ALLEN JEE-MAIN SAMPLE PAPER # 02 TARGET - 2014

ALLEN
TM
CAREER INSTITUTE
Path to Success KOTA (RAJASTHAN)
ALLEN JEE-MAIN SAMPLE PAPER # 02
TARGET - 2014
egRoiw . kZ lw p uk,¡
IMPORTANT INSTRUCTIONS
Do not open this Test Booklet until you are asked to do so.
bl ijh{kk iq fLrdk dks rc rd u [kksysa tc rd dgk u tk,A
ijh{kk iqfLrdk ds bl i`"B ij vko';d fooj.k uhys@dkys ckWy ikbaV isu
ls rRdky HkjsaA isfUly dk iz;ksx fcYdqy oftZr gaSA
ijh{kkFkhZ viuk QkeZ ua- (fu/kkZfjr txg ds vfrfjä) ijh{kk iqfLrdk @ mÙkj
i= ij dgha vkSj u fy[ksaA
ijh{kk dh vof/k 3 ?ka V s gSA
bl ijh{kk iqfLrdk esa 90 iz'u gaSA vf/kdre vad 360 gSaA
1.
Immediately fill in the form number on this page of the Test Booklet
with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
1.
2.
The candidates should not write their Form Number anywhere else
(except in the specified space) on the Test Booklet/Answer Sheet.
2.
3.
The test is of 3 hours duration.
3.
4.
The Test Booklet consists of 90 questions. The maximum marks are
360.
4.
5.
There are three parts in the question paper A,B,C consisting of
Mathematics, Physics and Chemistry having 30 questions in each
part of equal weightage. Each question is allotted 4 (four) marks for
correct response.
5.
bl ijh{kk iqfLrdk es a rhu Hkkx A, B, C gSa] ftlds izR;sd Hkkx esa
xf.kr] HkkSfrd foKku ,oa jlk;u foKku ds 30 iz'u gaS vkSj lHkh iz'uksa ds vad
leku gASa izR;sd iz'u ds lgh mÙkj ds fy, 4 (pkj)vad fuèkkZfjr fd;s x;s gAaS
6.
One Fourth mark will be deducted for indicated incorrect response
of each question. No deduction from the total score will be made
if no response is indicated for an item in the Answer Sheet.
6.
7.
Use Blue/Black Ball Point Pen only for writting particulars/marking
responses on Side–1 and Side–2 of the Answer Sheet.
Use of pencil is strictly prohibited.
7.
8.
No candidate is allowed to carry any textual material, printed or written,
8.
izR;sd xyr mÙkj ds fy, ml iz'u ds dqy vad dk ,d pkSF kkbZ vad dkVk
tk;sxkA mÙkj iqfLrdk esa dksbZ Hkh mÙkj ugha Hkjus ij dqy izkIrkad esa ls
½.kkRed vadu ugha gksxkA
mÙkj i= ds i` " B&1 ,oa i` " B&2 ij okafNr fooj.k ,oa mÙkj vafdr djus gsrq
dsoy uhys@ dkys ckWy ikba V isu dk gh iz;ksx djsaA
isf Uly dk iz ;ksx fcYdqy oftZr gSA
ijh{kkFkhZ }kjk ijh{kk d{k @ gkWy esa ifjp; i= ds vykok fdlh Hkh
izdkj dh ikB~; lkexzh eqfær ;k gLrfyf[kr dkxt dh ifpZ;ksa] istj]
eksckby Qksu ;k fdlh Hkh izdkj ds bysDVªkfud midj.kksa ;k fdlh vU;
izdkj dh lkexzh dks ys tkus ;k mi;ksx djus dh vuqefr ugha gSaA
bits of papers, pager, mobile phone any electronic device etc, except
the Identity Card inside the examination hall/room.
9.
jQ dk;Z ijh{kk iqfLrdk esa dsoy fu/kkZfjr txg ij gh dhft;sA
10. On completion of the test, the candidate must hand over the Answer
Sheet to the invigilator on duty in the Room/Hall. However, the
candidate are allowed to take away this Test Booklet with them.
10.
11. Do not fold or make any stray marks on the Answer Sheet.
11.
ijh{kk lekIr gksus ij] ijh{kkFkhZ d{k@gkWy NksM+us ls iwoZ mÙkj i= d{k fujh{kd
dks vo'; lkiSa nsAa ijh{kkFkhZ vius lkFk bl ijh{kk iq fLrdk dks ys tk
ldrs gaS A
mÙkj i= dks u eksMa+s ,oa u gh ml ij vU; fu'kku yxk,saA
9.
Rough work is to be done on the space provided for this purpose in
the Test Booklet only.
Corporate Office
ALLEN Career Institute,
“SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005,
Trin : +91 - 744 - 2436001 Fax : +91-744-2435003,
E-Mail: [email protected] Website: www.allen.ac.in
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
HAVE CONTROL ¾® HAVE PATIENCE ¾® HAVE CONFIDENCE Þ 100% SUCCESS
BEWARE OF NEGATIVE MARKING
PART A - MATHEMATICS
1.
A bag contains 3 white and 3 red balls, pairs 1.
of balls are drawn without replacement until
the bag is empty. The probability that each pair
consists of one white and one red ball is3
4
5
6
(2)
(3)
(4)
10
10
10
10
In a test paper there are 10 true-false questions.
If a student randomly answers all the questions,
then the probability that atleast six answer are
correct is p/q (where p & q are relatively
prime), then (q – p) is (1) 319
(2) 273
(3) 353
(4) 407
A polynomial function satisfies
2.
é pö
Let ƒ : R ® ê0, ÷
ë 2ø
–1
2
(1) 319
(3) 353
3.
(2) 273
(4) 407
;fn ,d cgqin Qyu]
æ1ö
æ1ö
ƒ ( x ) ƒ ç ÷ = ƒ ( x ) + ƒ ç ÷ , x ¹ 0 dks larq"V
èxø
èxø
djrk gS rFkk ƒ(3) = –26 gks] rks ƒ(4) dk eku gksxk&
(1) –15
4.
2
ƒ(x) = tan (x + 6x + a – 2a) is an onto
function, then product of r eal values
of a will be(1) 2
(2) –19
(3) –9
(4) 12
SPACE FOR ROUGH WORK /
ALLEN
(2)
,d fo|kFkhZ lHkh iz'uksa ds ;kn`PN;k mÙkj djrk gks] rks
de ls de N% mÙkj lgh gksus dh izkf;drk p/q gks
(tgk¡ p rFkk q ijLij vHkkT; la[;k;sa g)
S rc (q – p)
dk eku gksxk&
æ1ö
æ1ö
ƒ ( x ) ƒ ç ÷ = ƒ ( x ) + ƒ ç ÷ , x ¹ 0 and
èxø
èxø
ƒ(3) = –26, then value of ƒ(4) is (1) –15
(2) –63
(3) –47
(4) –255
4.
3
10
A
LL
EN
3.
4
5
6
(3)
(4)
10
10
10
,d iz'u i= esa 10 lR;&vlR; okys iz'u gSA ;fn
(1)
(1)
2.
,d Fky
S s esa 3 lQsn rFkk 3 yky xasnsa gaS] xsanksa dk ,d
tksM+k rc rd fudkyk tkrk gS] tc rd fd Fky
S k
[kkyh uk gks tk;sA izkf;drk rkfd izR;sd tksM+s esa ,d
lQsn rFkk ,d yky xsan gks] gksxh -
(2) –63
(3) –47
(4) –255
é pö
ekuk ƒ : R ® ê0, ÷
ë 2ø
ƒ(x) = tan–1(x2 + 6x + a2 – 2a) vkPNknd Qyu
gks] rks a ds okLrfod ekuksa dk xq.kuQy gksxk&
(1) 2
(2) –19
(3) –9
(4) 12
jQ dk;Z ds fy;s txg
H-1/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
6.
7.
8.
If inequality (x – 2a) (x – a – 2) < 0 is satisfied 5.
for all x Î (2,3), then number of integral values
of 'a' will be(1) 2
(2) 3
(3) 1
(4) 0
4 ù
é
Value of ê lim 2 sin x 4x -p ú is
êë x® p4
úû
(where [.] denotes greatest integer function) (1) 0
(2) 1
(3) 2
(4) 7
If x + 6y + 6z = ax
4x – y + 4z = ay
2ax + 2ay + az = 5z
has a non trivial solution, then value of a will be(1) 0
(2) –2
(3) –7
(4) –5
If 'X' is a five digit number abcde, then
(
)
6.
(1) 2
é
ê lim
êë x® p4
(2) 3
(
2 sin x
)
4
4x -p
(3) 1
(4) 0
ù
ú dk eku gksxk
úû
8.
(tgk¡ [.] egÙke iw.kk±d Qyu dks n'kkZrk g)S (1) 0
(2) 1
(3) 2
(4) 7
;fn x + 6y + 6z = ax
4x – y + 4z = ay
2ax + 2ay + az = 5z
dk vfujFkZd gy gks] rks a dk eku gksxk&
(1) 0
(2) –2
(3) –7
(4) –5
;fn 'X' ika p va d h; la [ ;k abcde gks ] rks
X
will be a+b+c+d+e
(1) 10000
(2) 11000
(3) 9000
(4) 9999
xi(i = 1,2,3,......n) denotes a distribution whose
variance is 10 then variance of a distribution
3x1 + 2, 3x2 +2, 3x3 + 2,........3xn + 2 will
be(1) 10
(2) 30
9.
X
dk vf/kdre eku gksxk&
a+b+c+d+e
(1) 10000
(2) 11000
(3) 9000
(4) 9999
xi(i = 1,2,3,......n) foHkktu dks n'kkZrk gS ftldk
7.
maximum value of
9.
;fn vlfedk (x – 2a) (x – a – 2) < 0 lHkh
x Î (2,3) ds fy;s larq"V gksrh gks] rks 'a' ds iw.kk±d
ekuksa dh la[;k gksxh&
A
LL
EN
5.
(3)
10
3
(4) 90
SPACE FOR ROUGH WORK /
H-2/31
izlj.k 10 gks] rks foHkktu 3x1 + 2, 3x2 +2, 3x3
+ 2,........3xn + 2 dk izlj.k gksxk&
(1) 10
(2) 30
10
3
(4) 90
(3)
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
10.
11.
Negation of statement "Rahul is rich or Priya
is beautiful" is (1) Rahul is poor or Priya is ugly.
(2) Rahul is poor and Priya is ugly.
(3) Rahul is rich and Priya is beautiful.
(4) Rahul is rich or Priya is ugly
Given ƒ(x) = ax2 + bx + c.
If lim
( ƒ ( x ))
x ®0
1/ x
13.
14.
dFku ^^jkgqy /kuh gS ;k fiz;k [kw- clwjr g*S * dk izfrokn
gksxk(1) jkgqy xjhc gS ;k fiz;k cnlwjr gS
(2) jkgqy xjhc gS rFkk fiz;k cnlwjr gS
(3) jkgqy xjhc gS rFkk fiz;k [kw
- clwjr gS
(4) jkgqy xjhc gS ;k fiz;k cnlwjr gS
11. ekuk ƒ(x) = ax2 + bx + c gAS
;fn lim
( ƒ ( x ))
x ®0
1/ x
= e 3 , then ƒ'(0) will be-
(1) 0
(2) 1
(3) 2
(4) 3
Four different integers are in increasing AP 12.
such that one of them is sum of squares of
others, then number of such AP(s) will be(1) 0
(2) 1
(3) 2
(4) 3
x1, x2 & x 3 when divided by 4 leaves a 13.
remainder of 0,1 & 2 respectively find number
of non-negative integral solution of the
equation x1 + x2 + x3 = 35, is (1) 45
(2) 55
(3) 105
(4) 190
If |z – 3 – 2i| = |z + 2i|, where z is a complex 14.
number, then minimum value of |z| will be 1
4
7
9
(2)
(3)
(4)
2
5
10
10
2
2
In a DABC if 2c + b – 2bc = 6ac – 9a2,
(with usual notation), then value of cosB is
(1)
15.
(1) 0
(1)
1
2
(2)
1
3
(3)
1
4
(4)
1
6
SPACE FOR ROUGH WORK /
ALLEN
(3) 2
(4) 3
pkj fHkUu iw.kk±d o/kZeku lekUrj Js.kh esa bl izdkj gS
fd buesa ls ,d vU; ds oxks± ds ;ksxQy ds cjkcj g]S
rks bl izdkj dh lekUrj Js.kh;ksa dh la[;k gksxh&
(1) 0
(2) 1
(3) 2
(4) 3
x1, x2 rFkk x3 dks 4 ls foHkkftr djus ij 'ks"kQy
Øe'k% 0,1 rFkk 2 izkIr gksrs gAS
lehdj.k x1 + x2 + x3 = 35 ds v½.kkRed iw.kk±d
gyksa dh la[;k gksxh&
(1) 45
(2) 55
(3) 105
(4) 190
;fn |z – 3 – 2i| = |z + 2i|, tgk¡ z lfEeJ la[;k gks]
rks |z| dk U;wure eku gksxk -
(1)
15.
= e 3 gks] rks ƒ'(0) dk eku gksxk&
(2) 1
A
LL
EN
12.
10.
1
2
(2)
4
5
(3)
7
10
(4)
9
10
f=Hkqt ABC esa lkekU; ladsrksa ds lkFk ;fn
2c2 + b2 – 2bc = 6ac – 9a2 gks] rks cosB dk eku
gksxk&
(1)
1
2
(2)
1
3
(3)
1
4
(4)
1
6
jQ dk;Z ds fy;s txg
H-3/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
15
16.
Value
å(
15
r =0
C r 40 C15 20 C r - 35 C15 15 C r 25 C r
is(1) 0
40
(3) 35C15 –
17.
40
(2) C15 –
C15
20.
21.
C15
(2) 40C15 – 35C15
(3) 35 C15 –
40
C15
2
{ks=Qy gksxk&
(1) 16
(2) 20
16
= 4 ,then minimum value of |z| will bez
5 -1
(3) 2 5 - 2
(1) 1
19.
p
(4) 32
p
p
4 - x + ò dt ³ x ò sin 2 tdt gks] rks x ds
20
0
2
(2) 3
(3) 5
(4) 7
f=Hkqt ABC esa lkekU; ladsrksa ds lkFk a = 10, ÐA=
p
6
rFkk H yEcdsUnz gks] rks H, B rFkk C }kjk fufeZr f=Hkqt
dh ifjf=T;k gksxh-
20.
(1) 5
(2) 10
(3) 20
(4) 40
;fn 3x + 4y = 2 fdlh ijoy; ftldh ukfHk (1,1)
g]S dh fu;rk dk lehdj.k gks] rks ukfHkyEc dh yEckbZ
gksxh&
(1) 1
21.
(2) 0
(4) 5 + 1
SPACE FOR ROUGH WORK /
H-4/31
;fn
(3) 24
iw.kk±d ekuksa dh la[;k gksxh&
(4) 7
p
&
6
H is orthocenter then circumradius of triangle
formed by H, B & C is(1) 5
(2) 10
(3) 20
(4) 40
If 3x + 4y = 2 is directrix of parabola whose
focus is (1,1), then length of latus rectum
will be(1) 1
(2) 2
(3) 3
(4) 4
If z -
18.
(4) 40C15
4y = |4 – x2|, |x| + y = 7 rFkk x > 0 }kjk ifjc¼
p
p
4 - x + ò dt ³ x ò sin 2 tdt , then number
20
0
)
C r 40 C15 20 C r - 35 C15 15 C r 25 C r dk eku
(1) 0
2
For an acute angle DABC, a = 10, ÐA =
(1)
15
gksxk&
(4) 40C15
of integral values of x will be(1) 1
(2) 3
(3) 5
19.
å(
A
LL
EN
If
15
r =0
Area bounded by 4y = |4 – x |, |x| + y = 7 and 17.
x > 0, is(1) 16
(2) 20
(3) 24
(4) 32
p
18.
35
)
16.
(2) 2
(3) 3
(4) 4
;fn z - 16 = 4 gks ] rks |z| dk U;w u re eku
z
gksxk(1) 5 - 1
(2) 0
(3) 2 5 - 2
(4) 5 + 1
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
23.
24.
25.
Which of the following is false ?
(1) Two vectors are always coplanar
r r r are linearly independent then
(2) If a,
b, c
r r r
éa b c ù ¹ 0
ë
û
(3) Four points always lie in a plane
r
r
(4) If a & b are linearly dependent then
r r
a´ b = 0
Tangents are drawn from every point on the
22.
fuEu esa ls dkuS vlR; g?S
(1) nks lfn'k lno
S leryh; gksrs gSA
r r r js[kh; Lora= gks] rks é ar br cr ù ¹ 0
(2) ;fn a,
b, c
ë
û
gksxkA
(3) pkj fcUnq lno
S ,d lery esa fLFkr gksrs gAS
r
r
r
(4) ;fn a rFkk b js[kh; ijra= gks] rks ar ´ b = 0
gksxkA
23. js[kk x + 9y = 4 ds lHkh fcUnq vks a ls nh?kZ o` Ù k
A
LL
EN
22.
x 2 9y 2
+
= 1,
line x + 9y = 4 to the ellipse
4
4
then the corresponding chords of contact
always pass through (a,b), then value of
(a + b) is(1) 0
(2) 2
(3) 5
(4) 7
A(3,6) is a point lying on parabola y2 = 4ax 24.
such that chord AB subtends 90º at origin, then
distance OB will, where O is origin-
(1) 0
(2) 2
(3) 5
(4) 7
2
fcUnq A(3,6) ijoy; y = 4ax ij bl izdkj fLFkr
g]S fd thok AB ewyfcUnq ij 90º dks.k varfjr djrh
g]S rks nwjh OB gksxh, tgk¡ O ewyfcUnq g&S
(1) 12 20
(1) 12 20
(2) 12 17
(3) 9 17
(4) 9 10
Normal at variable point P on ellipse 25.
2x2+y2= 1 meets the coordinate axes at Q &
R, then eccentricity of locus of mid point of
QR will be(1)
1
2
(2)
1
3
(3)
1
2
(4)
2
SPACE FOR ROUGH WORK /
ALLEN
x 2 9y 2
+
= 1 ij Li'kZ js[kk;sa [khpha tkrh gS] rc
4
4
laxr Li'kZ thok lnSo (a,b) ls xqtjrh g]S rks (a + b)
dk eku gksxk&
(2) 12 17
(3) 9 17
(4) 9 10
fdlh nh?kZo`Ùk 2x +y = 1 ds pj fcUnq P ij [khapk
x;k vfHkyEc funs'khZ v{kksa dks Q rFkk R ij feyrk g]S
rc QR ds e/; fcUnq ds fcUnqi Fk dh mRdsUnzrk
gksxh(1)
1
2
2
(2)
2
1
3
(3)
1
2
(4)
2
jQ dk;Z ds fy;s txg
H-5/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
26.
26.
If center of ellipse
( x + 3y - 5)
10
2
( 3x - y - 5 )
+
then 2a + b will be (1) 1
(2) 2
(3) 3
27.
(
( x + 3y - 5)
2
20
= 4 is (a,b),
10
(4) 5
)
27.
( 3x - y - 5 )
+
20
=4
dk ds U nz
(4) 5
fcUnq P (1, 2 2 ) vfrijoy; 9x2–y2 = 1 ij fLFkr
A
LL
EN
3
1
1
(2) 3
(3)
(4)
2
6
3
Statement-I : y = ea+bx is a general solution of
3
(2) 3
2
dFku -I : vody
(1)
28.
2
differential equation y
2
gAS P ij [khap
s h xbZ Li'kZ js[kk] vfrijoy; dh vuUr
Li'khZ;ksa dks Q rFkk R ij dkVrh gS] rc f=Hkqt OQR
dk {ks=Qy gksxk&
Tangent at P on hyperbola cuts asymptotes of
hyperbola at Q & R, then area of DOQR
will be-
28.
2
(a,b) gks] rks 2a + b dk eku gksxk&
(1) 1
(2) 2
(3) 3
P 1, 2 2 is a point on hyperbola 9x2–y2 = 1.
(1)
;fn nh?kZo`Ùk
d 2 y æ dy ö
=ç ÷ .
dx 2 è dx ø
lehdj.k y
(3)
1
6
(4)
1
3
2
d 2 y æ dy ö
= ç ÷ dk gy y = ea+bx gSA
dx 2 è dx ø
2
æ d 2 y ö æ dy ö
Statement-II : Degree of y ç 2 ÷ = ç ÷ is
è dx ø è dx ø
two.
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(3) Statement-I is true, Statement-II is false.
(4) Statement-I is false, Statement-II is true.
SPACE FOR ROUGH WORK /
H-6/31
2
æ d 2 y ö æ dy ö
dFku -II : y ç 2 ÷ = ç ÷ dh ?kkr nks gAS
è dx ø è dx ø
(1)
dFku -I lR; g S _ dFku -II lR; g S _ dFku -II
dFku-I dh lgh O;k[;k gSA
(2)
dFku -I lR; g S _ dFku -II lR; g S_ dFku -II
dFku-I dh lgh O;k[;k ugha gSA
(3)
dFku-I lR; gS] dFku-II vlR; gSA
(4)
dFku-I vlR; gS] dFku-II lR; gSA
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 02
30.
Let 3a + 6c – 4b – 12d = 0.
29.
Statement-I : Equation ax3 + bx2 + cx + d=0
will have atleast one root in (–1,0)
Statement-II : ƒ(x) = ax3 + bx2 + cx + d is
continuous in (–1,0).
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(3) Statement-I is true, Statement-II is false.
(4) Statement-I is false, Statement-II is true.
S1 : x2 + y2 = 4
30.
S2 : x2 + y2 – 4x = 0
Statement-I : Point of intersection of
transverse common tangents of circles S1 & S2
is mid point of their centers.
Statement-II : Point of intersection of
transverse common tangents divides centers in
ratio of their radii internally.
(1) Statement-I is true, Statement-II is true;
statement-II is a correct explanation for
Statement-I.
(2)Statement-I is true, Statement-II is true;
statement-II is not a correct explanation for
Statement-I.
(3) Statement-I is true, Statement-II is false.
(4) Statement-I is false, Statement-II is true.
ekuk 3a + 6c – 4b – 12d = 0 gAS
dFku -I : lehdj.k ax3 + bx2 + cx + d = 0 dk
vUrjky (–1,0) eas de ls de ,d ewy gksxkA
dFku -II : ƒ(x) = ax3 + bx2 + cx + d, vUrjky
(–1,0) esa larr~ gAS
(1) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II
dFku-I dh lgh O;k[;k gSA
(2) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II
dFku-I dh lgh O;k[;k ugha gSA
(3) dFku-I lR; gS] dFku -II vlR; gSA
(4) dFku-I vlR; gS] dFku -II lR; gSA
A
LL
EN
29.
2014
SPACE FOR ROUGH WORK /
ALLEN
S1 : x2 + y2 = 4
S2 : x2 + y2 – 4x = 0
dFku -I : o`Ùkksa S1 rFkk S2 dh f=;Zd mHk;fu"B Li'kZ
js[kkvksa dk izfrPNsn fcUnq muds dsUnzksa dks feykus okyh
js[kk dk e/; fcUnq gSA
dFku -II : f=;Zd mHk;fu"B Li'kZ js[kkvksa dk izfrPNsn
fcUnq] o`Ùkksa dsUnzksa dks feykus okyh js[kk dks mudh f=T;k
ds vuqikr esa vUr% foHkkftr djrk gSA
(1) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II
dFku-I dh lgh O;k[;k gSA
(2) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II
dFku-I dh lgh O;k[;k ugha gSA
(3) dFku-I lR; gS] dFku -II vlR; gSA
(4) dFku-I vlR; gS] dFku -II lR; gSA
jQ dk;Z ds fy;s txg
H-7/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
PART B - PHYSICS
32.
Figure A shows two identical plano-convex 31.
lenses in contact as shown. The combination
has focal length 24 cm. Figure B shows the
same with a liquid introduced between them.
If refractive index of glass of the lenses is 1.50
and that of the liquid is 1.60, the focal length
of the system in figure B will be
fp= A esa nks ,dleku leryksÙky ysal n'kkZ;s x;s gaS
tks fd ,d&nwljs ds lkFk laidZ esa gAS bl la;kstu dh
Qksdl nwjh 24 cm gAS fp= B esa bl la;kstu ds e/;
esa ,d nzo Hkj fn;k x;k gAS ;fn ysalksa ds dk¡p dk
viorZukad 1.50 rFkk nzo dk viorZukad 1.60 gks rks
fp= B esa n'kkZ;s x;s la;kstu dh Qksdl nwjh gksxh
(1) –120 cm
(1) –120 cm
(2) 120 cm
(2) 120 cm
A
LL
EN
31.
(3) –24 cm
(3) –24 cm
(4) 24 cm
(4) 24 cm
A test tube of mass 2m closed with a cork of 32.
mass m contains a drop of liquid of negligible
mass. When the test tube is heated, the liquid
evaporates and the cork flies off under the
pressure of the gas. What must be the minimum
velocity with which the cork must be ejected
such that the test tube describes a full circle of
radius R about the pivot ? (Assuming test tube
as a point object)
2m nOz ;eku dh ,d ij[kuyh dks m nzO;eku ds dkWdZ
ls cUn fd;k x;k g]S ftlesa ux.; nOz ;eku ds nzo dh
,d cwna gAS ;g uyh ds dsUæ ds Åij R yEckbZ dh ,d
jLlh }kjk yVdh gqbZ gAS tc ij[kuyh dks xeZ fd;k
tkrk gS rks noz ok"ihd`r gks tkrk gS rFkk xl
S ds nkc ds
dkj.k dkWdZ [kqy tkrk gAS dkWdZ fdl U;wure osx ls
fudysxk rkfd ij[kuyh dhyd ds lkis{k R f=T;k dk
iw.kZ o`Ùk cuk;s\ (ij[kuyh dks fcUnq nzO;eku ekfu;s)
(1)
(1)
5Rg
5Rg
R
(2) 2 5Rg
2m
m
(2) 2 5Rg
(3) 2 3Rg
(3) 2 3Rg
(4) 2 4Rg
(4) 2 4Rg
SPACE FOR ROUGH WORK /
H-8/31
R
2m
m
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
A square conducting loop is placed in the time 33.
,d oxkZdkj pkyd ywi dks le; ifjorhZ pqEcdh;
æ dB
ö
= + ve constant ÷ .
varying magnetic field ç
è dt
ø
{ks= ç
The centre of square coincides with axis of
cylindrical region of magnetic field. The
directions of induced electric field at point a, b
and c.
dsUnz] pqEcdh; {ks= ds csyukdkj Hkkx dh v{k ds
lkFk lEikrh gAS fcUnq a, b rFkk c ij izsfjr fo|qr {ks=
dh fn'kk,¡ g%S &
æ dB
ö
= +ve fu;rkad ÷ esa j[kk x;k gAS oxZ dk
è dt
ø
A
LL
EN
33.
a
a
b
(1)
b
(3)
a
b
b
(3)
(4)
c
c
SPACE FOR ROUGH WORK /
ALLEN
a
b
a
b
(2)
c
c
c
a
b
(1)
(2)
c
a
a
b
(4)
c
c
jQ dk;Z ds fy;s txg
H-9/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
With reference to figure of a cube of edge a 34.
and mass m, state whether the following (O is
the centre of the cube.) option is CORRECT:-
B
z
A
fp= esa a Hkqtk rFkk m æO;eku okyk ,d ?ku n'kkZ;k
x;k gS ftldk dsUnz O gAS lgh dFku pqfu;s%&
B
z
A
O
O
y
A
LL
EN
34.
y
x
x
(a) The moment of inertia of cube about z-axis
is Iz = Ix + Iy
(b) The moment of inertia of cube about
ma 2
A-axis is I A = I z +
2
(c) The moment of inertia of cube about B axis
is IB = Iz +
ma 2
2
(a) z-v{k ds lkis{k ?ku dk tM+Ro vk?kw.kZ Iz = Ix + Iy
gSA
(b) A- v{k ds lkis { k ?ku dk tM+ R o vk?kw . kZ
IA = Iz +
(c) B- v{k ds lkis { k ?ku dk tM+ R o vk?kw . kZ
IB = I z +
(d) Ix = Iz
ma 2
gAS
2
ma 2
gAS
2
(d) Ix = Iz
(1) b, c
(2) a, b
(1) b, c
(2) a, b
(3) b
(4) d
(3) b
(4) d
SPACE FOR ROUGH WORK /
H-10/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
35.
The variation of lengths of two metal rods A
and B with change in temperature are shown
35.
aA
in figure. The ratio of a is
B
nks /kkfRod NM+kas A rFkk B dh yEckbZ;ksa esa rki ds
lkFk gksus okys ifjorZu dks fp= esa n'kkZ;k x;k gAS
aA
a B dk vuqikr gksxk%&
106
B
104
length(cm)
length(cm)
106
A
100
0
0
3
2
4
3
(2)
(3)
(4)
2
3
3
4
In standard YDSE setup, a small transparent 36.
slab containing material of m = 1.5 is placed
along AS2 (figure). What will be the distance
from O of the central maxima (PO = 1m)
(S1S2 = d)
36.
2
4
3
(3)
(4)
3
3
4
,d ekud YDSE O;oLFkk esa m = 1.5 okys inkFkZ ls
cuh ,d NksVh ikjn'khZ ifêdk dks fp=kuqlkj AS2 ds
vuqfn'k j[kk tkrk gAS dsfUnz; mfPp"B dh O ls nwjh
Kkr dhft,A (PO = 1m) (S1S2 = d)
(1)
3
2
(2)
S1
P
A
L=
d/4
O
S2
T
temp. (°C)
temp. (°C)
(1)
A
100
A
LL
EN
T
B
104
A
L=
d/4
S1
P
O
S2
Screen
Screen
(1) 0.125 m above O
(2) 0.125 m below O
(1) O ls 0.125 m Åij
(2) O ls 0.125 m uhps
(3) 0.25 m below O
(4) 0.25 m above O
(3) O ls 0.25 m uhps
(4) O ls 0.25 m Åij
SPACE FOR ROUGH WORK /
jQ dk;Z ds fy;s txg
ALLEN
H-11/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
t=0
B
A'
D
C C'
x in m
E
fdlh ruh gq b Z jLlh ij le; ds nks {k.kks a
(lhekUr] ekè;) ij vizxkeh rjaxks ds izfr:i dks fp= esa
n'kkZ ; k x;k g SA vizxkeh rja x ks ds fuekZ. k ds fy;s
vè;kjksf ir gksus okyh nks rjaxks dk osx 360 ms–1 rFkk
vko`fr;k¡ 256 Hz gAS t dk laHkkfor eku (sec es)a ugha gksxk:A
t=0
B
A'
x in m
t=?
D
C C'
A
LL
EN
38.
A
37.
displacement
The pattern of standing waves formed on a
stretched string at two instants of time
(extreme, mean) are shown in figure. The velocity
of two waves superimposing to form stationary
waves is 360 ms–1 and their frequencies are
256 Hz. Which is not possible value of t (in sec) :-
displacement
37.
x in m
E
x in m
t=?
(1) 9.8 × 10–4
(2) 10–3
(1) 9.8 × 10–4
(2) 10–3
(3) 2.94 × 10–3
(4) 4.9 × 10–3
(3) 2.94 × 10–3
(4) 4.9 × 10–3
Three identical small electric dipoles are 38.
arranged parallel to each other at equal
separation a as shown in the figure. Their total
interaction energy is U. Now one of the end
dipole is gradually reversed, how much work
is done by the electric forces.
(1)
(3)
17U
8
(2)
16U
8
(4)
16U
17
+
+
a
+
(1)
a
18U
17
SPACE FOR ROUGH WORK /
H-12/31
rhu loZle NksVs fo|qr f}/kzqoksa dks fp=kuqlkj ,d nwljs
ls leku nwjh a ij ,d&nwljs ds lekUrj O;ofLFkr
fd;k tkrk gAS budh dqy vU;ksU; ÅtkZ U gAS vc
fljs ij j[ks fdlh ,d f}/kqzo dks /khjs&èkhjs O;qRØfer
dj nsrs gaS rks fo|qr cyksa }kjk fd;k x;k dk;Z D;k
gksxk\
(3)
17U
8
(2)
16U
8
(4)
16U
17
+
+
a
+
a
18U
17
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
39.
Even number of infinite
+l
39.
concentric circular arcs
R
–l
of same angular span q
carry uniform linear
R
+l
charge densities +l and
q
–l alternatively as
R
shown in figure. Their
radii are R, 2R, 3R....... respectively. The
potential at their common centre is–
(3)
40.
lq ln2
(2)
4p Î0
lq ln 2
2p Î0
(1)
lq ln2
4p Î0
A
LL
EN
(1)
+l
le la[;k okys vuUr ladUs nzh ;
o`Ù kkdkj pki ftudk dks. kh;
R
–l
QSyko q leku g]S ij fp=kuqlkj
R
+l
Øekxr :i ls +l rFkk –l
q
R
le:i js[kh; vkos'k ?kuRo gaAS
mudh f=T;k,a Øe'k% R, 2R, 3R... gSA muds
mHk;fu"B dsUnz ij foHko gksxk%
lq ln1
(3)
lq ln1
(2)
lq ln 2
2p Î0
(4) buesa ls dksbZ ugh
(4) None of these
4p Î0
A current carrying wire in the form of 'V' 40.
alphabet is kept as shown in the figure.
Magnetic field intensity at point P which lies
on the angular bisector of V is
,d /kkjkokgh rkj tks fd V vkÏfr esa eqM+k gqvk gS]
fp=kuqlkj fLFkr gAS V ds dks.kh; yEc v¼Zd ij
fLFkr fcUnq P ij pqEcdh; {ks= rhozrk gksxh %&
m0i
(1) 4 pr [1 - cos a ]
0
m0 i
(2) 2pr [1 - cos a ]
0
m0i
(1) 4 pr [1 - cos a ]
0
m0 i
(2) 2pr [1 - cos a ]
0
m 0 i [1 - cos a]
(3)
4 pr0 sin a
m0 i [1 - cos a ]
(4) 2pr
sin a
0
m 0 i [1 - cos a]
(3) 4 pr
sin a
0
m0 i [1 - cos a ]
(4) 2pr
sin a
0
SPACE FOR ROUGH WORK /
ALLEN
4p Î0
jQ dk;Z ds fy;s txg
H-13/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
42.
A prism is made of wire mesh with each side 41.
having equal resistance R. A battery of 6 volt
and zero resistance is connected across E and
F as shown in the figure. The current in the
branch AB, if R is equal to 5W, is :-
fp= esa rkj ls cus ,d fizTe dh izR;sd Hkqtk dk
izfrjksèk R gAS ,d 'kwU; izfrjks/k okyh 6 volt dh cVS jh
dks fp=kuqlkj E o F ds e/; tksM+ fn;k tkrk gAS ;fn
R dk eku 5W gks rks 'kk[kk AB esa /kkjk dk eku gksxk %&
A
LL
EN
41.
(1) 0.6 A
(2) 0.8 A
(3) 0.4 A
(4) 2A
(1) 0.6 A
(2) 0.8 A
(3) 0.4 A
(4) 2A
An electrical cable of copper has just one 42.
wire of radius 9 mm. Its resistance is 5 W.
This single copper wire of the cable is
replaced by 7 different well insulated copper
wires each of radius 3 mm and same length.
The total resistance of the cable will now be
equal to
rkacs ls cuh ,d fo|qr dscy esa dsoy ,d rkj gS
ftldh f=T;k 9 mm gS rFkk izfrjks/k 5 Ohm gAS bl
vdsys rkacs ds rkj ds LFkku ij izR;sd 3mm f=T;k
rFkk leku yEckbZ okys 7 vyx&vyx dqpkyd rkacs
ds rkj izfrLFkkfir dj fn, tkrs gaSA vc bl dscy dk
dqy izfrjks/k gksxk %&
(1) 6.5 W
(2) 45 W
(1) 6.5 W
(2) 45 W
(3) 90 W
(4) 270 W
(3) 90 W
(4) 270 W
SPACE FOR ROUGH WORK /
H-14/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
44.
A and C are concentric conducting spherical 43.
shells of radius a and c respectively. A is
surrounded by a concentric dielectric of inner
radius a, outer radius b and dielectric constant
k. If sphere A is given a charge Q, the potential
at the outer surface of the dielectric is.
fp= eas A rFkk C Øe'k% f=T;k a o c okys ladsUnzh;
pkyd xksykdkj dks'k gaSA A ,d ladsUnzh ; ijko|
S qr
}kjk f?kjk gqvk gS] ftldh vkUrfjd f=T;k a, cká
f=T;k b rFkk ijko|
S qrkad k gAS A dks Q vkos'k nsus ij
ijko|
S qr dh ckgjh lrg ij foHko gksxk%&
Q
(1) 4pe kb
0
Q
(1) 4pe kb
0
Q æ1
1
ö
(2) 4pe ç +
k(b - a) ÷ø
0 èa
Q æ1
1
ö
(2) 4pe ç +
k(b - a) ÷ø
0 èa
Q
(3) 4pe b
0
Q
(3) 4pe b
0
(4) None of these
The magnetic force between wires as shown 44.
in figure is :-
(4) buesa ls dksbZ ugha
A
LL
EN
43.
i
fp= esa n'kkZ;s x;s rkjksa ds chp pqEcdh; cy gksxk%&
i
l
x
l
x
I
I
(1)
m 0 iI 2 æ x + l ö
ln ç
÷
2p
è 2x ø
m 0 iI æ x + l ö
ln ç
(3)
÷
2p
è x ø
(2)
m 0 iI 2 æ 2x + l ö
ln ç
÷
2p
è 2x ø
(4) None of these
SPACE FOR ROUGH WORK /
ALLEN
m 0 iI 2 æ x + l ö
ln ç
(1)
÷
2p
è 2x ø
(3)
m 0 iI æ x + l ö
ln ç
÷
2p
è x ø
m 0 iI 2 æ 2x + l ö
ln ç
(2)
÷
2p
è 2x ø
(4) buesa ls dksbZ ugha
jQ dk;Z ds fy;s txg
H-15/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
45.
46.
Let np and ne be the numbers of holes and 45.
conduction electrons in an extrinsic
semiconductor :(1) np > ne
(2) np = ne
(3) np < ne
(4) np ¹ ne
A linearly polarized electromagnetic wave 46.
r
given as E = E 0 ˆi cos ( kz - wt ) is incident
47.
(1) np > ne
(2) np = ne
(3) np < ne
(4) np ¹ ne
,d j S f [kd /k
z
q f or fo|q r pq E cdh ; rja x
r
E = E 0 ˆi cos ( kz - wt ) fdlh iw . kZ r ;k ijkorZ d
vuUr yEch nhokj ij z = a ij yEcor~ vkifrr gksrh
gAS ekukfd bl nhokj dk inkFkZ izdkf'kd :i ls vfØ;
gS rc ijkofrZr rjax dh lehdj.k gksxh %&
A
LL
EN
normally on a perfectly reflecting infinite wall
at z = a. Assuming that the material of the wall
is optically inactive, the reflected wave will be
given as
r
(1) Er = - E0iˆ cos ( kz - wt )
r
(2) Er = E0 iˆ cos ( kz + wt )
r
(3) Er = - E0iˆ cos ( kz + wt )
r
(4) Er = E0 iˆ sin ( kz - wt )
ekuk fdlh viæO;h v/kZpkyd esa fNæ rFkk pkyu
bysDVªkWuksa dh la[;k Øe'k% np o ne g]S rc :-
r
(1) Er = - E0iˆ cos ( kz - wt )
r
(2) Er = E0 iˆ cos ( kz + wt )
r
(3) Er = - E0iˆ cos ( kz + wt )
r
(4) Er = E0 iˆ sin ( kz - wt )
The energy spectrum of b-particles [number 47.
N(E) as a function of b-energy E] emitted from
a radioactive source is -
,d jsfM;kslfØ; òksr ls mRlftZr b-d.kksa dk ÅtkZ
LisDVªe [la[;k N(E), b-ÅtkZ E ds Qyu ds :i esa
g]S gS-
(1) N(E)
(1) N(E)
(2) N(E)
E0
E
(3) N(E)
E0
E
E
E0
E
SPACE FOR ROUGH WORK /
H-16/31
E
(3) N(E)
(4) N(E)
E0
E0
(2) N(E)
E0
E
(4) N(E)
E0
E
E0
E
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
48.
If the binding energy per nucleon in 37 Li and
4
2 He
48.
;fn 37 Li rFkk 24 He ukfHkdksa dh izfr U;wfDy;ksu cUèku
ÅtkZ Øe'k% 5.70 MeV rFkk 7.06 MeV g]S rc
nuclei are 5.70 MeV and 7.06 MeV
vfHkfØ;k:
respectively, then in the reaction :
p + 37 Li ® 2 24 He
p + 37 Li ® 2 24 He
energy of proton must be-
esa izkVs kWu dh ÅtkZ vo'; gksuh pkfg,-
(1) 28.24 MeV
(1) 28.24 MeV
A
LL
EN
(3) 1.46 MeV
49.
(2) 17.28 MeV
(4) 16.58 MeV
A wooden cube (density of wood '
r
') of side
3
(3) 1.46 MeV
49.
(2) 17.28 MeV
(4) 16.58 MeV
r
3
Hkqtk 'l' ds ,d ydM+h ds ?ku (ydM+h dk ?kuRo ' ')
'l' floats in a liquid of density 'r' with its upper
dks ?kuRo 'r' ds ,d æo esa bl izdkj rjS k;k tkrk gS
and lower surfaces horizontal. If the cube is
fd mldk Åijh vkjS fupyk i`"B {kfS rt jgsA ;fn ?ku
pushed slightly down and released, it performs
dks FkksM+k lk nckdj NksM+ fn;k tk,] og vkorZ dky
simple harmonic motion of period 'T'. Then,
'T' is equal to :3l
(1) 2p
2g
(3) 2p
3l
g
l
(2) 2p
3g
(1) 2p
3l
2g
(2) 2p
l
3g
2l
g
(3) 2p
3l
g
(4) 2p
2l
g
(4) 2p
SPACE FOR ROUGH WORK /
ALLEN
'T' ls ljy vkorZ xfr djrk gAS rc 'T' dk eku gS :-
jQ dk;Z ds fy;s txg
H-17/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
51.
Two full turns of the circular scale of gauge 50.
cover a distance of 1 mm on scale. The total
number of divisions on circular scale is 50.
Further, it is found that screw gauge has a zero
error of -0.03 mm. While measuring the
diameter of a thin wire a student notes the main
scale reading of 4 mm and the number of
circular scale division in line, with the main
scale as 40. The diameter of the wire is
(1) 4.42 mm
(2) 4.83 mm
(3) 4.77 mm
(4) 4.88 mm
A spherical solid ball of volume V is made of 51.
a material of density r0. It is falling through a
liquid of density r' (r' < r0). Assume that the
liquid applies a viscous force on the ball that is
proportional to the square of its speed v. i.e.,
Fviscous = –kv2, k > 0. The terminal speed of
the ball is (1)
52.
Vg(r0 - r ')
k
(2)
Vgr0
k
V(r0 - r ')
Vgr0
(4)
k
k
Two point white dots are 1 mm apart on a black 52.
paper. They are viewed by eye of pupil diameter
3 mm. Approximately, what is the maximum
distance at which these dots can be resolved by
the eye? [Take wavelength of light = 500 nm]
(1) 1 m
(2) 3 m
(3) 5 m
(4) 7 m
(3)
fdlh LØwxst dk o`Ùkkdkj ieS kuk nks iw.kZ pDdjksa esa
eq[; iSekus ij 1 mm nwjh r; djrk gAS o`Ùkkdkj ieS kus
ds dqy Hkkxksa dh la[;k 50 gAS vkxs ;g Hkh izfs {kr gksrk
gS fd LØw xst esa -0.03mm dh 'kwU; =qfV gAS ,d
irys rkj dk O;kl ekis tkus ds nkSjku] ,d fo/kkFkhZ ;g
izsf{kr djrk gS fd eq[; ieS kus dk ikB~;kad 4 mm gS
rFkk o`Ùkkdkj iSekus ds 40 Hkkx eq[; ieS kus ds lkFk ,d
js[kk esa gAS rkj dk O;kl gS
(1) 4.42 mm
(2) 4.83 mm
(3) 4.77 mm
(4) 4.88 mm
,d V vk;ru dh Bksl xksyh; xsan r0 ?kuRo ds inkFkZ
ls cuh gqbZ gAS bls r' (r' < r0) ?kuRo ds nzo ls fxjk;k
A
LL
EN
50.
SPACE FOR ROUGH WORK /
H-18/31
tkrk gAS eku yhft;s fd nzo] xsan ij ,d ';ku cy
vkjksfir djrk gS tks fd bldh pky v ds oxZ ds
lekuqikrh g]S vFkkZr~ Fviscous = –kv2, k > 0 gS rks
xsan dh lhekUr pky gksxh(1)
Vg(r0 - r ')
k
(2)
Vgr0
k
(3)
Vgr0
k
(4)
V(r0 - r ')
k
fdlh dkys dkxt ij nks 'osr fcUnq ,d nwljs ls 1 mm
nwjh ij vafdr gaSA bu fcUnqvksa dks fdlh us= ftldh
iqryh dk O;kl 3 mm g]S }kjk ns[kk tkrk gAS og
yxHkx vf/kdre nwjh D;k gS ftl ij us= }kjk bu
fcUnqvksa dk foHksnu fd;k tk ldrk g\
S [izdk'k dh
rjaxn/S ;Z = 500 nm yhft,A]
(1) 1 m
(2) 3 m
(3) 5 m
(4) 7 m
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
53.
In which of the following cases, the transistor
is operating in the active region ?
1V
2V
(3)
0V
(2)
1V
2V
(1)
2V
1V
0V
2V
0V
2V
(4)
1V
(3)
1V
0V
combination with the states of output X, Y
and Z given for inputs P, Q, R and S all at
state 1. When inputs P and R change to state
0 with inputs Q and S still at 1, the states of
outputs X, Y and Z change to
X(1)
Z(0)
Y(0)
(1) 1, 0, 0
(2) 1, 1, 1
(3) 0, 1, 0
(4) 0, 0, 1
SPACE FOR ROUGH WORK /
ALLEN
2V
0V
The circuit diagram shows a logic 54.
R(1)
S(1)
(2)
1V
1V
P(1)
Q(1)
0V
0V
2V
54.
fuEu esa ls dkuS ls fodYi esa VªkaftLVj lfØ; {ks= esa
dk;Zjr g\
S
A
LL
EN
(1)
53.
(4)
1V
2V
0V
fp= esa ,d rkfdZd }kjksa dh ,d O;oLFkk çnf'kZr dh
xbZ gS] ftlesa voLFkk 1 ij fo|eku fuos'kh P, Q, R o
S ds fy, fuxZr X, Y rFkk Z dh voLFkk n'kkZ;h x;h
gAS tc fuos'kh P o R dh voLFkk ifjofrZr dj 0 dj
nh tkrh gS tcfd Q o S vc Hkh voLFkk 1 ij gh gS rks
fuxZr X, Y o Z dh voLFkk ifjofrZr gksdj D;k gks
tk;sxh\
P(1)
Q(1)
R(1)
S(1)
(1) 1, 0, 0
(3) 0, 1, 0
X(1)
Z(0)
Y(0)
(2) 1, 1, 1
(4) 0, 0, 1
jQ dk;Z ds fy;s txg
H-19/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
55.
The real time variation of input signals A and 55.
B are as shown below. If the inputs are fed
into NAND gate, then select the output signal
from the following
A
fuos'kh ladrs ksa A rFkk B ds okLrfod le; ifjorZu
dks uhps iznf'kZr fd;k x;k gAS ;fn bu fuos'kksa dks
NAND }kj esa i;
z qDr fd;k tk;s rks fuxZr ladsr D;k
gksxk\
A
B
A
B
B
Y
A
B
A
LL
EN
t(s)
Y
Y
(1)
0
2 4
6 8
t(s)
(3) Y
0
56.
6 8
t(s)
0
2
4
6 8
t(s)
0
0
2 4
6 8
(2)
t(s)
(3) Y
2
4
6 8
0
t(s)
A certain radioactive sample is observed to
undergo 10000 decays in 10 sec. In which of
the following cases can we say that decay rate
during this time interval is approximately
constant and equal to 1000 dps.
(1) t1/2 = 10 sec
(2) tmean = 10 sec
(3) t1/2 >> 10 sec
(4) t1/2 << 10 sec
56.
SPACE FOR ROUGH WORK /
H-20/31
Y
(1)
(4) Y
2 4
t(s)
Y
(2)
2 4
Y
6 8
0
2
4
6 8
t(s)
2
4
6 8
t(s)
(4) Y
t(s)
0
fdlh jsfM;kslfØ; izfrn'kZ ds 10 sec esa 10000
fo?kVu gksrs gaSA fuEu esa ls dkuS lh fLFkfr esa ge dg
ldrs gaS fd bl le;kUrjky esa fo?kVu nj fu;r rFkk
1000 fo?kVu izfr lsd.M ds cjkcj gS %&
(1) t1/2 = 10 sec
(3) t1/2 >> 10 sec
(2) tmean = 10 sec
(4) t1/2 << 10 sec
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 02
57.
Which one of the following statements is 57.
wrong?
(1) Radio waves in the frequency range
30 MHz to 60 MHz are called sky waves
(2) Radio horizon of the transmitting antenna
for space wave is dT =
( Rh T )
(3) Fiber optical communication is free from
electrical disturbances
58.
fuEu esa ls xyr dFku pqfu;s %&
(1) vko`fÙk ijkl 30 MHz ls 60 MHz esa fo|eku
jsfM;ks rjaxs] O;kse rjaxs gksrh gAS
(2) vkdk'k rjaxksa ds fy;s lEisz"k.k ,afVuk dk jsfM;k
f{kfrt dT = ( Rh T ) gksrk gSA
(R = i`Foh dh f=T;k, hT = lEizs"k.k ,afVuk dh
Å¡pkbZ)
A
LL
EN
(R = radius of earth, h T = height of
transmitting antenna)
2014
(3) izdkf'kd rarq lapkj fo|qr fo{kksHkksa ls Lora= gksrk
gSA
(4) The principle of fibre optical
communication is total internal reflection
(4) izdkf'kd rarq lapkj dk fl¼kUr iw.kZ vkarfjd
Electromagnetic waves with frequencies 58.
greater than the critical frequency of ionosphere
cannot be used for communication using sky
wave propagation, because
(1) the refractive index of the ionosphere
becomes very high for f > fc
(2) the refractive index of the ionosphere
becomes very low for f > fc
(3) the refractive index of the ionosphere
becomes very high for f < fc
(4) None of these
vk;u e.My dh Økafrd vko`fr ls vf/kd vko`fr;ksa
SPACE FOR ROUGH WORK /
ALLEN
ijkorZu gksrk gSA
okyh o|
S qr pqEcdh; rjaxkas dk mi;ksx O;kse rjax lapj.k
}kjk lapkj ds fy;s ugh fd;k tk ldrk] D;ksafd%&
(1) f > fc ds fy;s vk;u e.My dk viorZukad cgqr
vf/kd gks tkrk gAS
(2) f > fc ds fy;s vk;u e.My dk viorZukad cgqr
de gks tkrk gAS
(3) f < fc ds fy;s vk;u e.My dk viorZukad cgqr
vf/kd gks tkrk gAS
(4) buesa ls dksbZ ugha
jQ dk;Z ds fy;s txg
H-21/31
ALLEN JEE-MAIN SAMPLE PAPER # 02
60.
Statement-1 : When ultraviolet light is 59.
incident on a photocell, its stopping potential
is V0 and the maximum kinetic energy of the
photoelectrons is Kmax . When the ultraviolet
light is replaced by X-rays, both V0 and Kmax
increases.
Statement-2 : Photoelectrons are emitted
with speeds ranging from zero to a maximum
value because of the range of frequencies
present in the incident light.
(1) Statement-1 is true, statement-2 is true and
statement-2 is correct explanation for
statement-1.
(2) Statement-1 is true, statement-2 is true and
statement-2 is NOT the correct explanation
for statement-1.
(3) Statement-1 is true, statement-2 is false.
(4) Statement-1 is false, statement-2 is true.
Statement-1: In a resonance co lumn 60.
apparatus, the displacement node is formed
at the free surface of water.
Statement-2 : The sound wave undergoes a
phase change of p on reflection from a water
surface.
(1) Statement-1 is true, statement-2 is true and
statement-2 is correct explanation for
statement-1.
(2) Statement-1 is true, statement-2 is true and
statement-2 is NOT the correct explanation
for statement-1.
(3) Statement-1 is true, statement-2 is false.
(4) Statement-1 is false, statement-2 is true.
dFku -1 : tc fdlh QksVks lsy ij ijkcSaxuh izdk'k
vkifrr gksrk gS rks bldk fujks/kh foHko V0 rFkk QksVks
bysDVªkWuksa dh vf/kdre xfrt ÅtkZ K max gksrh gSA
tc bl ijkcSaxuh izdk'k ds LFkku ij X-fdj.k iz;qä
dh tkrh gS rks V0 o Kmax nksuksa c<+ tkrs gaSA
dFku -2 : izdk'k bysDVªkWu 'kwU ; ls vf/kdre eku
ijkl okyh pky ds lkFk mRlftZr gksrs gaSA ,slk vkifrr
izdk'k esa fo|eku fofHkUu ijkl dh vko`fÙk;ksa ds dkj.k
gksrk gAS
(1) dFku –1 lR; gS] dFku –2 lR; g S; dFku –2
dFku–1 dh lgh O;k[;k djrk gAS
(2) dFku –1 lR; gS] dFku –2 lR; g S; dFku –2
dFku–1 dh lgh O;k[;k ugha djrk gS
(3) dFku–1 lR; g,S dFku–2 vlR; gAS
(4) dFku–1 vlR; gS] dFku–2 lR; gAS
dFku-1: vuqukn LrEHk midj.k esa ,d foLFkkiu fuLian
ty dh eqä lrg ij curk gAS
dFku -2: ty lrg ls ijkorZu gksus ij /ofu rjax esa
p dykUrj mRiUu gks tkrk gAS
(1) dFku –1 lR; gS] dFku –2 lR; g S; dFku –2
dFku–1 dh lgh O;k[;k djrk gAS
(2) dFku –1 lR; gS] dFku –2 lR; g S; dFku –2
dFku–1 dh lgh O;k[;k ugha djrk gS
(3) dFku–1 lR; g,S dFku–2 vlR; gAS
(4) dFku–1 vlR; gS] dFku–2 lR; gAS
A
LL
EN
59.
2014
SPACE FOR ROUGH WORK /
H-22/31
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
PART C - CHEMISTRY
62.
63.
64.
Which among the following aqueous solution
have highest boiling point (1) 1 molal KCl solution
(2) 2 molal glucose
(3) 1 molal Co(NO3)2 solution
(4) 1 molal NaCl solution
For a first order reaction choose the
CORRECT statement :–
(1) The degree of dissociation is equal to
(1 – e–kT)
(2) The pre-exponential factor in the arrhenius
equation has the dimension of time–1
(3) A plot of reciprocal concentration of the
reactant v/s time gives a straight line
(4) (1) & (2) both
The number of electrons of chlorine atom for
which n + l + m = 1 is :
(1) 4
(2) 2
(3) 3
(4) 5
61.
fuEu tyh; foy;uks a es a ls fdldk DoFkuka d
lokZf/kd gksxk (1) 1 eksy y KCl foy;u
(2) 2 eksyy Xywdkst
(3) 1 eksy y Co(NO3)2 foy;u
(4) 1 eksyy NaCl foy;u
62. izFke dksfV vfHkfØ;k ds fy, lgh dFku dk p;u
dhft, :–
(1) fo;kstu dh ek=k (1 – e–kT) ds cjkcj gksrh
gS
(2) vkjfguh;l lehdj.k esa iwoZ ?kkrkadh xq.kkd
–1
dh foek le; gksrh gS
(3) fØ;kdkjdks dh lkUnzrk dk O;qRØe v/s le; dk
oØ ,d lh/kh js[kk gksrh gS
(4) (1) rFkk (2) nksuksa
63. Dyksfju ijek.kq ds ,sls byDS Vªkus ksa dh la[;k ftuds fy,
n + l + m = 1 gksrk g]S gSa&
A
LL
EN
61.
How many grams of CaC2O4 will dissolve in 64.
distilled water to make 1 lt. of sturated solution?
(Ksp for CaC2O4 = 2.5 × 10–9 and its molecular
wt. is 128)
(1) 4
(3) 3
(2) 2
(4) 5
,d yhVj lar`Ir foy;u cukus ds fy, vklqr ty
esa CaC2 O 4 ds fdrus xz k e foys ; fd;s tk,s x s a ]
(CaC2O4 ds fy, Ksp = 2.5 × 10–9 rFkk bldk
vkf.od Hkkj 128 gksrk gS)
(1) 0.0064 gm
(2) 0.0128 gm
(1) 0.0064 gm
(2) 0.0128 gm
(3) 0.0032 gm
(4) 0.0640 gm
(3) 0.0032 gm
(4) 0.0640 gm
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-23/31
ALLEN JEE-MAIN SAMPLE PAPER # 02
66.
67.
68.
Equivalent mass of oxidising agent in the
reaction,
SO2 + 2H2S ® 3S + 2H2O is
(1) 32
(2) 64
(3) 16
(4) 8
DGº of the cell reaction
AgCl(s) + ½ H2(g)ƒAg(s)+H+(aq.)+ Cl–(aq.)
is –21.52 kJ. Calculate the EMF for the cell
reaction
2AgCl(s)+H2(g)ƒAg(s)+2H+(aq.)+ 2Cl–(aq.)
(1) 0.223 V
(2) 0.446 V
(3) 0.112 V
(4) 0.337 V
The aq.solutions of the following substances
were electrolysed using inert electrodes. In
which case, the pH of the solution does not
change (1) AgNO3 (aq.)
(2) CuSO4 (aq.)
(3) dil.NaCl (aq.)
(4) K2SO4 (aq.)
Identify the correct statement regarding
entropy.
(1) At absolute zero temperature, the entropy
of perfectly crystalline substance is +ve.
(2) At absolute zero temp. entropy of perfectly
crystalline substance is taken to be zero.
(3) At 0 °C the entropy of a perfectly
crystalline substance is taken to be zero.
(4) At absolute zero temperature, the entropy
of all crystalline substances is taken to be
zero.
65.
fuEu vfHkfØ;k esa vkWD lhdkjd dk rqY ;kad Hkkj
gksxk
SO2 + 2H2S ® 3S + 2H2O
(1) 32
(2) 64
(3) 16
(4) 8
66.
fuEu lSYk vfHkfØ;k dk
AgCl(s) + ½ H2(g)ƒAg(s)+H+(aq.)+ Cl–(aq.)
DGº = –21.52 kJ gS fuEu ly
S vfHkfØ;k ds fy,
EMF dh x.kuk dhft,A
2AgCl(s)+H2(g)ƒAg(s)+2H+(aq.)+ 2Cl–(aq.)
(1) 0.223 V
(2) 0.446 V
(3) 0.112 V
(4) 0.337 V
A
LL
EN
65.
67.
fuEu inkFkksZ ds tyh; foy;uksa dks OkS|qr vi?kfVr fd;k
x;kA ;fn vfØ; bysDVªkM
s +ks dk mi;ksx fd;k x;k gks]
rks fdl fLFkfr esa] foy;u dh pH ifjofrZr ugha
gksrh gS -
(1) AgNO3 (aq.)
(3) dil.NaCl (aq.)
68.
SPACE FOR ROUGH WORK /
H-24/31
2014
(2) CuSO4 (aq.)
(4) K2SO4 (aq.)
,UVªkWih ds lanHkZ esa lgh dFku igpkfu, &
(1) ije'kwU; rki ij iw.kZr% fØLVyh; inkFkZ dh ,UVªkWih
/kukRed gksrh gSA
(2) ije'kwU; rki ij iw.kZr% fØLVyh; inkFkZ dh ,UVªkWih
'kwU; ekuh tkrh gAS
(3) 0°C ij iw.kZr% fØLVyh; inkFkZ dh ,UVªkWih 'kwU;
ekuh tkrh gSA
(4) ije'kwU; rki ij lHkh fØLVyh; inkFkks± dh ,UVªkWih
'kwU; ekuh tkrh gSA
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
70
The number of atoms per unit cell in a simple 69.
cubic, face-centred cubic and body-centered
cubic structure respectively are (1) 1, 4, 2
(2) 1, 2, 4
(3) 8, 14, 9
(4) 8, 4, 2
10 moles of SO3 gas is taken in 1 lt. closed 70
rigid container and allowed to attain
equilibrium at 27ºC as
2SO3(g) ƒ 2SO2(g)+ O2(g)
2 moles of O2(g) is formed at equilibrium.
If 10 moles of SO2(g) & 5 moles of O2(g) is taken
in the same container at same temperature, then
number of moles of SO 3(g ) formed at
equilibrium is :
(1) 4 mole
(2) 8 mole
(3) 2 mole
(4) 6 mole
Which of the following is not 71.
disproportionation reaction.
(1) Heating of H3PO3
ljy ?kuh;] Qyd dsfUnz r ?kuh; rFkk dk; dsfUnzr
?kuh; lajpukvksa esa izfr bdkbZ lSy esa ijek.kqvksa dh
la[;k Øe'k% gS (1) 1, 4, 2
(2) 1, 2, 4
(3) 8, 14, 9
(4) 8, 4, 2
10 eksy SO3 xl
S dks 1 yhVj ds can n`< ik= esa fy;k
x;k rFkk 27ºC ij lkE; izkIr gksus fn;k x;k
2SO3(g) ƒ 2SO2(g)+ O2(g)
lkE; ij 2 eksy O2(g) dk fuekZ.k gksrk gS
A
LL
EN
69.
;fn 10 eksy SO2(g) rFkk 5 eksy O2(g) dks leku ik=
esa leku rki ij fy;k x;k gks] rks lkE; ij cuus okys
SO3(g) ds eksyksa dh la[;k gksxh :
(1) 4 eksy
(2) 8 eksy
(3) 2 eksy
(4) 6 eksy
fuEu esa ls dkuS lh vfHkfØ;k fo"kekuqikru vfHkfØ;k
ugha gS
(1) H3PO3 dks xeZ djuk
(2) XeF6 dk ty vi?kVu
(2) Hydrolysis of XeF6
(3) NaOH ds lkFk P4 dks xeZ djuk
(3) Heating of P4 with NaOH
(4) NO2 dk ty vi?kVu
(4) Hydrolysis of NO2
72. Which of the following metal does not evolve 72. fuEu esa ls dkSulh /kkrq viuh mi;qDr ifjfLFkfr ij
H2O ds lkFk H2 xl
S mRlftZr ugha djrh gS&
H2 gas with H2O at their appropriate condition
71.
(1) Cu
(3) Mg
(2) Na
(4) Fe
SPACE FOR ROUGH WORK /
ALLEN
(1) Cu
(3) Mg
(2) Na
(4) Fe
jQ dk;Z ds fy;s txg
H-25/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
74.
75.
76.
77.
78.
Which of the following metal is inert towards
reaction with conc. nitric acid.
(1) Cu
(2) Zn
(3) Ag
(4) Pt
Which of the following product is formed when
S2O32– reacts with MnO4– in the presence of
acidic medium.
(1) SO42–
(2) S4O62–
(3) S
(4) Both (1) & (3)
Which of the following species is paramagnetic
in nature(1) MnO42–
(2) CrO42–
(3) [Pt(NH3)4]2+
(4) All of these
Which of the following molecule has S–O–S
linkage (1) H2S 2O 8
(2) H2S2O5
(3) S3O 9
(4) H2S2O4
Which of the following lanthanide is man made
and radioactive in nature
(1) Ce
(2) Pm
(3) Nd
(4) Gd
Which of the following order is incorrect(1) F < Cl
: Electron affinity
+
2+
(2) Au > Hg : Ionic radius
(3) B < Be
: 1st Ionisation energy
(4) Li < Cs
: Electronegativity
73.
fuEu esa ls dkSulh /kkrq lkUnz ukbfVªd vEy ds lkFk
vfHkfØ;k ds izfr vfØ; gksrh gS
(1) Cu
(3) Ag
74.
tc vEyh; ek/;e dh mifLFkfr esa S 2O3 2– dh
MnO4– ds lkFk vfHkfØ;k djkrs gaS rc fuEu mRiknksa
esa ls fdldk fuekZ.k gksrk gS&
(1) SO42–
(3) S
75.
(2) Zn
(4) Pt
(2) S4O62–
(4) nksuksa (1) rFkk (3)
fuEu esa ls dkSulh Lih'kht vuqpqEcdh ; izd`fr dh
gS -
A
LL
EN
73.
(1) MnO42–
(3) [Pt(NH3)4]2+
76.
77.
fuEu esa ls dk S ulk y SU Fksu kbM ekuo fufeZ r rFkk
jsfM;ks/kehZ izd`fr dk gAS
(1) Ce
(3) Nd
78.
SPACE FOR ROUGH WORK /
H-26/31
(2) CrO42–
(4) mijksDr lHkh
fuEu esa ls dkSuls v.kq esa S–O–S ca/ku mifLFkr
gS (1) H2S 2O 8
(2) H2S2O5
(3) S3O 9
(4) H2S2O4
(2) Pm
(4) Gd
fuEu esa ls dkSulk Øe xyr gS (1) F < Cl
: bySDVªkWu ca/kqrk
+
2+
(2) Au > Hg : vk;fud f=T;k
(3) B < Be
: izFke vk;uu ÅtkZ
(4) Li < Cs
: fo|qr½.krk
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
80.
81.
Which of the following complex is low spin as 79.
well as paramagnetic in nature.
(1) [Fe(NH3)6]2+
(2) [Mn(NH3)6]2+
(3) [Co(H2O)6]3+
(4) [Co(NH3)6]2+
Which of the following step is not involved in 80.
the extraction of blister copper from copper
pyrite.
(1) Smelting
(2) Roasting
(3) Auto / Self reduction
(4) Polling
81.
Identify correct acidic strength order OH
(I)
82.
83.
fuEu esa ls dkuS lk ladqy U;wu pØ.k ds lkFk lkFk
vuqpqEcdh; izd`fr dk gS -
(1) [Fe(NH3)6]2+
(3) [Co(H2O)6]3+
COOH
OH
(II)
OH
(2) HktZu
(3) Lor% vip;u
(1) I > II > III
(2) II > III > I
(3) III > II > I
(4) II > I > III
dentify artificial sweetner (1) Alitame
(2) Aspartame
(3) Saccharine
(4) All are correct
Identify condensation copolymer (1) Natural rubber
(2) Bakelite
(3) PVC
(4) Nylon-6
vEyh; lkeF;Z dk lgh Øe igpkfu;s -
(I)
82.
83.
SPACE FOR ROUGH WORK /
ALLEN
(4) ikWfyax
OH
NO2
(III)
(2) [Mn(NH3)6]2+
(4) [Co(NH3)6]2+
fuEu esa ls dkSulk in dkWij ikbjkbV ls QQksysnkj
dkWij ds fu"d"kZ.k esa lfEefyr ugha gS
(1) izxyu
A
LL
EN
79.
COOH
OH
(II)
OH
NO2
(III)
(1) I > II > III
(2) II > III > I
(3) III > II > I
(4) II > I > III
d`f=e feBkl (sweetner) dks igpkfu;s (1) ,fyVse
(2) ,LikjVe
(3) lsfØu
(4) lHkh lgh gS
la?kuu lgcgqyd dks igpkfu;s (1) izkd`frd jcj
(2) cd
S y
s kbV
(3) PVC
(4) uk;ykWu-6
jQ dk;Z ds fy;s txg
H-27/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
OH
OH
NaOH
Br2 water
84.
NaOH
Br2 water
84.
Major product is -
SO3H
SO3H
OH
OH
OH
Br
Br
(2)
(1)
Br
OH
SO3H
(3)
Br
Br
Br
Br
Mixture of alcohol and acetone is separated by 85.
(1) Aq. NaHCO3 extraction
(2) Aq. NaOH extraction
(3) NaHSO3 test
(4) Victor mayer test
Identify total structural isomers for C6H14 86.
molecular formula (1) 3
(2) 5
(3) 7
(4) 9
SPACE FOR ROUGH WORK /
H-28/31
Br
OH
OH
(4)
Br
86.
Br
(2)
SO3H
Br
OH
85.
Br
Br
SO3H
(3)
OH
Br
Br
A
LL
EN
(1)
eq[; mRikn gS -
(4)
Br
Br
Br
SO3H
,YdksgkWy rFkk ,lhVksu ds feJ.k dks fdlds }kjk i`Fkd
fd;k tk ldrk gS
(1) tyh; NaHCO3 fu"d"kZ .k
(2) tyh; NaOH fu"d"kZ.k
(3) NaHSO3 ijh{k.k
(4) foDVj es;j ijh{k.k
vkf.od lw= C6H14 ds fy, lajpuk leko;fo;ksa dh
dqy la[;k gS-
(1) 3
(3) 7
(2) 5
(4) 9
jQ dk;Z ds fy;s txg
ALLEN
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
87.
Identify major product for following reaction 87.
O
O
O
pH 4 to 6
+ NH2–NH2 ¾¾¾¾
® major
product (1)
O
N
N
N
NH
(2)
(4)
H2N N
OH
O
(1)
OH
(3)
N
N
N
NH
(2)
(4)
excess
AC2O
OH
major product
88.
OH
O
OH
excess
AC2O
OH
N
eq[; mRikn
N
O
O
O
O
O C Me
O C Me
O C Me
O C Me
(1)
COOH
(2)
(1)
O C Me
OH
O C Me
O
OH
(3)
O
(4)
OH
O
OH
(4)
C Me
OH
O
SPACE FOR ROUGH WORK /
O
C Me
(3)
C Me
OH
COOH
(2)
C Me
ALLEN
H2N N
OH
OH
88.
pH 4 to 6
+ NH2–NH 2 ¾¾¾¾
® eq[ ;
mRikn -
A
LL
EN
(3)
fuEu vfHkfØ;k ds fy, eq[; mRikn crkb;s
O
jQ dk;Z ds fy;s txg
H-29/31
2014
ALLEN JEE-MAIN SAMPLE PAPER # 02
89.
Identify correct reactivity order for dehydration 89.
of following compounds [Reaction with
conc.H2SO4/D]-
90.
OH
(II)
OH
(I)
OH
(III)
A
LL
EN
OH
(I)
fuEu ;kfS xdksa ds futZyhdj.k ds fy, fØ;k'khyrk dk
lgh Øe igpkfu;s [lkUnz H2SO4 /D ds lkFk
vfHkfØ;k]-
(1) I > II = III
(1) I > II = III
(2) I > III > II
(2) I > III > II
(3) III > II > I
(3) III > II > I
(4) II > I > III
(4) II > I > III
Identify correct reactivity order for the
90.
following compounds on reaction with
anhydrous PCl3
OH
(I)
(II)
(1) I > II > III
(2) II > I > III
(3) III > II > I
(4) III > I > II
SPACE FOR ROUGH WORK /
H-30/31
djkus ij fØ;k'khyrk dk lgh Øe crkb;sA
OH
(III)
OH
(III)
fuEu ;kfS xdks dh futZyh; PCl3 ds lkFk vfHkfØ;k
OH
OH
OH
(II)
(I)
OH
(II)
OH
(III)
(1) I > II > III
(2) II > I > III
(3) III > II > I
(4) III > I > II
jQ dk;Z ds fy;s txg
ALLEN
ALLEN JEE-MAIN SAMPLE PAPER # 02
jQ dk;Z ds fy;s txg
A
LL
EN
SPACE FOR ROUGH WORK /
2014
SPACE FOR ROUGH WORK /
ALLEN
jQ dk;Z ds fy;s txg
H-31/31