ⇒ (x – 2) (x – 1) = 0⇒ x –2 = 0 x – 1 = 0 ⇒ a +(n-1)d = 81⇒ 4 + (n-1)7 = 81 x – y = 1⇒ y = x – 1 x–y=1⇒y=x-1 x = 0 ⇒ y = -1 x=1⇒y=0 x=2⇒y=1 x [1] Let an be the last term 17. 2x – y = 4 ⇒ y = 2x – 4 x = 0 ⇒ y = -4 x = 1 ⇒ y = -2 x=2⇒y=0 -4 2 ⇒ x=2 or x = 1 ⇒ 3 + 5√2 is an irrational number y [1] 2 16. Let 3 + 5√2 is a rational number. a ⇒ 3 + 5√2 = , [a, b are co-primes and b≠0] [1] b a a − 3b a − 3b ⇒ 5 2 = −3 ⇒ 5 2 = ⇒ 2= b b 5b a − 3b Since a and b are integers ⇒ is rational [1] 5b a − 3b But √2 is an irrational number ⇒ is irrational. 5b Which is a contradiction. This contradiction has arisen due to our wrong assumption. 2 11 30 2 SECTION – C 1 x − 3x − 28 = ⇒ x – 2x – x + 2 = 0⇒ x(x – 2) – 1 (x – 2) = 0 ⇒ BC is bisected at the point of contact. 0 11 2 ⇒ x –3x – 28=-30 x – 3x + 2 = 0 ⇒ BE = CE ( ∵ BD = BE and CE = CF) x 1 1 11 x − 7 − x − 4 11 − = ⇒ = x + 4 x − 7 30 (x + 4)(x − 7) 30 ⇒ ⇒ AB – AD = AC – AF ⇒ BD = CF 18. cos2 θ = (1+tanθ) sin θ + sin θ [1] sin θ 1 1 1 . = (1+tanθ) + = sin θ sin θ cos θ sin θ O 1 2 3 4 5 6 X -1 -2 -3 -4 -5 Y' [3] nd 206, Aggarwal Mall, 2 =cosecθ + secθ = R.H.S OR L.H.S. = (1 + cot θ - cosec θ) (1 + tan θ + sec θ) 1 sin θ 1 cos θ = 1 + − + 1+ sin θ sin θ cos θ cos θ sin θ + cos θ − 1 cos θ + sin θ + 1 = sin θ cos θ Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] [1] 3 i = ANSWER OF SAMPLE PAPER (sin θ + cos θ − 1)(sin θ + cos θ − 1) sin θ.cos θ [1] (sin θ + cos θ) 2 − 1 1 + 2 sin θ.cos θ − 1 = = = 2. R.H.S. sin θ.cos θ sin θ.cos θ 22. A [1] A' 21. Given : In ∆ ABC, ∠C = 90° and D is the mid point of BC. A D B 2 B C 2 [1] 1. Construction ∆ ABC such that BC = 6 cm, AB = 5 cm and ABC = 60° 2. Draw any ray BX making an acute angle with BC 3. Take points B1,B2, B3,B4 on BX such that BB1=B1B2=B2B3=B3B4 4. Jain B4C 5. Through B3, draw B3,C’||B4C and let it intersect BC at C’ 6. Through C’, draw C’A’||CA and let it intersect BA at A’. Proof : In ∆ ACB, ∠C = 90°. 2 2 ∴ AB = AC + BC {By Pythagoras theorem} 2 [1] 2 = AC + (2 CD) [ ∵ BC = 2CD] 2 2 = AC + 4 CD 2 2 2 = AC + 4 (AD – AC ) 2 2 [1] = 4 AD – 3 AC . OR In the given figure, DB ⊥ BC, DE ⊥ AB D and AC ⊥ BC To prove : A Now ∆ A’BC’ is the required triangle whose sides are BE AC = DE BC of the corresponding sides of ∆ABC. E Proof : Since DB ⊥ BC ⇒ ∠DBC = 90° C Steps of construction : 2 To Prove : AB = 4AD – 3 AC . 2 C' 6 cm B ⇒∠DBE + ∠CBE = 90°….(1) C [1] Again in ∆ BDE, DE ⊥ AB ⇒ ∠DEB = 90° ⇒∠BDE + ∠DBE = 90° ………(2) [1] From (1) and (2), ∠DBE + ∠CBE = ∠BDE + ∠DBE ⇒ ∠CBE = ∠BDE 23. Given A (4, -8), B(3, 6) and C(5, -4) are the vertices of a ∆ ABC D is the midpoint of BC 3 + 5 6 + ( −4) So co-ordinate of D is , 2 2 = (4, 1) AP P is a point on AD. Such that =2 PD Let the co-ordinates of P be (x, y) 2 × 4 + 1× 4 2 × 1 + 1× ( −8) So, x = =4, y= = −2 3 3 Hence the co-ordinates of P are (4, 2) A Now in ∆ BDE and ∆ABC ∠DEB = ∠ACB (=90°) ∠BDE = ∠CBE 2 P ⇒ ∆BDE ~ ∆ ABC (By A – A criterion) BE DE BE AC ⇒ = ⇒ = AC BC DE AC 1 [1] 3 4 [3] B (3,6) D (5,4) C 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] [1] [2] 4 i ANSWER OF SAMPLE PAPER 24. Since the point (x, y) is equidistant from the points A(3, 6) and B(-3, 4) ⇒ PA = PB [1] 2 2 2 2 2 ⇒ PA = PB ⇒ (x – 3) + (y – 6) = (x + 3) + (y – 4) 2 2 2 2 2 ⇒ x + 9-6x + y + 36 –12 y =x + 9 + 6x + y +16 – 8y ⇒ 12x + 4y – 20 = 0⇒ 3x + y – 5 = 0 Since ∆ ABC ~ ∆ DEF ∴ AB BC AC = = ……..(3) DE EF DF ∴ AB BC = ………(4) DE EF [1] 2 ar ABC BC × AD AB AB AB = = × = ar DEF EF × DM DE DE DF using (2) and (4) [½] 25. Here radius = 3.5 cm ⇒ OA = OB = 3.5 cm From (1) OD = 2cm Area of the quadrant OACB = ¼ πr ∴ (sides are proportional) 2 2 Now A 2 2 ar ABC AB BC AC = = = using (3) ar DEF DE EP DF C [½] D Hence, proved 2nd Part A 4 O B 1 7 1 22 35 35 77 2 2 (3.5 × 2) = = cm =9.625 cm [1] × × = 2 2 4 7 10 10 8 Area of ∆ BOD = ½ Base × Height 1 7 2 = ½ OB × OD = (3.5 × 2) = = 3.5 cm 2 2 [1] O 3 1 D Since AB || CD C ∴ ∠1 = ∠2 ∠3 = ∠4 (all interior angles are equal) ……….(1) Area of the shaded region = 9.625 – 3.5 2 = 6.125 cm SECTION – D [1] In ∆ ABO and ∆ COD ∠1 = ∠2 26. Given - ∆ ABC ~ ∆ DEF A B 2 ∠3 = ∠4 Using (1) ∴ By AA condition ∆ ABO ~ ∆COD D [1] As we know that ratio of the area of 2 similar triangles are equal to ratio of the square of their corresponding sides B C D To prove : E ar ( ABC ) M 2 F 2 AB BC AC = = = DF ar (DEF ) DE EP Construction – Draw AD ⊥ BC and DM ⊥ EF ∴ 2 ∴ 2 [1] In ∆ ABD and ∆ DEM ∠B = ∠E ∵ (∆ ABC ~ ∆ DEF) ∠ADB = ∠DME (Each 90°) ∴ By AA condition ∆ ABD ~ ∆ DEM ∴ AB AD = DE DM ………(2) ar AOB 2 CD 4 = = ar COD CD 1 [1] Hence 4 : 1 27. Let the speed of the stream be x km/hr Given speed of the boat in still water is 18 km/hr 1 × EF × DM 2 1 ar ABC 2 × BC × AD BC × AD = = ……..(1) 1 × EF × DM ar DEF EF × DM 2 2 Since AB = 2CD ∴ 1 Proof – Here area of ∆ ABC = × BC × AD 2 area of ∆ DEF = ar AOB AB = ar COD CD ∴ speed in up stream = (18-x) km/hr ∴ speed in down stream = (18+x) km/hr [1] Time taken to travel 24 Km up steam 24 = Km / hr 18 − x Time taken to travel 24 Km down 24 stream = Km / hr 18 + x According to the questions 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] [1] 5 i ANSWER OF SAMPLE PAPER 24 24 − =1 18 − x 18 + x ⇒ 432 + 24x − 432 + 24x 324 − x 2 2 =1 = [1] 60° 30° E 2 ⇒ 48x = 324 – x ⇒ x + 48x – 324 = 0 ⇒x= D A [1] [1] ∠AEB = 60° and ∠CED = 30°. Given speed = 648 km/hr = 180 m/s −48 ± 2304 + 1296 −48 ± 60 = 2 2 After a flight 10 seconds, the distance traveled BC = 180 × 10 = 1800 m. [1] 12 108 or (rejected) = 6 Km/hr 2 2 Hence speed of the stream be 6 Km/hr C B Now in ∆ AEB, tan 60° = [1] AB BE ⇒ AB = BE √3 ….. (i) OR Suppose the faster pipe takes x minutes to fill the cistern. Therefore, the slower pipe will take (x + 3) minutes to fill the cistern. Again in ∆ CDE, tan 30° = 1 ⇒ 3 Since the faster pipe takes x minutes to fill the cistern. ∴ Portion of the cistern filled by the faster pipe in one minute = 1/x. ⇒ Portion of the cistern filled by the faster pipe in 40/13 1 40 40 minutes = × = [2] x 13 13x Similarly, portion of the cistern filled by the slower pipe in 40/13 minutes. = [1] = CD CE [1] BR 3 ⇒ CE = 3BE⇒ BE + BC = 3BE CE ⇒ BC = 2BE ⇒ BE = 900 m. Hence AB = 900 √3 m. (the height of the flight from ground). [2] OR Let CE (= 8 m) = BD be the tall building and AD = x m be the multi – storeyed building. Let BC = DE = y m, be the distance between the two buildings. [1] Then, AB = AD – BD = AD – CE = (x – 8) m be the difference of the height between the two buildings. 1 40 40 × = x + 3 13 13(x + 3) It is given that the cistern is filled in 40/13 minutes. ∴ 40 40 + =1 13x 13(x + 3) ⇒ 1 1 13 + = x x + 3 40 ⇒ x + 3 + x 13 = x(x + 3) 40 [1] [1] [1] 2 ⇒ 13x – 41x – 120 = 0 ⇒ (x – 5) (13x + 24) = 0 In right triangle ABC, we have tan 30° = AB/BC [1] ⇒ x = 5 or, x = -24/13 ⇒ x = 5 [ ∵ x > 0] Hence, the faster pipe fills the cistern in 5 minutes and the slower pipe takes 8 minutes to fill the cistern. [1] 28. Here height of the flight from the ground AB = CD E be the point of observation. ⇒ 1 3 = x−8 ⇒ y = √3 (x – 8) m ………… (1) y [1] In right triangle ADE, we have tan 45° = AD/DE ⇒ 1= x ⇒ y = x ……………. (2) y [1] From (1) and (2), we get √3 (x – 8) = x ⇒ √3 x – 8√3 = x, ⇒ √3x – x = 8√3, ⇒ (√3 – 1) x = 8√3 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 6 i ANSWER OF SAMPLE PAPER ⇒x= 8 3 3 −1 ⇒x= 8 3( 3 + 1) ( 3 − 1)( 3 + 1) = 576 π + 168 π = 744 π [1] = 744 × 8(3 + 3) ⇒x= ⇒ x = 4 (3 + √3) m 3 −1 22 2 = 2338.28 m 7 [2] 30. From (2) and (3), we get y = 4 (3 + √3) m C.I fi xi di ui uifi cf So, the height of the multi-storeyed building is 4(3 + √3) 0-10 3 5 -30 -3 -9 3 m and distance between the two buildings is also 10-20 4 15 -20 -2 -8 7 4 (3 + √3) m. 20-30 7 25 -10 -1 -7 14 30-40 15 35 0 0 0 29 40-50 10 45 10 1 10 39 50-60 7 55 20 2 14 46 60-70 4 65 30 3 12 50 [1] 29. Given height of the frustrum = 8m. Upper radius of the frustrum = r1 = 14 m. Lower radius of the frustrum = r2 = 26m ∑ uifi = 12 A 12m Here, mean = A + X D ∑ uifi × h ∑ fi E 14 m B 8m C Y 26 m 64 + 144 = 208 = 14.4 m. [1] Slant height of the conical portion=12m. and its [1] radius=14 m. So total canvas required = C.S.A of frustrum + C.S.A of cone. = π(r1 + r2)l + πr1l = π(40) 12 × 10 = 35+ 2.4 = 37.4 50 Again N = 25 2 [2] The median class is 30-40 ∴ l = h2 + (r2 − r1)2 = = 35 + 144 + π × 14 × 12 10 So l = 30, c.f = 14, f = 15, h = 10 N − cf 25 − 14 Median = l + 2 × h = 30 + × 10 f 15 11 22 = 30 + × 10 = 30 + = 30 + 7.3 = 37.3 15 3 [2] Modal class = 30 -40 So l = 30, f1 = 15, f0 = 7, f2= 10 and h = 10 [1] So mode = l + [1] = 30 + f1 − f0 ×h 2f1 − f0 − f1 8 80 × 10 = 30 + = 30 + 6.15 = 36.15 13 13 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [2] 7 i ANSWER OF SAMPLE PAPER ANSWER OF SAMPLE PAPER – 02 1. SECTION – A 2 3 tan θ + 3 = 3 (tan θ + 1) ⇒ x = 3. [1] 2 SECTION – B 2 = 3 sec θ 2 27 1 3 3 = 3 = sec θ = = 4 cos θ 2 2 2. We have This [1] 11. Since √3 and - √3 are zeroes of f(x), therefore (x - √3) and (x + √3) are two factors of f(x). 2 ⇒ (x - √3) (x + √3) = x – 3 is also a factor of f(x). 13 13 = 3125 2° × 5 5 2 Now, divide f(x) by x – 3 to find other zeros. 2 3 2 [1] 2 x – 3 2x – 3x – 5x + 9x – 3 2x – 3x + 1 that the prime factorization of the 13 m n denominator of is of the form 2 × 5 . Hence it 3125 has terminating decimal expansion. [1] 3. 4 shows 4 2 2x – – 6x + 3 2 – 3x + x + 9x – 3 3 – 3x + The system of equations will have no solution, if a1 b1 c 1 = ≠ a2 b2 c 2 + 9x – 2 x –3 2 x –3 – + 1 2 5 ⇒ = ≠ 3 k 15 ⇒ 4. 0 1 2 2 5 = and ≠ 3 k k 15 2 2 ⇒ k = 6 and k ≠ 6 which is not possible. = [(x + √3) (x - √3)] [2x – 2x – x + 1] Hence, there is no value of k, for which the given system [1] of equations has no solution. = [(x + √3) (x - √3)] (2x – 1) (x – 1) 12. CE = CD = AC – AE = 7 cm ∴ BC = BD + CD = 9 + 7 = 16 cm. [1] sin θ − 2 sin 3 θ − tan θ 2 cos 3 θ − cos θ = sin θ − 2 sin 3 θ − tan θ 2 cos 3 θ − cos θ = sin θ(1 − 2 sin 2 θ) − tan θ cos θ(2 cos 2 θ − 1) = sin θ[1 − 2(1 − cos 2 θ)] − tan θ cos θ(2 cos 2 θ − 1) = sin θ(2cos 2 θ − 1) − tan θ cos θ(2 cos 2 θ − 1) In ∆ ADE and ∆ ABC, ∠ADE = ∠B (given) ∠A = ∠A (common) So ∆ ADE ~ ∆ ABC. (by A – A criterion) AD DE 3.8 DE ⇒ = ⇒ = AB BC 5.7 4.2 ⇒ DE = 2.8 cm. [1] 6. -3, 0, 2. [1] 7. Median = 35. [1] 8. h 2 = r 1 [1] = tan θ - tan θ = 0. [1] No. of non-face cards = 40. (i) Probability of getting a non-face card = Let h be the height of the cone. Given that volume of cone = Volume of hemisphere. 40 10 = . 52 13 [1] (ii) Since there are 2 black kings and 2 red queens in 52 playing cards ⇒ P (getting a black king or a red 4 1 queen) = = . [1] 52 13 1 2 ⇒ πr 2h = πr 3 3 3 9. [1] 13. No. of face cards in a deck of playing cards = 12. Let the radius of both cone and hemisphere be r cm. ⇒ h = 2r, ⇒ [1] So the other zeros are 1 and 1/2. Here AF = AE = 8 cm BF = BD = 9 cm. 5. 2 ∴ f(x) = (x – 3) (2x – 3x + 1) h 2 = . r 1 OR [1] 2/49. 10. Since x + 1, 3x and 4x + 2 are in A.P. ⇒ 3x – (x + 1) = 4x + 2 – 3x Since the king, queen and jack are removed, the cards remains are 49. So the probability of getting a card of heart = 12/49 [1] Probability of getting a card of queen = 3/49 Probability of getting a card of clubs = 9/49. ⇒ 2x – 1 = x + 2 nd 206, Aggarwal Mall, 2 Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 8 i ANSWER OF SAMPLE PAPER 14. A (3,-4) P (p,-2) B (1,2) Q 5 ,q 3 ⇒ 3= Let A (3, -4) and B (1,2) 17. 3x + y – 5 = 0 1× 1 + 2 × 3 1× 2 + 2 × ( −4) ∴P , 1+ 2 1+ 2 2x – y – 5 = 0 ⇒ y = 5 – 3x [½] x … (Using section formulae) 7 6 ⇒ P , − = P (p, -2) 3 3 0 y 5 ⇒ y = 2x - 5 [1] 1 x 0 1 2 y -5 -3 [½] … (Given) 5 7 3 [½] (0,5) 4 3 Again AQ : QB = 2 : 1. (1,2) 2 2 × 1 + 1× 3 2 × 2 + 1× ( −4) ∴Q , 2 +1 2 +1 [½] 1 … (Using section formulae) 5 5 ⇒ Q ,0 = Q ,q 3 3 a2 + 1 is rational. 2a ⇒ √3 is rational. Which is a contradiction as √3 is irrational. Hence √2 + √3 is irrational. [1] ∴ AQ : QB = 2:1 Now AP: PB = 1:2 ∴p= [1] Since a & 1 are rational ⇒ The line segment AB is trisected at P and Q ∴ AP: PB = 1: 2 a2 +1 2a -4 -3 -2 -1 1 2 -1 … (Given) -3 15. Let the incircle touch the sides AB, BC and CA at D, E, F respectively. Let O be the centre of the circle. -4 -5 4 3x+y-5 = 0 -2 [½] ∴q=0 3 2x-y-5 = 0 (0,-5) A [2] ∴ Hence the two lines meet at (0, 5) and (0, -5) with y[½] axis. 18. Clearly it is an AP .with first term a = 54, and common difference d = -3. F 8 cm x D x Let the sum of n terms be 513. O Then Sn = 513 x B E ⇒ C 6 cm Then, OD = OE = OF = x cm. Since the tangents to a circle from an external point are equal, we have [1] 2 n – 37n + 342 = 0 (n- 18) (n – 19) = 0 AF = AD = (8 – x) cm, and CF = CE = (6 – x) cm. th Here the common difference is negative. So 19 term is given by a19 = 54 + (19 - 1) x 3 = 0. 2 Now, AC = AB + BC . 2 2 2 Thus, the sum of 18 terms as well as that of 9 terms is 513. [1] 2 ⇒ (14 – 2x) = 8 + 6 = 100 = (10) . ⇒ 14 – 2x = ± 10 ⇒ x = 2 or x = 12. ⇒ x = 2 [neglecting x = 12] Hence, the radius of the incircle is 2 cm. 19. [1] SECTION – C 16. Let us suppose that √2 + √3 is rational. Let √2 + √3 = a, where, a is rational. Therefore √2 = a - √3 2 ⇒ 2 = a + 3 – 2√3 a (squaring both sides) [1] n = 18 or 19 ∴ AC = AF + CF = (8 – x) cm + (6 – x) cm = (14 – 2x) cm. 2 [1] n [108 + (n-1) x 3] = 513 2 Also, AB = 8 cm and BC = 6 cm. 2 n {2a + (n-1) d} = 513 2 [1] 10 2 + = 4 …….… (1) x+y x−y 15 5 − = −2 …..… (2) x+y x−y 1 1 Let = p and =q x+y x−y then we get, 10p + 2q = 4 ….… (3) 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 9 i ANSWER OF SAMPLE PAPER 21. 15p – 5q = –2 …..… (4) n eq 3 × 5, 50p + 10q = 20 n eq 4 × 2, 30p – 10q = –4 ____+__________ 80p = 16 ⇒p= 1 5 [½] n Putting the value of p in eq 3, we get 10. 1 + 2q = 4 5 ⇒ 2q = 2 ⇒ q = 1 [½] 1 1 Now we have, = x+y 5 ⇒x+y=5 … (5) Steps of Construction : 1 =1 x−y ⇒x–y=1 (i) Take BC = 8 cm (ii) At B construct a right angle and cut BA = 6 cm. (iii) Join BC . ABC is the given triangle. (iv) Draw BD perpendicular to AC [1] (v) Bisect BC at M . With M as centre and radius BM = MC = DM, draw a circle. [1] (vi) This circle is passing through B, C, D. (vii) AB is already one tangent. Cut AE = AB and join AE which is second tangent. [3] … (6) n Adding eq 5 and 6, 2x = 6 ⇒x=3 n putting the value of x in eq 5, we get y = 2 20. L.H.S. = = cos A sin A + 1 − tan A 1 − cot A cos A sin A cos2 A sin2 A + = + sin A cos A cos A − sin A sin A − cos A 1− 1− cos A sin A = cos2 A sin2 A − sec A − sin A cos A − sin A = cos2 A − sin2 A (cos A − sin A)(cos A + sin A) = cos A − sin A (cos A − sin A) [1] 2 [1] = cosA + sinA = R.H.S. OR L.H.S. = cot A − cos A 22. Let ABCD be a square and radius of each circle at corners be a cm such that the side of the square be 2a cm 2 2 ∴ Area of square = (2a) = 4a sq cm 90 Area of circular corners = 4 × × πa2 360 = D cos A − cos A.sin A cos A + cos A.sin A cos A(1 − sin A ) = 2 [1] [1] cot A + cos A cos A − cos A sin A = cos A + cos A sin A = 2 ∴ Shaded portion = 4a - πa = (4 - π)a 3 24 But given area = 3 = sq cm 7 7 C B A [1] 1 − sin A [1] 1 + sin A cos A(1 + sin A ) cos ec A − 1 R.H.S. = cos ec A + 1 According to question, 2 ∴ (4 - π)a = 1 −1 1 − sin A sin A = = 1 1 + sin A +1 sin A ⇒ 24 7 22 2 24 ⇒ 4 − a = 7 7 6 2 24 a = ⇒a=2 7 7 ∴ Radius of each circle = 2 cm ∴ L. H. S. = R. H. S [1] nd 206, Aggarwal Mall, 2 23. To prove: area ( ∆ABC ) area ( ∆DEF ) = AP2 DQ2 Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 10 i ANSWER OF SAMPLE PAPER ∴ AF = BE D A [1] ∴ 2BC.BE = 2AD.AF B C P F Q E BD2 = AB2 + AD2 – 2BC.BE Adding, we get Proof: ‹ ∆ABC ~ ∆DEF AB BC AC AB BC ∴ = = or = DE EF DF DE EF ⇒ AB BP + PC = DE EQ + QF ⇒ AB 2BP = DE 2EQ AC2 + BD2 = AB2 + BC2 + AB2 + AD2 = AB2 + BC2 + DC2 + AD2 [ ( AB = DC] Hence the result. 24. Here the points are A (-3, 0), B (1, -3) and C (4, 1). [‹ BP = PC, EQ = QF] Now, in ∆ABP and ∆DEQ AB BP = DE EQ area ( ∆DEF ) = BC2 EF 2 = AP2 DQ 2 (from iii) [1] OR D F [½] AC = (4 + 3)2 + 12 = 49 + 1 = 50 = 5 2 unit [½] Hence the triangle is an isosceles triangles. 2 2 2 Again AC = 50 = AB + BC ⇒ The triangle is a right angle triangle. B E But BC = AD [ ‹ opposite sides of a ||gm are equal] Also from triangles ∆ADF and ∆BCE, AD = BC ∠DAF = ∠CBE [Each = 90°] [corresponding ∠s since AD || BC and ABE is a transversal] [1] [½] OR Let the point X, divide the line segment joining the points P (-3, 10) and Q (6, - 8) in the ratio k : 1. 6k − 3 −8k + 10 Then, the co-ordinates of X are , k +1 k +1 k [1] 1 P (-3,10) X Q (6, -8) But the co-ordinates of X are given (-1, 6) ∴ 6k − 3 −8k + 10 = −1 and =6 k +1 k +1 [1] ⇒ 6k – 3 = -k – 1 and – 8k + 10 = 6k + 6 ⇒ 7k = 2 ⇒ - 14k = -4 ⇒ k = 2/7 ⇒ k = 2/7 Hence, the point X divides PQ in the ratio 2 : 7. [1] 25. Let the co-ordinates of B and C be (a, b) and (x, y) respectively. A (1, -4) C Let ABCD be a parallelogram with ∠B as obtuse and ∠A as acute. 2 2 2 Then (AC) = (AB) + (BC) + 2BC.BE ……(1) 2 2 2 and (BD) = (AB) + (AD) – 2AD.AF ………….. (3) [1] ∴ ∆ADF ≅ ∆BCE [½] BC = (4 − 1)2 + (1 + 3)2 = 25 = 5 unit (2, -1) P A [1] Here AB = BC = 5 unit ∠ABP = ∠DEQ ( ‹ ∆ABC ~ ∆DEF) ∴ ∆ABP ~ ∆DEQ (SAS criterion) Their corresponding sides must be proportional AB BP AP ∴ = = DE EQ DQ AB BC ⇒ = …(i) [1] DE EF since, ∆ABC ~ ∆DEF AB BC ∴ = …. (ii) DE EF From (i) and (ii), AP BC = ..(iii) DQ EF We know that the areas of two similar triangles are in the ratio of the square of their corresponding sides. area ( ∆ABC ) EMBED Equation.DSMT4 [1] AB BP ⇒ = DE EQ i.e. [ ( BC = AD, BE = AF] From (1) and (2), we get AC2 = AB2 + BC2 + 2BC.BE B (a, b) Q (0, -1) C (x, y) 1 + a −4 + b Then (2, -1) = , 2 2 1+ a −4 + b Therefore = 2 and = −1 2 2 ⇒ a = 3. ⇒ b = 2. 1 + x − 4 + y Also (0, −1) = , 2 2 1+ x −4 + y Therefore = 0 and = −1 2 2 ⇒ x = -1 ⇒ y = 2. 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] [1] 11 i ANSWER OF SAMPLE PAPER The co-ordinates of ∆ ABC are A (1, -4), B (3, 2) and C (-1, 2). 1 Area of ∆ ABC = [1 (2 – 2) + 3 (2 + 4) – 1 (-4 – 2)] 2 1 = (18 + 6) = 12 sq. units. [1] 2 SECTION – D 26. Given : A right triangle ABC, right angled at B. 2 2 [½] To prove : (Hypotenuse) = (Base) + (Perpendicular) 2 2 2 2 i.e., AC = AB + BC [½] Construction : Draw BD ⊥ AC [½] B ⇒ 63x + 378 + 72x =3 x(x + 6) ⇒ 135x + 378 =3 x 2 + 6x 2 ⇒ 3x + 18 x = 135 x + 378. [1] 2 ⇒ 3x – 117 x – 378 = 0 2 ⇒ x – 39 x – 126 = 0 ⇒ (x + 3) (x – 42) = 0 ⇒ x = -3 or x = 42. [2] Since x is the average speed of the train, x cannot be negative. [1] Therefore x = 42. So the original average speed of the train is 42 km/h. [1] OR C D A [½] Proof : ∆ ADB ~ ∆ ABC. [If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other]. AD AB = [Sides are proportional] So, AB AC 2 ⇒ AD. AC = AB . ……………. (1) Also, ∆ BDC ~ ∆ ABC CD BC So, = [Sides are proportional] BC AC 2 ⇒ CD. AC = BC ………….. (2) Adding (1) and (2), we have 2 2 AD. AC + CD. AC = AB + BC 2 2 ⇒ (AD + CD). AC = AB + BC 2 2 ⇒ AC . AC = AB + BC 2 2 2 Hence, AC = AB + BC For the Second Part : D [2] B Here ∆ ACD ∼ ∆ ABC ⇒ AC AD = AB AC 2 ⇒ AC = AB . AD ………….. (1) Again ∆ BCD ~ ∆ ABC. (By A – A criterion) BC BD ⇒ = AB BC 2 ⇒ BC = AB . BD …………. (2) BC 2 AB.AD AD From (1) & (2), = = . AC 2 AB.BD BD 27. Let the original speed of the train be x km/h. 63 72 Therefore according to the question + =3. x x+6 Similarly, the time taken to go downstream = 24 hrs. 18 + x 24 24 − = 1. 18 − x 18 + x i.e. 24(18 + x) – 24 (18 – x) = (18 – x) (18 + x). 2 i.e. x + 48 x – 324 = 0 using the quadratic formula, we get According to the question, [1] [1] −48 ± 48 2 + 1296 −48 ± 3600 = 2 2 −48 ± 60 = = 6 or -54. [1] 2 Since x is the speed of the stream, if cannot be negative. So we ignore the root x = -54. Therefore x = 6 gives the speed of the stream 6 km/h.[1] 28. Here r1 = 10 cm, r2 = 20 cm, h = 30 cm. x= C A Let the speed of the stream be x km/hr Therefore, the speed of the boat upstream = (18 – x) km/h and the speed of the boat downstream = (18 + x) km/h. [1] dis tance 24 = hrs . The time taken to go upstream = speed 18 − x [½] [½] [1] [1] πh 2 2 Capacity of the bucket = (r + r2 + r1r2 ) [½] 3 1 (3.14)30 = (100 + 400 + 200) 3 3 = (3.14) 10 × 700 cm 3 = 21980 cm . = 21.98 litres. [1] Cost of 1 litre of milk = Rs. 25. Cost of 21.98 litres of milk Rs. 25 × 21.98 = Rs. 549.50. [1] Slant height l = h 2 + (r2 − r1) 2 = 900 + 100 = 31.62 cm. [1] [½] 2 Therefore surface area of the bucket = πl (r1 + r2) + πr1 . 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 12 i ANSWER OF SAMPLE PAPER 2 = 3.14 × 31.62 (20 + 10) + 3.14 (10) [1] = 3.14 (948.6 + 100) = 3.14 (1048.6) 3 = 3292.6 cm (approx). [1] 29. Here BC be the tower on which CD pole stands. Let height of the tower be h metres and AB = x metres. [½] PQ . AQ ⇒ PQ = AQ = h m ……… (1) PQ Again in ∆ PBQ, tan 60° = . BQ h ⇒ 3= h − 100 ⇒ h = √3 (h – 100) 100 3 ⇒h= = 50(3 + 3) 3 −1 Hence, the height of the balloon is 50 (3 + √3) m. In ∆ PAQ, tan 45° = D 5m C [½] [1] [½] [1] [½] 30. 45° CI fi xi ui fiui C.f. 0 – 10 4 5 -3 -12 4 10 – 20 5 15 -2 -10 9 20 – 30 7 25 -1 -7 16 [1] 30 – 40 10 35 0 0 26 [1] 40 – 50 12 45 1 12 38 50 – 60 8 55 2 16 46 60 – 70 4 65 3 12 50 hm 45° 60° B A x BC In ∆ ABC, tan 45° = AB h ⇒1= x ⇒ x = h ………….. (1) [½] Again in ∆ ABD, tan 60° = BD . AB Total = 50 [1] Here, a = 35, Σfi = 50, Σfiui = 11, h = 10. Now Mean = a + [½] 5( 3 + 1) 5(2.73) 13.65 = = = 6.825 m. 2 2 2 Hence height of the tower is 6.825 m. OR Let the height of the balloon at P be 'h' metres. Let A and B be the two cars. Thus AB = 100 m. ⇒h= [1] [½] [½] P = 35 + = 30 + hm 25 − 16 × 10 = 30 + 9 = 39 . 10 = 40 + Q [½ ] [1] [½ ] 12 − 10 = 40 + × 10 24 − 10 − 8 60° B [½ ] 11 × 10 = 35 + 2.2 = 37.2 50 f1 − f 0 Mode = l + ×h 2f1 − f 0 − f 2 60° 100 m ∑ fiu i ×h ∑ fi n 2 − Cf Median = l + ×h f 45° 45° Σfiui = 11 [1½ ] h+5 ⇒ 3= x ⇒ h + 5 = √3 x = √3 h (As x = h) ⇒ (√3 – 1) h = 5 5 ⇒h= 3 −1 A [1] 20 = 43.33 . 6 [1] 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 13 i ANSWER OF SAMPLE PAPER ANSWER OF SAMPLE PAPER – 03 SECTION – A ⇒ 5k = 15 31. Given A + B = 90° ⇒ k = 3. [1] ⇒ A = 90° - B. SECTION – B ⇒ sin A = sin (90° - B) 4 32. 2 4 3 2 4 3 2 x + 2x – 3 4x + 2x – 2x + x – 1 4x2– 6x + 22 8 . 5 3 2 k 5 = ≠ 6 3 15 ⇒ 1 k k 1 = and ≠ 3 3 3 3 2 22x + 44 x – 66 – – + – 61 x + 65 Here the remainder is – 61 x + 65. According to the question ax + b = - 61x + 65. ∴ a = - 61 and b = 65. ⇒ k = 1 and k ≠ 1. Thus there is no value of k, for which the given system of equations has no solution. [1] 42. cos ec θ cos ec θ + −2 cos ec θ − 1 cos ec θ + 1 = 34. Here CP = CQ = 12 cm. BC = 9 cm ⇒ BQ = 12 – 9 = 3 cm. 2 cos ec 2θ 2 cos ec 2θ −2 = −2 (cos ec 2θ − 1) cot 2 θ 2 [1] But BQ = BR = 3 cm. 2 = 2 cosec θ . tan θ - 2 2 = 2 sec θ - 2 35. Given DE || AB. 2 2 = 2 (sec θ - 1) = 2 tan θ. AD BE ⇒ = DC EC 43. If the ten, jack, queen, king and ace of diamonds are removed, then the total of cards left is 47. 3x + 19 3x + 4 = x+3 x 2 2 – 6x + 10x + x – 1 3 2 – 6x – 12x + 18 x + + – 2 22x – 17 x – 1 [1] 33. The system of equations will have no solution, if a1 b1 c 1 = ≠ . a2 b2 c 2 ⇒ 2 4x + 8x – 12x – – + [1] 7 7 7 × 53 7 × 125 875 = 4 = 4 = = 4 = 0.0875 80 2 × 5 2 × 5 4 10 4 10 ⇒ 2 41. Divide 4x + 2x – 2x + x – 1 by x + 2x – 3. = cos B. ∴ cos B = 3 Now the queens left in the deck is 3. 2 [1] ⇒ 3x + 19 x = 3x + 13 x + 12 So P (getting a queen) = 3/47. ⇒ 6x = 12 If the jack, queen and king of diamonds are removed, then the face cards left = 9. ⇒ x = 2. [1] 36. 4. [1] 37. 6. [1] 38. Let the radius of the sphere which fits exactly into a cube be r units. Then length of the edge of the cube = 2r units. Let V1 and V2 be the volumes of the cube and sphere respectively. 3 ⇒ V1 : V2 = 6 : π. 40. Since 2k – 1, 7 and 3k are in A.P. ⇒ 7 – (2k – 1) = 3k – 7 ⇒ 8 – 2k = 3k – 7 OR The favourable outcomes that Anjali will lose the game if all the tosses do not give the same results i.e. all heads or all tails are HHT, HTH, THH, HTT, THT, TTH. [1] 44. Suppose the point P(-3, k) divides the line segment joining points A(-5, -4) and B(-2, 3) in the ratio x : 1. V1 8r 3 6 = = V2 4 3 π πr 3 39. 3/6 or ½. [1] When a coin is tossed 3 times, the possible outcomes are : HHH, HHT, HTH, THH, HTT, THT, TTH, TTT. [1] So P (lose the game) = 6/8 = 3/4. 3 The V1 = (2r) , V2 = 4/3 πr . ∴ So P (getting a face card) = 9/47. [1] −2x − 5 3x − 4 Then, the coordinates of P are , x +1 x +1 [1] But, the coordinates of P are given as (-3, k) ∴ −2x − 5 3x − 4 = −3 and =k x +1 x +1 ⇒ -2x – 5 = -3x – 3 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 14 i ANSWER OF SAMPLE PAPER ⇒ x = 2 and k = 2/3 [1] Hence, the ratio is 2 : 1 and k = 2/3. 45. In the given figure ∠B = 90°. AD = 23 cm, AB = 29 cm, DS = 5 cm. DS = DR = 5 cm. ∴ AR = AQ = 23 – 5 = 18 cm [1] Again BQ = BP = 29 – 18 = 11cm. Now we have OP ⊥ BC and OQ ⊥ AB. ⇒ OPBQ is a square. Hence radius is 11 cm. [1] A R Q O D B S P [2] C The co-ordinate of the point where the lines meet the xaxis is (4, 0). [0.5] SECTION – C 46. Let us assume that √P is rational. Then there exists a positive co-primes a and b. Such that p = , b ≠ 0 b a2 ⇒p= 2 ⇒ pb = a b2 ⇒ p divides a 48. Let a be the first term and 'd' be the common difference of the given A.P. th ⇒ a 4 + a 8 = 24 2 ⇒ a + 3d + a + 7d = 24 ⇒ 2a + 10d = 24 2 ⇒ p divides a …………… (1) ⇒ a + 5d = 12 [1] terms is 44 ⇒ a + 5d + a + 9d = 44 2 ⇒ p c = pb ⇒ b = pc [1] ⇒ a 6 + a10 = 44 2 2 2 th Again the 6 and 10 Now a = p c 2 2 ….....(1) th ⇒ a = pc for some positive integer c. 2 th The 4 and 8 terms of an AP is 24 ⇒ 2a + 14d = 44 2 ⇒ p divides b ⇒ a + 7d = 22 2 ⇒ p divides b …………. (2) ….....(2) Subtracting (1) from (2) we get 2d = 10 [1] From (1) and (2), p is a common factor of a and b. ⇒d=5 This contradicts that a and b are co-prime. So first term a = -13 This is due to our wrong assumption. Second term = -13 + 5 = -8 Hence √p is an irrational number. [1] Third term = -8 + 5 = -3 [1] Hence the first three terms of the AP are -13, -8, -3. [1] 47. 2x + y =8 ⇒ y = 8 – 2x x 1 2 3 4 y 6 4 2 0 49. 1 x+ 4 ⇒ 3x – 2y = 12 ⇒ 2y = 3x – 12 − 1 x−7 = 11 30 x −7 −x −4 11 −11 11 = ⇒ = 2 ( x + 4)(x − 7) 30 x − 3x − 28 30 [1] 2 ⇒ x – 3x – 28 = -30 3x − 12 ⇒y= 2 [0.5] 2 ⇒ x – 3x + 2 = 0 2 x 4 2 0 6 y 0 -3 -6 3 ⇒ x – 2x – x + 2 = 0 [1] ⇒ x (x - 2) - 1 (x - 2) = 0 ⇒ (x – 2) (x – 1) = 0 ⇒ x = 2, 1. nd 206, Aggarwal Mall, 2 Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 15 i 50. ANSWER OF SAMPLE PAPER cos ecθ cos ecθ + cos ecθ − 1 cos ecθ + 1 = cos ecθ(cos ecθ + 1) + cos ecθ(cos ecθ − 1) (cos ecθ − 1)(cos ecθ + 1) [1] = 2 cos ec 2θ 2cos ec 2θ = cos ec 2θ − 1 cot 2 θ [1] 2 2 2 4. Draw any ray AX making an acute angle with AB on the side opposite to the vertex C. [1] 5. Locate 7 points (the greater of 7 and 5 in 7/5) A1, A2, A3, A4, A5, A6 and A7 on AX so that AA1 = A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A7. 6. Join A5 (5 being smaller of 5 and 7 in 7/5) to B and draw a line through A7 parallel to A5B, intersecting the extended line segment AB at B'. 7. Draw a line through B' parallel BC intersecting the extended line segment AC at C' (see figure). Then AB'C' is the required triangle. [1] 2 = 2 cosec θ tan θ = 2 (cot θ + 1) tan θ 2 2 2 2 = 2 cot θ . tan θ + 2 tan θ = 2 + 2 tan θ = R.H.S. [1] OR L.H.S. = cot A − cos A cot A + cos A cos A cos A − sin A.cos A − cos A sin A sin A = = cos A cos A + cos A.sin A + cos A sin A sin A C' [1] C cos A − sin A.cos A cos A(1 − sin A) = = cos A + sin A.cos A cos A(1 + sin A) [1] 1 sin A 1 − sin A sin A − sin A cos ec A − 1 = = = = R.H.S. 1 + sin A 1 sin A cos ec A + 1 + sin A sin A [1] 6 cm 51. Given BL and CM are medians of the ∆ ABC in which ∠A = 90°. 2 2 2 In ∆ ABC, BC = AB + AC ……….. (1) 2 2 2 2 7 cm B A A1 [1] A2 2 In ∆ ABL, BL = AL + AB = (AC/2) + AB . 2 2 2 ⇒ 4BL = AC + 4 AB …………. (2) B' 5 cm A3 A4 A5 A6 [1] A7 B X [1] 53. Given P(x, y) is any point on the line joining the points A(a, 0) and B (0, b). M Let P(x, y) divide AB internally at the ratio k : 1. A (a, 0) A 2 2 x= 2 In ∆ CMA, CM = AC + AM 2 = AC + (AB/2) 2 2 2 ⇒ 2 ⇒ 4CM = 4AC + AB …………. (3) Adding (2) and (3), we get 2 2 2 2 4(BL + CM ) = 5 AB + 5 AC 2 2 2 [1] a x 1 kb ⇒ = and y = k +1 a k +1 k +1 y k = b k +1 Now = 5(AB + AC ) = 5 BC . B (0, b) Using the section formula, we get L C P (x, y) [1] 52. Steps of Construction : [1] x y 1 k 1+ k + = + = =1 a b k +1 k +1 k +1 Hence x y + = 1. a b [1] 54. Let the required ratio be k : 1. 1. Draw a line segment AB = 5 cm. Then by section formula, the co-ordinates of P are 2. With A as centre and radius = 6 cm, draw and arc. 3. Again, B as centre and radius = 7 cm, draw another are cutting the arc in step 2 at C. Join AC and BC. This ABC is the required triangle. 4k − 3 −9k + 5 k +1 , k +1 ∴ 4k − 3 −9k + 5 = 2 and = −5 k +1 k +1 ⇒ 4k – 3 = 2k + 2 and -9k + 5 = - 5k – 5 nd 206, Aggarwal Mall, 2 [1] Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 16 i ANSWER OF SAMPLE PAPER ⇒ k = 5/2 A ⇒ 4k = 10 M N ⇒ k = 5/2 OR E D [1] Hence the ratio is 5 : 2. C B [1.5] Let the required ratio be k : 1 Let P(x, y) be the point on the given line dividing AB in the ratio k : 1, then Construction : Join BE and CD. Draw DM ⊥ AC and EN ⊥ AB. Proof : Consider ∆ ADE. 3k + 2 7k − 2 x= and y = k +1 k +1 [1] The point P(x, y) lies on the line 2x + y – 4 = 0 ar(ADE) = 1 AD × EN. 2 In ∆BAE, DF || AE 3k + 2 7k − 2 ∴2 −4 = 0 + k +1 k +1 ∴ ⇒ 6k + 4 + 7k – 2 = 4k + 4 [1] BD BF = ......(1) DA FE Again in ∆ BAC, DE || AC [0.5] BD BF ∴ = ......(2) DA CE ⇒ 9k = 2 ⇒ k = 2/9. [1] Hence the required ratio is 2 : 9. 55. Required Area = area of semicircle with diameter AB + area of semicircle with diameter AC + area of the triangle ABC – area of the semicircle with diameter BC. From (1) and (2) we get Similarly, ar(BDE) = ar(ADE) = [1] 1 DB × EN 2 [1] 1 AE × DM 2 and ar(DEC) = A BF BF = . FE CE 1 EC × DM. 2 1 Therefore, 6 cm 8 cm 2 B C ∴ Required area = [1] = 24 sq units. SECTION – D and, 2 56. Volume of earth dug out = πr h = π (1.5) × 14 = 3 31.5πm . [2] 2 2 Area of circular ring = π(R – r ) = π[(5.5) – (1.5) ] 2 = 28 π m . [1] Also, ∆ BDE and ∆ DEC are on the same base DE, and between the same parallels BC and DE. Therefore, from (1), (2) and (3), AD AE = DB EC [1] A [2] D ⇒ 28 π × h = 31.5 π [1] ⇒ h = 31.5/28 = 1.125 m. [1] B 57. Given: A triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively. AD AE = . DB EC ( ar ( ADE ) ) = 2 AE × DM = AE . … (2) ( ar (DEC ) ) 1 EC × DM EC 2 Let the height of the embankment be h metres. To prove: …..(1) Therefore, ar(BDE) = ar(DEC) …..(3) 2 2 1 [1] 1 1 1 1 2 2 2 π(3) + π(4) + 4 × 8 - π(5) . 2 2 2 2 2 ( ar ( ADE ) ) = 2 AD × EN = AD ( ar (BDE ) ) 1 DB × EN DB F E C In ∆BAE, DF || AE BD BF ∴ = ......(1) DA FE Again in ∆ BAC, DE || AC BD BF ∴ = ......(2) DA CE 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 17 i ANSWER OF SAMPLE PAPER 4 9 1 + = ………… (2) x y 2 and [1] [1] Let 1/x = u and 1/y = v. Then u + v = 1/12 ⇒ 12 u + 12 v = 1 ………… (3) and 4u + 9v = 1/2 ⇒ 8u + 18 v = 1 …………. (4) - [1] 1 1 ⇒ = y 30 ⇒ x = 20 ⇒ y = 30. D [1] 1 [1] = BD ………….. (1) AE AE = CE BD = AB − 50 BD [1] ⇒ BD = √3 (AB – 50) …………. (2) [1.5] From equation (1) AB 3 = 3 (AB – 50) ⇒ AB = 3 AB – 150 132 x [1] ⇒ AB = 75 m. [1] and BD = 75/√3 = 25√3 m. Hence height of the tower is 75 m and the horizontal distance between the building and the tower is 25√3 m. OR B 132 Time taken by express train to cover 132 km = x + 11 hours. [1] 132 132 − =1 x x + 11 [1] 1452 =1 x 2 + 11x [1] ⇒ [1] ⇒ 2 AB = 150 Let the average speed of the passenger train be x km/hr. Then the average speed of the express train = (x + 11) km/hr. ∴ [1] AB BD Again in ∆ ACE, tan 30° = 3 OR hrs. AB ⇒ So the pipe of larger diameter alone can fill the pool in 20 hours and the pipe of smaller diameter alone can fill the pool in 30 hours. [0.5] Time taken by passenger train to cover 132 km = 60° 3 [1] C AB Here in ∆ ABD, tan 60° = . BD ⇒ Putting value of v in equation (3) we get u = 1/20 So u = 1/20 and v = 1/30 1 1 ⇒ = x 20 30° E ⇒ 3= - - 30 v = - 1 ⇒ v = 1/30. 60° B equation (3) × 2 : 24 u + 24 v = 2 equation (4) × 3 : 24 u + 54 v = 3 - 30° Building 50 m 1 1 1 According to the question : + = ………… (1) x y 12 A Tower BF BF = . [1] FE CE 58. Let the time taken by the pipe of larger diameter to fill the pool be x hours and that taken by the pipe of smaller diameter pipe alone be y hours. From (1) and (2) we get 28.5 m 30 m 30° D F 60° G 2 ⇒ x + 11x – 1452 = 0 C 2 ⇒ x + 44x – 33x – 1452 = 0 ⇒ (x + 44) (x – 33) = 0 ⇒ x = - 44 or x = 33 [1] ∴ x = 33 ( ∵ speed cannot be negative) Hence, the average speed of passenger train is 33 km/hr and the average speed of the express train is 44 km. [1] 59. In the given figure AB is the tower and CD is the building of 50 m. xm E ym A [1] Let AB = 30 m be the height of the building CD = 1.5 m be the height of the boy. At D, the angle of elevation is 30° and at F, the angle of elevation is 60°. [1] We have AB = 30 m, AG = CD = EF = 1.5 m. ∴ BG = 30 – 1.5 = 28.5 m. Let CE = DF = x m and EA = FG = ym. In ∆ BFG, tan 60° = BG/FG. 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1] 18 i ANSWER OF SAMPLE PAPER ⇒ 3= 28.5 28.5 ⇒y= = 9.5 3 y 3 [1] In ∆ BDG, tan 30° = BG/DG. Mean x = ∑ fix i 2830 = = 35.375 years ∑ fi 80 [1.5] Here N = 80 ⇒ N/2 = 40. So Median class is 35 – 45. 1 28.5 ⇒ = x +y 3 [1] ⇒ x + y = 28.5 √3 ⇒ x = 28.5 √3 – 9.5 √3 = 19√3 m. [1] 60. l = 35, Cf = 38, f = 23, h = 10. [0.5] N − Cf 40 − 36 × h = 35 + Now Median = l + 2 × 10 f 23 CI fi xi fixi C.f. 5 – 15 6 10 60 6 15 – 25 11 20 220 17 25 – 35 21 30 630 38 35 – 45 23 40 920 61 45 – 55 14 50 700 75 f1 − f 0 Therefore Mode = l + ×h 2f1 − f 0 − f 2 55 – 65 5 60 300 80 Putting l = 35, f1 = 23, f0 = 21, f2 = 14, h = 10, we get Σfi = 80 = 35 + 20 = 35.87 years 23 [1] Again the modal class is 35 – 45 as the highest frequency is 23. [0.5] Σfixi = 2830 [1.5] Mode = 35 + 2 × 10 = 36.81 years . 11 206, Aggarwal Mall, 2nd Floor, Plot No. 3, Sector – 5, Dwarka, New Delhi - 110075 [1]
© Copyright 2024