SAMPLE MIDTERM 1. For the function (), given in the following figure, find (make reasonable estimates from the grid, if neccessary) (a) (5) = 3 (b) (−7) = −2 (c) (−2) = −2 (d) (7) = 3 (e) (−5) = −3 (f) (3) = 0 (g) lim () = 2 →7 (h) (i) (j) (k) (l) lim () = 2 →−2+ lim () = −2 →−2− lim () = →−2 lim () = −5 →5− lim () = −5 →5+ (m) lim () = −5 →5 (n) (o) lim →−3 () − (−3) = − (−3) 1 2 () − (−5) =0 →−5 − (−5) lim (p) the largest value in the following list: 0 (−7) 0 (3) = 0 (−5) = −3 (−3) 0 0 (−3) = 12 = (q) the intervals where the function is negative ( () 0). (−8 −2), (3 5) and (5 57) (r) the intervals where the function is positive ( () 0).. (−9 −8), (−2 3) (57 9) (s) the values of where the function is not a continuous function. = −2 = 5 = 7 2. Limits such as (and similar problems!): 1 (a) lim + =∞ →−5 + 5 (b) (c) lim − →−5 lim →5− 1 = −∞ +5 1 = +5 1 10 5 + 32 − 1 = →∞ 2 − 4 + 72 (d) lim (e) 53 + 3 − 1 = − 57 →−∞ 2 − 73 lim (f) lim →2 (g) 3 7 lim −2 = + 2 − 6 →−3 1 5 +3 = − 15 + 2 − 6 √ 2− √ = −2 2 (h) lim √ →2 − 2 √ √ 42 + − 3 − √ (i) lim = − 12 →−∞ + 4 + 1 (j) lim sin 3 = sin 5 (k) lim sin =1 1 − cos2 →0 →0 3 5 − 1 =1 →0 sin (l) lim (m) lim − = 0 →+∞ 2 =0 →0 sin (n) lim −3 = −6 (o) lim (1 + 2) →0 µ ¶ 1 1 (p) lim − = 12 →0 −1 ³ ³ ´´ (q) lim sin = →∞ (r) lim (1) = 1 →0 (s) (t) lim (tan ln ) = 0 →0+ 5 lim − (sec 3 cos 5) = − 3 → 2 (u) lim (( − ) cot ) = 1 → 3. Suppose the function () is defined as () = ½ 2 2 + √ cos 2 + 1 if if 0 . For what value of is this ≥0 function continuous on the interval (−∞ +∞)? ¡ ¢ lim− () = lim− 2 + 5 + 2 = 2 →0 →0 p lim+ () = lim+ cos 2 + 1 = 1 →0 →0 so 2 = 1, or = ±1 (and similar problems!) for = 2 sin 3 + 32 cos 3 (a) = 2 sin (3) : ¡ ¢3 ¢2 ¡ 2 ¢ ¡ (b) = 2 sin (3) : 3 cos (3) + 2 sin (3) = 3 2 sin (3) 4. DERIVATIVES: Find (c) = 2 2 sin 3 − 32 cos 3 : = sin (3) sin2 (3) √ 1 3 ln + 1 : = 2 3 (ln + 1) 3 µ√ ¶ cos 2 1 (e) = ln − tan − : = 2 1 + 2 1 + 2 ! µ 2 ¶− 23 Ã q −1 4 1 3 2 −1 (f) = 2 +1 : =3 2 2 + 1 (2 + 1) ! µ ¶3 ¶2 Ã 2 µ 3 + 1 3 − 2 (3 + 1) 3 + 1 (g) = : =3 2 2 (2 )2 (d) = −1 2sin ³ sin−1 ´ √ : = (ln 2) (h) = 2 = 2 1 − 2 ´ ³ √ √ √ √ √ (i) = 2 : = 2 = 2 + ¡ −1 ¢ ¡ ¡ −1 ¢¢ 1 √ (j) = ln cos : ln cos = − −1 (cos ) 1 − 2 sin−1 ¢ ¡ ¢ ¡ ¢ ¡ (k) = 2 sin3 3 + ln2 : 2 sin3 3 + ln2 = 2 3 sin2 3 (cos (3)) (3) + 2 (ln ) 1 = 18 sin2 3 cos 3 + 2 ln ¡ ¢ ¡ ¢ (l) = ln 2 : 0 = (2 ln + ) = 2 + 1 ln 2 + ln = 5. Find the given derivative for the given function: 21 (a) () = sin (3) : Find 21 ( ()) = sin (3) 0 = 3 cos (3) 00 = −32 sin (3) 000 = −33 cos (3) (4) = 34 sin (3) (5) = 35 cos 3 (6) = −36 sin 3 (7) = −37 cos 3 ( ) = ±3 cos 3 : so (b) () = ln (1 + ) : Find 3 3 00 000 4 4 0 () = 00 () = 000 () = (4) () = positive for 1 5 9 13 17 21 negative for 3 7, 11 15 19 ... 21 (sin 3) = 321 cos 3 21 ¸ ( ()) 0 (c) () = 3 ln : Find ∙ 1 = (1 + )−1 1+ −2 = − (1 + ) 2 −3 = 2 (1 + ) = (1 + )3 = ( ()) µ ¶ 1 3 ln + = 32 ln + 2 µ ¶ 1 2 6 ln + 3 + 2 = 6 ln + 3 + 2 = 6 ln + 5 µ ¶ 1 6 ln + 6 + 5 = 6 ln + 6 + 5 = 6 ln + 11 6 2 3 6. Implicit Differentiation: For the curve + 2 + 2 = + 1 : (a) What is the derivative ? + + 2 + 2 = 1 ( + 2) = 1 − 2 − 1 − 2 − = + 2 (b) What is the equation of the tangent line on the curve + 2 + 2 = + 1 at the point (0 1)? 1 − 2 (0) − (1) 1 − 2 − = |()=(01) = =0 + 2 (0) + 2 (1) − 1 = 0 ( − 0) Tangent line is : = 1 7. Find the equation of the tangent line for the curve 2 − + 2 = 4 at the point (2 0) 2 0 − ( 0 + ) + 2 = 0 − 2 0 = 2 − −4 = =2 −2 = 2 ( − 2) = 2 − 4 8. Calculate 0 for the following curves (implicitly): (a) 3 + 3 2 − sin = 3 − 3 + 3 2 ( 0 ) + 6 ( 0 ) − cos ( 0 ) = 32 − ( 0 ) 3 2 ( 0 ) + 6 ( 0 ) − cos ( 0 ) + ( 0 ) = 32 − 3 32 − 3 0 = 2 3 + 6 − cos + 1 (b) sin () + = cos () [ + ( 0 )] + ( 0 ) = 1 cos () + ( 0 ) cos () + ( 0 ) = 1 1 − cos () 0 = cos () + (c) sin 2 = cos 2 sin 2 + (cos 2) (2 0 ) = ( 0 ) cos 2 + (− sin 2) (2) 2 (cos 2) ( 0 ) − ( 0 ) cos 2 = −2 sin 2 − sin 2 −2 sin 2 − sin 2 0 = 2 cos 2 − cos 2 9. For the curve ( − )2 = 1 + : (a) What is the derivative ? 2 ( − ) µ ¶ 1 −1 = 1 or −1= 2 ( − ) 1 = 1+ 2 ( − ) 2 (b) What is the equation of the tangent line on the curve ( − ) = 1 + at the point (0 1)? 1 3 |()=(01) = 1 + = 2 (1 − 0) 2 3 −1 = ( − 0) 2 3 Tangent line is = +1 2 10. The height (in meters) of a projectile shot vertically upward from a point 1.5 m above ground level with an initial velocity 25.48 m/s is = 15 + 2548 − 492 after seconds. (a) When does the projectile reach its maximum height? maximum height - when velocity changes from positive to negative 2548 () = 2548 − 98 = 0 for = = 26 s 98 (b) What is the maximum height? 2 maximum height is (26) = 15 + 2548 (26) − 49 (26) = 34 624 m : 11. A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of 60 cm/s. Find the rate at which the area within the circle is increasing after (a) 1 s, (b) 3 s, and (c) 5 s. = 2 = 60 cm/s (constant speed = rate of change) = 60 cm after = 3 µ = 180 ¶ cm, and = 5 means = 300 cm ¡ 2¢ = = 2 = 2 (60 cm) (60 cm/s) = 7200 cm2 /s 1: 3: = 2 (180 cm) (60 cm/s) = 21 600 cm2 /s 5: = 2 (300 cm) (60 cm/s) = 36 000 cm2 /s = · = 60 and after = 1 s, the radius is At = At = At = 12. A bacteria culture grows with constant relative growth rate. The bacteria count was 400 after 2 hours and 25,600 after 6 hours. (a) What is the relative growth rate? = so () = (2) = 400 = 2 (6) = 25600 = 6 6 25600 1 Divide: = or 4 = 64 so 4 = ln 64 and = ln 64 2 400 4 (b) What is the initial size of the culture? 400 400 400 = 1 ln 64 = = 50 2 8 2 (c) What is the number of bacteria after 5 hours? 10 hours? hours? 1 = 5 : (5) = 50( 4 ln 64)5 ≈ 9 051 plug into first: = 1 = 10 : (10) = 50( 4 ln 64)10 = 1 638 400 hours : () = 50 4 ln 64 (d) When will the population reach 50,000? () = 50000 = 50 4 ln 64 4 ln (1000) 50000 = 4 ln 64 or ln 64 = ln (1000) so = = 6 643 856 190 50 4 ln (64) so it will take ≈ 66 hours, or 6 hours 36 minutes ( 06 () = 06 (60 minutes) = 36 minutes). 13. A sample of tritium-2 decayed to about 94.5% of its original amount after a year. (a) What is the half-life of tritium-3? () = (1) = = 0945 so = 0945 or = ln 0945 half-life : needed to get 50% of 1 1 = so = ln 0945 so ln 0945 = ln 05 2 2 ln 05 = ≈ 12 25 = 12 years and 3 months ln 0945 (b) How long would it take for the sample to decay to 20% of its original amount? = ln 0945 so ln 02 = ln 0945 ln 02 = ≈ 28 45 years ≈ 28 years 5 months and 12 days ln 0945 020
© Copyright 2025