ALLEN TM CAREER INSTITUTE Path to Success KOTA (RAJASTHAN) ALLEN JEE-MAIN SAMPLE PAPER # 03 TARGET - 2014 egRoiw . kZ lw p uk,¡ IMPORTANT INSTRUCTIONS Do not open this Test Booklet until you are asked to do so. bl ijh{kk iq fLrdk dks rc rd u [kksysa tc rd dgk u tk,A ijh{kk iqfLrdk ds bl i`"B ij vko';d fooj.k uhys@dkys ckWy ikbaV isu ls rRdky HkjsaA isfUly dk iz;ksx fcYdqy oftZr gaSA ijh{kkFkhZ viuk QkeZ ua- (fu/kkZfjr txg ds vfrfjä) ijh{kk iqfLrdk @ mÙkj i= ij dgha vkSj u fy[ksaA ijh{kk dh vof/k 3 ?ka V s gSA bl ijh{kk iqfLrdk esa 90 iz'u gaSA vf/kdre vad 360 gSaA 1. Immediately fill in the form number on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited. 1. 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. 2. 3. The test is of 3 hours duration. 3. 4. The Test Booklet consists of 90 questions. The maximum marks are 360. 4. 5. There are three parts in the question paper A,B,C consisting of Mathematics, Physics and Chemistry having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response. 5. bl ijh{kk iqfLrdk es a rhu Hkkx A, B, C gSa] ftlds izR;sd Hkkx esa xf.kr] HkkSfrd foKku ,oa jlk;u foKku ds 30 iz'u gaS vkSj lHkh iz'uksa ds vad leku gASa izR;sd iz'u ds lgh mÙkj ds fy, 4 (pkj)vad fuèkkZfjr fd;s x;s gAaS 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet. 6. 7. Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side–1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited. 7. 8. No candidate is allowed to carry any textual material, printed or written, 8. izR;sd xyr mÙkj ds fy, ml iz'u ds dqy vad dk ,d pkSF kkbZ vad dkVk tk;sxkA mÙkj iqfLrdk esa dksbZ Hkh mÙkj ugha Hkjus ij dqy izkIrkad esa ls ½.kkRed vadu ugha gksxkA mÙkj i= ds i` " B&1 ,oa i` " B&2 ij okafNr fooj.k ,oa mÙkj vafdr djus gsrq dsoy uhys@ dkys ckWy ikba V isu dk gh iz;ksx djsaA isf Uly dk iz ;ksx fcYdqy oftZr gSA ijh{kkFkhZ }kjk ijh{kk d{k @ gkWy esa ifjp; i= ds vykok fdlh Hkh izdkj dh ikB~; lkexzh eqfær ;k gLrfyf[kr dkxt dh ifpZ;ksa] istj] eksckby Qksu ;k fdlh Hkh izdkj ds bysDVªkfud midj.kksa ;k fdlh vU; izdkj dh lkexzh dks ys tkus ;k mi;ksx djus dh vuqefr ugha gSaA bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room. 9. jQ dk;Z ijh{kk iqfLrdk esa dsoy fu/kkZfjr txg ij gh dhft;sA 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them. 10. 11. Do not fold or make any stray marks on the Answer Sheet. 11. ijh{kk lekIr gksus ij] ijh{kkFkhZ d{k@gkWy NksM+us ls iwoZ mÙkj i= d{k fujh{kd dks vo'; lkiSa nsAa ijh{kkFkhZ vius lkFk bl ijh{kk iq fLrdk dks ys tk ldrs gaS A mÙkj i= dks u eksMa+s ,oa u gh ml ij vU; fu'kku yxk,saA 9. Rough work is to be done on the space provided for this purpose in the Test Booklet only. Corporate Office ALLEN Career Institute, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005, Trin : +91 - 744 - 2436001 Fax : +91-744-2435003, E-Mail: [email protected] Website: www.allen.ac.in 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 HAVE CONTROL ¾® HAVE PATIENCE ¾® HAVE CONFIDENCE Þ 100% SUCCESS BEWARE OF NEGATIVE MARKING PART A - MATHEMATICS 2. r r r rr For three vectors a, b and c , given a.b = 0 r r and c makes 30º with the plane containing a r r r r and b . If a = 4 , b = 6 and c = 5 , volume 4. r r r rr rhu lfn'kksa a, b rFkk c ds fy;s] a.b = 0 rFkk cr , of tetrahedron whose coterminous edges are r r r given by a, b and c will be (in cu. units)- r r a rFkk b dks j[kus okys lery ds lkFk 30º dk dks.k r r r cukrk gAS ;fn a = 4 , b = 6 rFkk c = 5 gks] rks r r prq"Qyd dk vk;ru ftldh vklUu dkjS s a, b rFkk r c g]S gksxk (?ku bdkbZ esa)- (1) 120 (1) 120 (2) 60 (3) 10 (4) 5 If P 1 : x + ay – 3z + 3 = 0 and 2. P2 : x + 2y – bz + c = 0 are two parallel planes such that sum of intercepts made by P2 on the axes is 14 then value of (a + b + c) will be(1) 8 3. 1. A LL EN 1. (2) 7 (3) –6 (4) –7 (2) 60 (3) 10 (4) 5 ;fn P1 : x + ay – 3z + 3 = 0 rFkk P2 : x + 2y – bz + c = 0 nks lekUrj lery bl izdkj gS fd v{kksa ij lery P2 }kjk cuk;s x;s vUr% [k.Mksa dk ;ksxQy 14 gks] rks (a + b + c) dk eku gksxk& (1) 8 (2) 7 (3) –6 (4) –7 Absolute value of slope of a line, common 3. tangent to both the curves given by y = x 2 and x2 + y + 1 = 0 will be- ml js[kk dh izo.krk dk fujis{k eku] tks nksuksa oØksa y = x 2 rFkk x2 + y + 1 = 0 dh mHk;fu"B Li'kZ js[kk g]S gksxk& (1) (1) 5 (2) 2 (3) 3 (4) 2 If ƒ(x) is invertible function " x Î [1,5] and 4. g(x) is inverse of ƒ(x) such that g(3) = 1 and 5 6 1 3 5 (2) 2 (3) 3 (4) 2 ;fn ƒ(x), " x Î [1,5] O;qRØe.kh; Qyu rFkk g(x), ƒ(x) dk izfrykse bl izdkj gS fd g(3) = 1 rFkk 5 6 1 3 g(6) = 5 then value of ò ƒ(x)dx + ò g ( x ) dx is- g(6) = 5 gks] rks ò ƒ(x)dx + ò g ( x ) dx dk eku gksxk- (1) 8 (1) 8 (2) 27 (3) 64 (4) 125 SPACE FOR ROUGH WORK / ALLEN (2) 27 (3) 64 (4) 125 jQ dk;Z ds fy;s txg H-1/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 ¥ 5. Value of ò 0 8. ) lnx dx is- +1 x 2 ¥ 5. ò (x 0 (2) 2 +1 x 2 (1) 2e ) lnx dx dk eku gksxk& (2) 2 e (3) - 2 e (1) 720 (2) 740 (1) 720 (2) 740 (3) 745 (4) 900 (3) 745 (4) 900 éa 2 2 ù ê ú Given A = ê1 b 4 ú , where abc = –10 and 7. êë3 5 c úû éa 2 2 ù A = êê1 b 4 úú fn;k x;k gS, tgk¡ abc = –10 rFkk êë3 5 c úû 10a + 3b + c = 17 gAS |A.Adj(A)| dk eku 10a + 3b + c = 17. Value of |A.Adj(A)| will be (1) 1000 (2) –1000 gksxk (1) 1000 (2) –1000 (3) 0 (3) 0 (4) 1331 (4) 1331 A biased die is such that probability of 8. obtaining face numbered i is proportional to i. If die is rolled twice and faces 'a' and 'b' turn up on first and second turn respectively, then probability that a is even and b is odd is(1) 12 49 (2) 9 49 (3) 17 49 (4) 8 49 SPACE FOR ROUGH WORK / H-2/31 (4) 'kwU; A rFkk B nks leqPp; bl izdkj gS fd n(A) = 4 rFkk n(B) = 5 gSA ;fn leqPp; A ls B esa laHko ifjHkkf"kr izfrfp=.kksa dh la[;k x rFkk buesa ls y izfrfp=.k ,dd S h gks] rks x + y dk eku gksxk& A LL EN 7. 2 2 2 (3) (4) zero e e A and B are two sets such that n(A) = 4 and 6. n(B) = 5. If number of possible mappings defined from set A to B is x and out of these y mappings are one-one, then x + y will be - (1) 2e 6. (x ,d i{kikrh ikalk bl izdkj gS fd Qyd la[;k i vkus dh izkf;drk i ds lekuqikrh gAS ;fn ikalk nks ckj Qad S k tkrk gS rFkk izFke ,oa f}rh; mNky esa Øe'k% Qyd la[;k a o b izkIr gksrh gaS] rc izkf;drk fd a le rFkk b fo"ke gksxk] gksxh& (1) 12 49 (2) 9 49 (3) 17 49 (4) 8 49 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 9. Area of region enclosed between curves given 9. by y2 = –4x and -x = | y | is (in sq. units)1 2 4 8 (2) (3) (4) 3 3 3 3 Number of possible 8 digit odd numbers formed using digits 0,0,2,2,3,3,4,5 is- (1) (1) 10. (1) 6 C 2 . 5! 2! 6 (2) C 2 . 10. 13. 2 3 11. (1) 4 units (2) 9 units (3) 12 units (4) 16 units An ellipse has its focii as S 1 (1,–2) and 12. S2(–3,4). If the foot of perpendicular dropped from S2 on a tangent to the ellipse is (1,6), then length of minor axis of ellipse will be (1) 2 units (2) 4 units (3) 8 units (4) 16 units Area of quadrilateral formed by joining focii 13. x2 y2 x2 y2 + = 1 and + = 1 is of ellipses 16 12 12 16 (in sq. units) (1) 2 (2) 4 (3) 6 (4) 8 SPACE FOR ROUGH WORK / ALLEN (3) 4 3 (4) 8 3 vadksa 0,0,2,2,3,3,4,5 ds iz;ksx ls fufeZr laHko 8 vadksa dh fo"ke la[;kvksa dh la[;k gksxh& A LL EN line 4x + 4 3y - 1= 0 on the curve y2 = x will be- 12. (2) (1) 6 C 2 . 6 (3) C 2 . 11. 1 3 5! 2! 5! 3 6 (3) C 2 . . 2! 2 5! 2!2! 5! 3 5! 6 . (4) C 2 . .3 2! 2 2! Length of intercept cut by oØks y2 = –4x rFkk -x = | y | ds e/; Nk;kafdr {ks= dk {ks=Qy gksxk (oxZ bdkbZ esa)- 6 (2) C 2 . 5! 2!2! 6 (4) C 2 . 5! .3 2! oØ y2 = x ij js[kk 4x + 4 3y - 1 = 0 }kjk dkVs x;s vUr% [k.M dh yEckbZ gksxh& (1) 4 bdkbZ (2) 9 bdkbZ (3) 12 bdkbZ (4) 16 bdkbZ ,d nh?kZo`Ùk dh ukfHk;k¡ S1(1,–2) rFkk S2(–3,4) gAS ;fn nh?kZo`Ùk dh fdlh Li'kZ js[kk ij S2 ls Mkys x;s yEc dk ikn (1,6) gks] rks nh?kZo`Ùk ds y?kqv{k dh yEckbZ gksxh& (1) 2 bdkbZ (2) 4 bdkbZ (3) 8 bdkbZ (4) 16 bdkbZ x2 y2 x2 y2 + = 1 rFkk + = 1 dh ukfHk;ksa 16 12 12 16 dks feykus ij fufeZr prqHkqZt dk {ks=Qy gksxk (oxZ bdkbZ esa) nh?kZo`Ùk (1) 2 (2) 4 (3) 6 (4) 8 jQ dk;Z ds fy;s txg H-3/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 14. Locus of mid points of parallel chords of curve 14. xy = 8 having slope 2 is- (1) y = 2x (3) y = (4) y = - x 2 (3) y = ì æ e1/ x - e -1/ x ö x¹0 ïx Consider ƒ ( x ) = í èç e1/ x + e -1/ x ø÷ ï 0 x=0 î 15. (4) y = - x 2 ì æ e1/ x - e -1/ x ö x¹0 ïx ç 1/ x ekuk ƒ ( x ) = í è e + e -1/ x ÷ø g-S ï 0 x=0 î (1) ƒ(x), x = 0 ij uk rks larr~ vkSj uk gh vodyuh; (2) ƒ(x) is continuous but not differentiable at x=0 (2) ƒ(x), x=0 larr~ ijUrq vodyuh; ugha gksxkA (4) Jump of discontinuity for ƒ(x) at x = 0 is 2. gksxk (3) ƒ(x), x = 0 larr~ rFkk vodyuh; gksxkA (4) x = 0 ij ƒ(x) dk vlarr~rk dk mNky 2 gksxkA 16. If a and b are the roots of equation a 6 + b6 x2–2x+ 4 = 0 then the value of will ab be(1) 128 17. x 2 (1) ƒ(x) is neither continuous nor differentiable at x = 0 (3) ƒ(x) is continuous as well as differentiable at x = 0 16. (2) y = –2x A LL EN 15. (1) y = 2x (2) y = –2x x 2 oØ xy = 8 dh lekUrj thokvksa ] ftudh izo.krk 2 g]S ds e/; fcUnqvksa dk fcUnqiFk gksxk - (2) 64 (3) 32 (2) GP (3) HP (4) None SPACE FOR ROUGH WORK / H-4/31 a 6 + b6 dk eku gksxk ab (1) 128 (2) 64 (3) 32 (4) 16 (4) 16 If x,y,z are in GP, then y + z, 2y, x + y will be 17. in(1) AP ;fn a rFkk b lehdj.k x2–2x+ 4 = 0 ds ewy gks] rks ;fn x,y,z xq.kksÙkj Js.kh esa gks] rks y + z, 2y, x + y gksx&as (1) lekUrj Js.kh (2) xq.kksÙkj Js.kh (3) gjkRed Js.kh (4) buesa ls dksbZ ugha jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 18. ò 2 tan x ( sec x + tan x ) + 1 dx is equal to- 2 tan x ( sec x + tan x ) + 1 dx cjkcj gksxk- (tgk¡ c lekdyu vpj gS) x (1) ln tan .sec x + c 2 x (1) ln tan .sec x + c 2 æp xö (2) ln tan ç + ÷ .sec x + c è4 2ø æp xö (2) ln tan ç + ÷ .sec x + c è4 2ø x +c 2 (3) ln tan x.sec A LL EN 20. ò (where c is constant of integration) (3) ln tan x.sec 19. 18. x +c 2 x p x (4) ln tan sec æç + ö÷ + c 2 è4 2ø x p x (4) ln tan sec æç + ö÷ + c 2 è4 2ø d 2x If x – y = e , then value of isdy 2 d 2x ;fn x – y = e gks] rks 2 dk eku gksxk& dy 19. x ex (1) (1 - e x )3 ex (2) x (e - 1)3 (3) –ex (4) If in æ pö ç 0, ÷ , è 2ø ex - 1 ex the equation 20. x ex (1) (1 - e x )3 ex (2) x (e - 1)3 (3) –ex (4) ;fn vUrjky æ pö ç 0, 2 ÷ è ø ex - 1 ex esa lehdj.k 9 1 + = k has atleast one root, then cos x 1 - cos x 'k' cannot be - 9 1 + = k dk de ls de ,d ewy gks] rks cos x 1 - cos x 'k' dk eku ugha gks ldrk g-S (1) 15 (1) 15 (2) 20 (3) 25 (4) 30 SPACE FOR ROUGH WORK / ALLEN (2) 20 (3) 25 (4) 30 jQ dk;Z ds fy;s txg H-5/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 21. 21. Consider the following statements. I. Derivative of differentiable aperiodic function is also aperiodic. II. If a differentiable function ƒ is increasing in (a,b) then ƒ' will be decreasing in (a,b). III. A continuous monotonic function defined on R will have R as its range. Identify the correct options (1) Only one of I,II & III is correct. (2) Only two of I,II & III is correct. (3) All three are correct (4) None of I,II & III is correct A LL EN ekuk fuEu dFku gAS I. vodyuh ; vukorhZ Qyu dk vodyt Hkh vukorhZ gksxkA II. ;fn ,d vodyuh; Qyu ƒ vUrjky (a,b) esa o/kZeku gks] rks ƒ' vUrjky (a,b) esa âkleku gksxkA III. R esa ifjHkkf"kr ,d larr~ ,dfn"V Qyu dk ifjlj R gksxkA lgh fodYiksa dks ifgpkfu;s& (1) I,II rFkk III esa ls dsoy ,d lgh gksxkA (2) I,II rFkk III esa ls dsoy nks lgh gksxasA (3) lHkh rhuksa lgha gksxsaA (4) I,II rFkk III esa ls dksbZ lgha ugha gksxkA 22. Number of solutions of the equation 5x = 7[x], 22. lehdj.k 5x = 7[x] ds gyksa dh la[;k gksxh (tgk¡ [.] egÙke iw.kk±d Qyu dks n'kkZrk g)S where [.] denotes greatest integer function is (1) 1 23. (2) 2 (3) 25. 23. n ( n + 1) 2 n ( n + 1) 3 (2) (4) 24. n ( n + 1)( 2n + 1) n ( n + 1)( 2n + 1) 25. denotes greatest integer function, is(1) –3 (2) –2 (3) 2 (4) 3 SPACE FOR ROUGH WORK / H-6/31 (4) 4 (2) O;k?kkr (3) a Ù ~ b dk }rS (4) buesa ls dksbZ ugha izFke (2n + 1) izkd`r la[;kvksa dk folj.k gksxk& (3) 3 (3) 3 ( a Ù b ) ® ( ~ a Ú b ) gksxk & (1) 2 p tan x - x sec x ù é Value of ê lim 2 ú , where [.] ë x ®0 sin x - tan x û (2) 2 (1) iqu:fDr (2) Contradiction (3) Dual of a Ù ~ b (4) None of these Variance of first (2n + 1) natural numbers is(1) (1) 1 (4) 4 ( a Ù b ) ® ( ~ a Ú b ) is(1) Tautology 24. (3) 3 n ( n + 1) 2 n ( n + 1) 3 (2) (4) n ( n + 1)( 2n + 1) 2 n ( n + 1)( 2n + 1) 3 p tan x - x sec x ù é 2 ê lim ú dk eku gksxk (tgk¡ [.] egÙke ë x ®0 sin x - tan x û iw.kk±d Qyu dks n'kkZrk g)S - (1) –3 (2) –2 (3) 2 (4) 3 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 27. 28. Coefficient of apbqcr in the expansion of 26. (a – 3b + 2c)6, where p, q, r are three distinct, consecutive, non zero terms of a decreasing A.P. respectively, is (1) 1080 (2) 1024 (3) 2160 (4) 2048 If p and q are the degree and order respectively 27. for the differential equation obtained on eliminating arbitrary constants a, b, c, d from y + a cos2x + b sin2x + c cos2x + d sin2x = 0, then p + q is (1) 7 (2) 6 (3) 5 (4) 4 Statement-I : For a twice differentiable 28. function ƒ, if 0 and 3 are roots of ƒ and ƒ(1) = 2 and ƒ(2) = –3, then number of roots of equation g(x) = (ƒ'(x))2 + ƒ(x).ƒ"(x) in [0,3] is 4. (a – 3b + 2c)6 ds izlkj esa apbqcr dk xq.kkad] tgk¡ p, q, r Øe'k% ,d ákleku lekUrj Js.kh ds rhu fHkUu Øekxr v'kwU; in g]S gksxk& (1) 1080 (2) 1024 (3) 2160 (4) 2048 ;fn p rFkk q Øe'k% lehdj.k y + a cos2x + b sin2x + c cos2x + d sin2x = 0, ls LosPN vpjksa a, b, c, d ds foyqfIrdj.k ls izkIr vody lehdj.k dh ?kkr rFkk dksfV gks] rks p + q gksxk(1) 7 (2) 6 (3) 5 (4) 4 dFku -I : nks ckj vodyuh; Qyu ƒ ds fy;s] ;fn 0 rFkk 3, ƒ ds ew y ,oa ƒ(1) = 2 rFkk ƒ(2)=–3 gks] rks vUrjky [0,3] esa lehdj.k g(x) = (ƒ'(x))2 + ƒ(x).ƒ"(x) ds ewyksa dh la[;k 4 A LL EN 26. Statement-II : For a continuous differentiable function ƒ, if ƒ(x) = 0 has n roots in (a,b) then ƒ'(x) = 0 will have atleast (n – 1) roots in (a,b). (1) Statement-I is true, Statement-II is true; statement-II is a correct explanation for Statement-I. (2)Statement-I is true, Statement-II is true; statement-II is not a correct explanation for Statement-I. (3) Statement-I is true, Statement-II is false. gksxhA dFku -II : larr~ vodyuh; Qyu ƒ ds fy;s ;fn (a,b) esa ƒ(x) = 0 ds n ewy gks] rks vUrjky (a,b) esa ƒ'(x) = 0 ds de ls de (n – 1) ewy gksaxAs (1) dFku -I lR; g S_ dFku -II lR; g S_ dFku -II dFku-I dh lgh O;k[;k gAS (2) dFku -I lR; gS _ dFku -II lR; gS _ dFku -II dFku-I dh lgh O;k[;k ugha gAS (3) dFku-I lR; gS] dFku-II vlR; gAS (4) dFku-I vlR; gS] dFku-II lR; gAS (4) Statement-I is false, Statement-II is true. SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-7/31 ALLEN JEE-MAIN SAMPLE PAPER # 03 29. ( ) ( ) Statement-I : A 7iˆ - kˆ , B -2iˆ + 3ˆj + 5kˆ , ( 29. ) C ˆi + 2 ˆj + 3kˆ do not constitute vertices of a triangle. Statement-II : If A,B,C are vertices of a uuur uuur uuur triangle then AB + BC + CA = 0 . 2014 dFku -I : A ( 7iˆ - kˆ ) , B ( -2iˆ + 3ˆj + 5kˆ ) , ( ) C ˆi + 2 ˆj + 3kˆ fdlh f=Hkqt ds 'kh"kZ ugha gksxsaA dFku -II : ;fn A,B,C fdlh f=Hkqt ds 'kh"kZ gks] rks uuur uuur uuur AB + BC + CA = 0 gksxkA (1) dFku -I lR; g S_ dFku -II lR; g S_ dFku -II dFku-I dh lgh O;k[;k gAS (2)Statement-I is true, Statement-II is true; statement-II is not a correct explanation for Statement-I. (2) dFku -I lR; gS _ dFku -II lR; gS _ dFku -II dFku-I dh lgh O;k[;k ugha gAS (3) Statement-I is true, Statement-II is false. (3) dFku-I lR; gS] dFku-II vlR; gAS A LL EN (1) Statement-I is true, Statement-II is true; statement-II is a correct explanation for Statement-I. dFku-I vlR; gS] dFku-II lR; gAS 30. Consider C1 : x2 + y2 – 6x – 8y + 24 = 0 and 30. ekuk C1 : x 2 + y 2 – 6x – 8y + 24 = 0 rFkk C2 : x2 + y2 – 2x – 4y – 4 = 0. C2 : x2 + y2 – 2x – 4y – 4 = 0 gAS dFku -I : o`Ùk C2 ij fLFkr lHkh fcUnqvksa ls o`Ùk C1 Statement-I : Tangents can be drawn to circle C1 from all points on circle C2. ij Li'kZ js[kk;sa [khaph tk ldrh gAS Statement-II : C1 lies completely outside C2. dFku -II : C1 iw.kZr;k o`Ùk C2 ds ckgj fLFkr gksxkA (4) Statement-I is false, Statement-II is true. (4) (1) Statement-I is true, Statement-II is true; statement-II is a correct explanation for Statement-I. (1) dFku-I lR; gS_ dFku-II lR; gS_ dFku-II dFkuI dh lgh O;k[;k gAS (2)Statement-I is true, Statement-II is true; statement-II is not a correct explanation for Statement-I. (2) dFku -I lR; gS _ dFku -II lR; gS _ dFku -II dFku-I dh lgh O;k[;k ugha gAS (3) dFku-I lR; gS] dFku-II vlR; gAS (4) dFku-I vlR; gS] dFku-II lR; gAS (3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true. SPACE FOR ROUGH WORK / H-8/31 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 PART B - PHYSICS Two pendulums with identical bobs and lengths 31. ,dtSls xksydksa rFkk leku yEckbZ okys nks ljy yksydksa are suspended from a common support such dks ,d mHk;fu"B vk/kkj ls bl izdkj yVdk;k tkrk gS that in rest position the two bobs are in contact fd fojkekoLFkk esa nksuksa xksyd ,d&nwljs ds lEidZ esa (figure). After being displaced by 5° the bob jgrs gaS] fp= ns[ksaA xksyd A dks 5° foLFkkfir djus ds A is released from rest, at t = 0 subsequently it i'pkr~ t = 0 ij fojkekoLFkk ls NksM+s tkus ij ;g nwljs collides elastically head-on with the other bob. xksyd ls lEeq[k izR;kLFk VDdj djrk gAS A LL EN 31. The graph showing variation in energy of pendulum A with time, for 0 £ t £ T (where T is the period of either pendulum). ET ET (1) T 4 t 3T T 4 ET (2) T 4 ET 3T T 4 t T 4 3T T 4 t ET (1) T 4 t 3T T 4 (2) ET ET (3) T 4 3T T 4 t T 4 T 4 3T T 4 T 4 3T T 4 t ET (3) (4) SPACE FOR ROUGH WORK / ALLEN 0 £ t £ T (tgk¡ T izR;sd yksyd dk vkorZ dky g)S ds fy, le; rFkk yksyd A dh ÅtkZ esa ifjorZu dks n'kkZus okyk vkjs[k gksxk %& 3T T 4 t (4) jQ dk;Z ds fy;s txg H-9/31 t 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 32. After absorbing a slowly moving neutron of 32. mass mN (momentum ~0) a nucleus of mass M breaks into two nuclei of masses m1 and 3m1(4m1 = M + mN), respectively. If the de Broglie wavelength of the nucleus with mass m1 is l, then de Broglie wavelength of the other nucleus will be:l (4) l 3 While measuring the speed of sound by performing a resonance column experiment, a student gets the first resonance condition at column length of 20 cm during winter. Repeating the same experiment during summer, student measures the column length to be x cm for the second resonance. Then 33. 34. (2) 3 l (1) 9 l (3) 33. (2) 3 l (3) l 3 (4) l tc 'khr ½rq esa vuqukn LrEHk iz;ksx }kjk /ofu dh pky dk ekiu fd;k tkrk gS rks ,d fo|kFkhZ izFke vuqukn fLFkfr ds fy;s LrEHk yEckbZ 20 lseh- izkIr djrk gAS bl iz;ksx dks xehZ ds ekl S e esa nqckjk nksgjk;k tkrk gS rks og f}rh; vuqukn ds fy;s LrEHk yEckbZ x lseh izkIr djrk gAS rc A LL EN (1) 9 l ,d /kheh xfr ls xfr'khy mN æO;eku ds U;wVªk Wu (laoxs ~0) dk vo'kks"k.k dj æO;eku M dk ,d ukfHkd æO;eku Øe'k% m1 ,oa 3 m1 (4 m1 = M + mN) ds nks ukfHkdksa esa VwVrk gAS ;fn æO;eku m1 okys ukfHkd dh Mh&czkXyh rjaxn/S ;Z l gS] rc nw ljs ukfHkd dh Mh&czkXyh rjaxn/S ;Z gksxh :- (1) 20 > x (2) x > 60 (1) 20 > x (2) x > 60 (3) 60 > x > 40 (4) 40 > x > 20 (3) 60 > x > 40 (4) 40 > x > 20 What should be the value of distance d so that 34. final image is formed on the object itself. (focal lengths of the lenses are written on the lenses.) iznf'kZr fp= esa nwjh d dk eku D;k gksuk pkfg, rkfd vfUre izfrfcEc Lo;a fcEc ij gh cus (ysUlksa dh Qksdl nwfj;k¡ ysUlksa ij fy[kh gqbZ gaSA) (1) 10 cm (1) 10 cm (2) 20 cm (2) 20 cm (3) 5 cm (3) 5 cm (4) none of these (4) buesa ls dksbZ ugha SPACE FOR ROUGH WORK / H-10/31 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 35. The depletion layer of a p-n junction : 35. (1) is of constant width irrespective of the bias bias (2) i'p ckW;l dh fLFkfr esa ,d dqpkyd {ks= dh Hkkafr dk;Z djrh gAS (3) has a width that increases with an increases in forward (3) dh pkM S +kbZ esa vxz ckW;l esa o`f¼ djus ij o`f¼ gksrh A LL EN gSA (4) is depleted of ions (4) vk;uksa ls vo{ksfir gksrh gAS The inductor in a L–C oscillation has a 36. L–C nksyu esa izsjd dq.Myh ij vf/kdre foHkokUrj maximum potential difference of 16 V and 16 V o vf/kdre ÅtkZ 640 mJ gAS L–C ifjiFk esa maximum energy of 640 mJ. Find the value of 37. (1) fu;r pkM S +kbZ dh gksrh gS tks ckW;l dh izd`fr ij fuHkZj ugha djrhA (2) acts like an insulating zone under reverse 36. p-n lfU/k dh vo{k; ijr %& capacitor in mF in L–C circuit. la/kkfj= dh èkkfjrk mF esa Kkr dhft;sA (1) 5 (2) 4 (1) 5 (2) 4 (3) 3 (4) 2 (3) 3 (4) 2 A refrigerator converts 100 g of water at 25°C 37. into ice at – 10°C in one hour and 50 minutes. The quantity of heat removed per minute is (specific heat of ice = 0.5 cal/g°C, specific heat of water = 1cal/g°C, latent heat of fusion = 80 cal/g) (1) 50 cal (2) 100 cal (3) 200 cal (4) 75 cal SPACE FOR ROUGH WORK / ALLEN ,d js f Ýtjs V j 25°C ij 100 xz k e ikuh dks 1 ?k.Vs 50 feuV esa – 10°C ij cQZ esa cnyrk gAS izfr feuV fu"dkf"kr Å"ek dh ek=k gksxh (cQZ dh fof'k"V Å"ek = 0.5 cal/g°C] ikuh dh fof'k"V Å"ek = 1cal/g°C laxyu dh xqIr Å"ek = 80 cal/g) (1) 50 cal (2) 100 cal (3) 200 cal (4) 75 cal jQ dk;Z ds fy;s txg H-11/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 38. Figure gives a system of logic gates. From the 38. study of truth table it can be found that to produce a high output (1) at R, we must have x x P y fp= esa rkfdZd }kjksa ls cuk ,d fudk; n'kkZ;k x;k gAS lR; lkj.kh ds v/;;u }kjk ;g Kkr fd;k tk ldrk gS fd R ij fuxZr (1) izkIr djus ds fy, gekjs ikl gksuk pkfg,%& R P y R O (3) X = 1, Y = 0 39. 40. (2) X = 1, Y = 1 (1) X = 0, Y = 1 (3) X = 1, Y = 0 A LL EN (1) X = 0, Y = 1 (4) None of these When a semiconductor is doped its electrical 39. conductivity : (1) Increases (2) Decreases in the direct ratio of the doped material (3) Decreases in the inverse ratio of the doped material (4) Remains unaltered Which of the following demonstrate that earth 40. has a magnetic field ? (1) A freely suspended bar magnet always points in the same direction (2) A large quantity of iron ore is found burried in the earth (3) The intensity of cosmic rays of charged particles coming from space to earth is less at the poles than at the equator (4) The earth is surrounded by an ionosphere (a shell of charged particles) SPACE FOR ROUGH WORK / H-12/31 O (2) X = 1, Y = 1 (4) buesa ls dksbZ ugha tc fdlh v/kZpkyd esa v'kqf¼ feyk;h tkrh gS ] rks bldh fo|qr pkydrk %& (1) c<+rh gAS (2) feyk;s x;s inkFkZ ds lh/ks vuqikr esa ?kVrh gSA (3) feyk;s x;s inkFkZ ds O;qRØekuqikrh vuqikr esa ?kVrh gSA (4) ogh cuh jgrh gSA fuEu esa ls fdl rF; ds vk/kkj ij dgk tk ldrk gS fd i`Foh dk pqEcdh; {ks= gksrk gS %& (1) ,d Lora= :i ls yVdh NM+ pqEcd lno S ,d gh fn'kk esa Bgjrh gSA (2) i`Foh ds vUnj cM+h ek=k esa ykgS v;Ld dk tyh gqbZ voLFkk esa ik;k tkukA (3) varfj{k ls i`Foh dh vksj vkus okyh vkosf'kr d.kksa dh dkWfLed fdj.kksa dh rhozrk Hkwe/; js[kk dh rqyuk esa /kzoq ksa ij de gksrh gSA (4) i`Foh vk;u e.My ls f?kjh gS tks fd vkosf'kr d.kksa dk ,d dks'k gksrk gAS jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 41. A speech signal of 3 kHz is used to modulate 41. vk;ke eksMwyu dk mi;ksx dj ,d 3 kHz okys èofu a carrier signal of frequency 1 MHz, using ladrs dh lgk;rk ls 1 MHz vko`fÙk ds okgd ladrs amplitude modulation. The frequencies of the dks eksMfw yr fd;k tkrk gAS Side bands dh vko`fÙk;k¡ side bands will be : (1) 1.003 MHz and 0.997 MHz (1) 1.003 MHz rFkk 0.997 MHz (2) 3001 kHz and 2997 kHz (2) 3001 kHz rFkk 2997 kHz (3) 1003 kHz and 1000 kHz (3) 1003 kHz rFkk 1000 kHz (4) 1 MHz and 0.997 MHz (4) 1 MHz rFkk 0.997 MHz A LL EN 42. gksxha%& Following statements are given for a stationary wave :- 42. (a) Every particle has a fixed amplitude which is different from the amplitude of its nearest particle. (b) All the particles cross their mean position at the same time. (c) All the particles are oscillating with same amplitude. (d) There is no net transfer of energy across any plane. (e) There are some particles which are always at rest. ,d vizxkeh rjax ds fy, fuEu dFku fn, x, gaSA (a) izR;sd d.k dk ,d fLFkj vk;ke gksrk gS tks blds lehiLFk d.k ds vk;ke ls vyx gksrk gAS (b) lHkh d.k mudh ek/; fLFkfr;ksa ls ,d gh le; ij xqtjrs gSaA (c) lHkh d.k leku vk;ke ls nksyu djrs gSaA (d) fdlh Hkh lery ls ÅtkZ dk dksbZ ifj.kkeh LFkkukUrj.k ugha gksrk gAS (e) dqN d.k ,sls gksrs gaS tks lnSo fojkekoLFkk esa gksrs gSaA Which of the following is CORRECT :- lgh dFku pqfu, %& (1) a, b, c, d, e (2) a, c, d, e (3) b, c, d, e (4) a, b, e (1) a, b, c, d, e (3) b, c, d, e SPACE FOR ROUGH WORK / ALLEN (2) a, c, d, e (4) a, b, e jQ dk;Z ds fy;s txg H-13/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 44. A test charge q is made to move in the electric 43. field of a point charge Q along two different closed paths (Figure). First path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. Ratio of work done in the two cases are ? ,d ijh{k.k vkos'k q dks fcUnq vkos'k Q ds fo|qr {ks= esa fp=kuqlkj nks vyx&vyx can iFkksa ds vuqfn'k xfr djkbZ tkrh gAS igys iFk esa fo|qr {ks= js[kkvksa ds vuqfn'k rFkk yEcor~ Hkkx cus gq, gaSA f}rh; iFk izFke ywi ds leku {ks=Qy okyk ,d vk;rkdkj ywi gAS bu nksuksa fLFkfr;ksa esa fd, x, dk;Z dk vuqikr gksxk %& A LL EN 43. (2) vifjHkkf"kr (3) ¥ (1) 1 (2) undefined (3) ¥ (4) 0 Two uniform spherical charge regions S1 and 44. S2 having positive and negative charges overlap each other as shown in the figure. Point O1 and O2 are their centres and points A, B, C and D are on the line joining centres O1 and O2. Electric field from C to D nks le:i xksykdkj vkosf'kr Hkkxksa S1 o S2 ij èkukRed o ½.kkRed vkos'k gS rFkk ;s fp=kuqlkj ,d&nwljs ij vfrO;kfir gks jgs gaSA fcUnq O1 rFkk O2 buds dsUæ gaS rFkk fcUnq A, B, C o D buds dsUæksa O1 o O2 dks tksM+us okyh js[kk ij fo|eku gaSA C ls D dh vksj tkus ij fo|qr {ks= %& (1) increases (2) first decreases then increases (3) remains constant (4) first increases then decreases (1) c<+rk gAS (2) igys ?kVrk gS fQj c<+rk gAS (3) fu;r cuk jgrk gSA (4) igys c<+rk gS fQj ?kVrk gAS SPACE FOR ROUGH WORK / H-14/31 (1) 1 (4) 0 jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 03 In an optics experiment, with the position of 45. the object fixed, a student varies the position of a biconvex lens (having refractive index µ and radius R) and for each position, the screen is adjusted to get a clear image of the object. A graph between the object distance u and the image distance v, from the lens, is plotted using the same scale for the two axes. A straight line passing through the origin and making an angle of 45° with the x-axis meets the experimental curve at P. The coordinates of P will be :- fdj.k izdkf'kdh ds ,d iz;ksx esa] ,d oLrq dh fLFkfr fLFkj j[krs gq,] ,d fo|kFkhZ ,d f}mÙky ysal (ftldk viorZukad µ rFkk f=T;k R) dh fLFkfr esa ifjorZu djrk gS vkjS izR;sd voLFkk ds fy,] oLrq ds Li"V izfrfcEc gsrq insZ dks O;ofLFkr djrk gAS ysUl ls oLrq dh nwjh u vkjS izfrfcEc dh nwjh v ds chp xzkQ nksuksa v{kksa ij ,dleku Ldsy ysdj vkjsf[kr fd;k tkrk gAS ewy fcUnq ls xqtjus okyh ,d ljy js[kk] tks fd x–v{k ls 45° dk dks.k cukrh gS] izk;ksfxd oØ ls P ij feyrh gSA P ds funsZ'kkad gS :- æ R R ö , ç (1) ç 2 m - 1 2 m - 1 ÷÷ ) ( )ø è ( æ R R ö , ç (1) ç 2 m - 1 2 m - 1 ÷÷ ) ( )ø è ( æ 2R 2R ö , ç (2) ç m - 1 m - 1 ÷÷ ) ( )ø è( æ 2R 2R ö (2) çç m - 1 , m - 1 ÷÷ ) ( )ø è( æ R R ö , ç (3) ç m - 1 m - 1 ÷÷ ) ( )ø è( æ R R ö (3) çç m - 1 , m - 1 ÷÷ ) ( )ø è( æ R R ö , ç (4) ç 4 m - 1 4 m - 1 ÷÷ ) ( )ø è ( æ R R ö (4) çç 4 m - 1 , 4 m - 1 ÷÷ ) ( )ø è ( A LL EN 45. 2014 SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-15/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 46. Two identical conducting spheres M and N has 46. charges q m and q n respectively. A third identical neutral sphere P is brought in contact with M and then separated. Now sphere P is brought in contact with N then final charge on sphere P is (1) q m + 2q n 4 47. 48. qn 2 q m + 2q n 4 (2) qm + q n 4 (1) (4) q m + 2q n 2 (3) q m + qn 2 A LL EN (3) q m + nks ,dtSls pkyd xksyksa M rFkk N ij Øe'k% qm rFkk qn vkos'k gAS vc ,d buds leku ijUrq mnklhu xksys P dks M ds lEidZ esa yk;k tkrk gS rFkk fQj gVk fy;k tkrk gAS vc xksys P dks N ds lEidZ esa yk;k tkrk gAS xksys P ij vfUre vkos'k gksxk%& To reduce the resonant frequency in an LCR 47. series circuit with a generator (1) the generator frequency should be reduced. (2) another capacitor should be added in parallel to the first. (3) the iron core of the inductor should be removed. (4) dielectric in the capacitor should be removed. Relative permittivity and permeability of a 48. material are e r and m r , respectively. Which of the following values of these quantities are allowed for a diamagnetic material? (1) e r = 0.5 , m r = 1.5 (2) e r = 1.5 , m r = 0.5 (3) e r = 0.5 , m r = 0.5 (4) e r = 1.5 , m r = 1.5 SPACE FOR ROUGH WORK / H-16/31 (2) qm + q n 4 (4) q m + 2q n 2 tfu= yxs gq, ,d LCR Js.kh ifjiFk dh vuquknh vko`fÙk dks ?kVkus ds fy,%& (1) tfu= vko`fÙk ?kVkuh gksxhA (2) la/kkfj= ds lekUrjØe esa ,d vU; la/kkfj= tksM+uk gksxkA (3) izjs d dq.Myh esa yxh yksg ØksM dks gVkuk gksxkA (4) la/kkfj= esa fLFkr ijko| S qr dks gVkuk gksxkA ,d inkFkZ dh vkisf{kd fo|qr'khyrk rFkk pqEcd'khyrk Øe'k % er rFkk µr gAS ,d izfrpqEcdh; inkFkZ ds fy;s fuEu ekuksa esa ls dkSulh jkf'k;k¡ mi;qDr gS ? (1) e r = 0.5 , m r = 1.5 (2) e r = 1.5 , m r = 0.5 (3) e r = 0.5 , m r = 0.5 (4) e r = 1.5 , m r = 1.5 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 50. 51. A moving coil galvanometer has 100 equal 49. divisions. Its current sensitivity is 10 divisions per milli ampere and voltage sensitivity is 2 divisions per milli volt. In order that each division reads 1 V, the resistance in Ohm's needed to be connected in series with the coil will be- fdlh py dq.Myh /kkjkekih esa 100 cjkcj Hkkx gaSA bldh èkkjk lqxzkfgrk 10 Hkkx izfr feyh,sfEi;j rFkk oksYVrk lqxzkfgrk 2 Hkkx izfr feyhoksYV gAS bldk izR;sd Hkkx 1 oksYV ikB~;kad i<+s] blds fy, bldh dq. Myh ds lkFk Js .khØe esa la ;ksf tr vko';d izfrjks/k dk vkse esa D;k eku gksxk - (1) 103 (2) 105 (3) 99995 (4) 9995 (1) 103 (3) 99995 A LL EN 49. The current in the primary circuit of a 50. potentiometer is 0.1 A. The specific resistance and cross-section of the potentiometer wire are 8 × 10 –7 ohm metre and 4 × 10 –7 m 2 respectively. The potential gradient will be equal to :(1) 0.2 V/m (2) 1 V/m (3) 0.5 V/m (4) 0.1 V/m The electrostatic potential V at a point on the 51. circumference of a thin non–conducting disk of radius r and uniform charge density s is given by equation V = 4sr. Which of the following expression correctly represents electrostatic energy stored in the electric field of a similar charged disk of radius R? 8 2 3 (1) U = ps R 3 (3) U = 2 2 3 ps R 3 (2) U = 4 2 3 ps R 3 (4) None of these. SPACE FOR ROUGH WORK / ALLEN (2) 105 (4) 9995 ,d foHkoekih ds izkFkfed ifjiFk esa /kkjk 0.1A g SA foHkoekih ds rkj dk fof'k"V iz f rjks /k vk Sj ifjPNsn {ks =Qy Øe'k% 8 × 10–7 vkse ehVj vkSj 4 × 10–7 m2 gSA foHko izo.krk dk eku gksxk :- (1) 0.2 V/m (2) 1 V/m (3) 0.5 V/m (4) 0.1 V/m f=T;k r rFkk le:i vkos'k ?kuRo s okyh ,d iryh vpkyd pdrh dh ifjf/k ij fLFkr ,d fcUnq ij fLFkjo| S qr foHko V = 4sr }kjk fn;k tkrk gAS f=T;k R okyh blds leku vkosf'kr pdrh ds fo|qr {ks= esa lafpr fLFkj o| S qr ÅtkZ dks n'kkZus okyk O;atd gksxk %& 8 2 3 (1) U = ps R 3 (3) U = 2 2 3 ps R 3 (2) U = 4 2 3 ps R 3 (4) buesa ls dksbZ ugha jQ dk;Z ds fy;s txg H-17/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 53. A parallel plate capacitor initially having plate 52. separation d & capacitance C in air is connected by means of a spring of spring constant k to a point O, the plates are assumed to be massless, and the lower plate is also fixed. A charge q now is given to the capacitor. The capacitance of the capacitor (assuming that the spring is non conducting) becomes C (1) æ 2 ö ç1 - q ÷ ç Ckd 2 ÷ è ø C (2) 2 æ ö ç1 - q ÷ ç 2Ckd 2 ÷ è ø (3) C (4) none of the above The maximum number of emission lines for 53. atomic hydrogen that you would expect to see with naked eye if the only electronic levels involved are those shown in the figure, is izkjEHk esa ,d lekUrj iê la/kkfj= dh IysVksa ds eè; nwjh d rFkk ok;q esa bldh /kkfjrk C gAS bls k fLizax fu;rkad okyh ,d fLizax dh lgk;rk ls fcUnq O ls tksM+ nsrs gaSA IysVksa dks æO;ekughu ekuk x;k gS tcfd fupyh IysV Hkh fLFkj gAS vc la/kkfj= dks q vkos'k nsrs gaSA ;fn fLizax vpkyd gks rks la/kkfj= dh /kkfjrk gks tk,xh %& C (1) æ 2 ö ç1 - q ÷ 2÷ ç è Ckd ø C (2) 2 æ ö ç1 - q ÷ ç 2Ckd 2 ÷ è ø (3) C (4) mijksä esa ls dksbZ ugha A LL EN 52. (1) 6 (2) 5 (3) 21 n=7 n=6 n=5 n=4 n=7 n=6 n=5 n=4 n=3 n=3 n=2 n=2 n=1 n=1 (4) ¥ SPACE FOR ROUGH WORK / H-18/31 ;fn fdlh ijekf.od gkbMªkt s u ds mRltZu LisDVªe esa dsoy fp= esa iznf'kZr ÅtkZ Lrj gh Hkkx ysa rks vki viuh vka[kksa ls fcuk fdlh vU; midj.k dh lgk;rk ls vf/kdre fdruh mRltZu js[kk,a ns[k ldrs gSa\ (1) 6 (2) 5 (3) 21 (4) ¥ jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 55. 56. For nuclei mass number A > 120 (i) when two nuclei fuse together energy is released (ii) when nuclei brakes energy is released (iii) Binding energy per nucleon decreases with increase in A (iv) Binding energy decreases with increase in A The correct statement(s) will be (1) (iii), (iv) (2) (ii), (iii) (3) (i), (iii) (4) (ii), (iv) 54. + The radionuclide 11 6 C decays by b emission. 55. nzO;eku la[;k A > 120 okys ukfHkd ds fy;s (i) tc nks ukfHkd layf;r gksrs gaS rks ÅtkZ eqDr gksrh gAS (ii) tc ,d ukfHkd fo[kf.Mr gksrk gS rks ÅtkZ eqDr gksrh gSA (iii) A esa o`f¼ ds lkFk izfr U;wfDy;kWu ca/ku ÅtkZ ?kVrh gAS (iv) A esa o`f¼ djus ij ca/ku ÅtkZ ?kVrh gAS lgh dFku gaS%& (1) (iii), (iv) (3) (i), (iii) A LL EN 54. (2) (ii), (iii) (4) (ii), (iv) Given that jsfM;ksU;wDykbM 116 C dk {k; b+ mRltZu }kjk gksrk gAS eku yks m( 11 6 C ) = 11.011434 u m( 11 6 C ) = 11.011434 u m( 11 5 B ) = 11.009305 u m( 11 5 B ) = 11.009305 u me = 0.000548 u, 1u = 931.5 MeV/c2 The Q-value of this decay process is :(1) 0.962 MeV (2) 0.962 × 103 MeV (3) 0.962 eV (4) Zero An open pipe is suddenly closed at one end 56. with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental frequency of the open pipe is (1) 200 Hz (2) 300 Hz (3) 240 Hz (4) 480 Hz me = 0.000548 u, 1u = 931.5 MeV/c2 bl {k; izØe ds fy, Q-eku gksxk %& (1) 0.962 MeV (2) 0.962 × 103 MeV SPACE FOR ROUGH WORK / ALLEN (3) 0.962 eV (4) 'kwU; ,d [kqys ikbi ds ,d fljs dks vpkud cUn dj nsrs gaS ftlds QyLo:i cUn ikbi dh r`rh; lUuknh esa 100 Hz dh o`f¼ gks tkrh gSA [kqys ikbi dh ewy vko`fÙk gksxh :- (1) 200 Hz (3) 240 Hz (2) 300 Hz (4) 480 Hz jQ dk;Z ds fy;s txg H-19/31 ALLEN JEE-MAIN SAMPLE PAPER # 03 58. For shown circuit :- 57. (1) Current in circuit is 10A (2) Voltage across inductor is 100V (3) Voltage across capacitor is 200V (4) Voltage on capacitor is more than that of supply voltage because the phase difference between VL and VC is 180° Current i = 2.5 A flows along the circle 58. x2 + y2 = 9 cm2 (here x & y in cm) as shown. Magnetic field at point (0, 0, 4 cm) is iznf'kZr ifjiFk esa %& (1) ifjiFk esa /kkjk dk eku 10A gAS A LL EN 57. 2014 (1) ( 36 p´ 10 -7 T ) kˆ (2) ( 36 p ´ 10 -7 T ) ( - kˆ ) æ 9p -7 ö (3) ç ´10 T ÷ kˆ è 5 ø æ 9p -7 ö (4) ç ´ 10 T ÷ ( - kˆ ) è 5 ø SPACE FOR ROUGH WORK / H-20/31 (2) izsjd dq.Myh ij oksYVrk 100V gAS (3) la/kkfj= ij oksYVrk 200V gAS (4) la/kfj= ij oksYVrk lIykbZ oksYVrk ls vf/kd gksxh D;kafs d VL o VC ds e/; dykUrj 180° gAS /kkjk i = 2.5 A fp=kuqlkj o`Ùk x2 + y2 = 9 cm2 (;gka x rFkk y lseh esa g)S ds vuqfn'k izokfgr gksrh gAS fcUnq (0, 0, 4 cm) ij pqEcdh; {ks= gksxk%& (1) ( 36 p´ 10 -7 T ) kˆ (2) ( 36 p ´ 10 -7 T ) ( - kˆ ) æ 9p -7 ö (3) ç ´10 T ÷ kˆ è 5 ø æ 9p -7 ö (4) ç ´ 10 T ÷ ( - kˆ ) è 5 ø jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 03 60. Statement–1 : Cavalry troops are asked not 59. to march in cadence across a suspension bridge otherwise bridge may collapse. Statement–2 : If the soldiers march in cadence, in every step they step down at exactly the same instant producing a very large impulse on the bridge, which may cause it to collapse. (1) Statement–1 is true, statement–2 is true; statement–2 is a correct explanation for statement–1. (2) Statement–1 is true, statement–2 is true; statement–2 is not a correct explanation for statement–1. (3) Statement–1 is true, statement–2 is false. (4) Statement–1 is false, statement–2 is true. Statement 1 : Photoelectric effect establishes 60. quantum nature of light. and Statement 2 : There is negligible time lag between photon collisions with the material and photoelectron emission irrespective of intensity of incident light. (Assume incident light is of frequency greater than threshold frequency of the material). (1) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (2) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (3) Statement-1 is true, statement-2 is false. (4) Statement-1 is false, statement-2 is true. oDrO;–1 : fdlh >wyrs gq, iqy ij ls xqtjus ij lsuk dh VqdM+h dks dnerky esa ugha pyus dks dgk tkrk gS vU;Fkk iqy VwV ldrk gAS oDrO;–2 : ;fn flikgh dnerky esa pyrs gaS rks izR;sd ckj os ,d gh {k.k ij uhps dne j[krs gaS ftlds dkj.k iqy ij rhoz vkosx mRiUu gksrk gS tks fd iqy VwVus dk dkj.k cu ldrk gAS (1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2] oäO;&1 dk lgh Li"Vhdj.k gAS (2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2] oäO;&1 dk lgh Li"Vhdj.k ugha gAS (3) oäO;&1 lR; g,S oäO;&2 vlR; gAS (4) oäO;&1 vlR; g]S oäO;&2 lR; gAS oDrO; 1 : izdk'k fo|qr izHkko] izdk'k dh DokaVe izÏfr dks n'kkZrk gSA oDrO; 2 : inkFkZ ls QksVkWu ds Vdjkus rFkk QksVksbysDVªkWuksa ds mRltZu ds e/; le;kUrjky vkifrr izdk'k dh rhozrk ds vuisf{kr (irrespective) vR;Yi gksrk gAS (eku yhft;s fd vkifrr izdk'k dh vko`fÙk inkFkZ dh nsgyh vko`fÙk ls vf/kd g)S (1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2] oäO;&1 dk lgh Li"Vhdj.k gAS (2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2] oäO;&1 dk lgh Li"Vhdj.k ugha gAS (3) oäO;&1 lR; g,S oäO;&2 vlR; gAS (4) oäO;&1 vlR; g]S oäO;&2 lR; gAS A LL EN 59. 2014 SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-21/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 PART C - CHEMISTRY 61. 62. During electrolysis of NaCl, if 3mole of H2O 61. are electrolysed then how much charge is required if current efficiency is 75%(1) 1 F (2) 2 F (3) 4 F (4) 8 F Catalyst in a chemical reaction :– 62. (1) Increase activation energy (2) Does not change activation energy (4) None of these 63. (1) 1 F (3) 4 F (2) 2 F (4) 8 F ,d jlk;fud vfHkfØ;k esa mRizjsd :– (1) lfØ;.k ÅtkZ c<+krs gS (2) lfØ;.k ÅtkZ esa ifjorZu ugha djrs gS (3) DH ifjofrZr ugha djrs gS (4) buesa ls dksbZ ugha 63. nh xbZ vfHkfØ;k ds fy, : For the given reaction : H2(g) + S(s) ® H2S(g) ; DHr = 100 kJ/mol and H2(g) + S(s) ® H2S(g) ; DHr = 100 kJ/mol rFkk DSr = 400 J/mol/K DSr = 400 J/mol/K Temperature at which above reaction occurs reversibly is rki ftl ij mijksDr vfHkfØ;k mRØe.kh; gksrh gAS (Assumning DHr and DSr are independent of (eku yhft,s DHr rFkk DSr rki ls Lora= g)S temperature) 64. dk o S| q r vi?kfVr gq vk gks rks fdrus vkos' k dh vko';drk gksxh] ;fn /kkjk n{krk 75% izfr'kr gks- A LL EN (3) Does not change DH NaCl ds o| S qr vi?kVu ds nkjS ku] ;fn 3 eksy H2O (1) 200 K (2) 250 K (1) 200 K (2) 250 K (3) 400 K (4) None (3) 400 K (4) buesa ls dksbZ ugha What will be the value of compressibility factor 64. for real gas at low pressure and high temperature(1) Z » 1 (2) Z > 1 (3) Z < 1 (4) None SPACE FOR ROUGH WORK / H-22/31 U;wu nkc rFkk mPp rki ij okLrfod xl S ds fy, laih.M~;rk xq.kkad dk eku D;k gksxk - (1) Z » 1 (2) Z > 1 (3) Z < 1 (4) buesa ls dksbZ ugha jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 65. The distance between an octahedral and tetrahedral void in fcc unit cell would be (a is edge length of fcc unit cell) 3a 3a 3a (3) (4) 2 3 4 To obtain maximum mass of NO2 from a given mass of a mixture of NH3 and O2, the ratio of mass of NH3 to O2 should be (1) 3 a 66. 65. fcc bdkbZ ly S esa ,d v"VQydh; rFkk prq"Qydh; fjfDr ds e/; nwjh gksxh (fcc bdkbZ lSy ds fdukjs dh yEckbZ a g)S (1) 3 a (2) 66. 3a 4 (1) 67. [Kf , (H2O) = 1.86K molal–1] (1) 930 g (2) 1000 g (3) 90 g (4) 210 g The exothermic formation of ClF 3 is 68. represented by the equation Cl2(g) + 3F2(g) 2ClF3(g) ; DHr= –329 kJ Which of the following will increase the quantity of ClF3 in an equilibrium mixture of Cl2, F2 and ClF3? (1) Removing Cl2 (2) Increasing the temperature (3) Adding inert gas at constant pressure (4) Decreasing the volume of the container SPACE FOR ROUGH WORK / ALLEN 3a (4) 3 17 4 (2) 40 7 17 (3) (4) buesa ls dksbZ ugha 56 ty esa 0.1 eksy Xywdkst okyk ,d foy;u –0.2ºC ij terk (freezes) gAS bl foy;u esa mifLFkr ty dh ek=k gS- A LL EN 68. (3) NH3 + O2 ¾¾ ® NO2 + H2O (1) 67. 3a 2 NH3 rFkk O2 ds ,d feJ.k ds ,d fn;s x;s nzO;eku ls NO2 dk vf/kdre nzO;eku izkIr djus ds fy, NH3 ls O2 ds nz O;eku dk vuqi kr gksuk pkfg, NH3 + O2 ¾¾ ® NO2 + H2O 17 4 (2) 40 7 17 (3) (4) None of these 56 A solution containing 0.1 mole of glucose in water freezes at –0.2ºC. The amount of water present in this solution is - (2) [Kf , (H2O) = 1.86K molal–1] (1) 930 g (2) 1000 g (3) 90 g (4) 210 g ClF3 ds Å"ek{ksih fuekZ.k dks fuEu vfHkfØ;k }kjk iznf'kZr fd;k tkrk gS Cl2(g) + 3F2(g) 2ClF3(g) ;DHr =– 329 kJ Cl2, F2 rFkk ClF3 ds ,d lkE; feJ.k esa ClF3 dh ek=k fuEu esa ls dkuS lk dkjd c<k,sxk ? (1) Cl2 gVkus ij (2) rki ds c<+kus ij (3) fu;r nkc ij vfØ; xl S feykus ij (4) ik= dk vk;ru ?kVkus ij jQ dk;Z ds fy;s txg H-23/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 69. 70. For the electron present in hydrogen atom 69. calculate the total number of possible spectral lines during the transition between 4th excited state and ground state without emitting any line in Balmer series (1) 10 (2) 9 (3) 7 (4) 6 Calculate the percentage of hydrolysis in 70. 0.01M aqueous solution of NaOCN (Kb for OCN– = 10–10) 72. 73. 74. (1) 10 (2) 9 (3) 7 (4) 6 NaOCN ds 0.01M tyh; foy;u esa ty vi?kVu dk izfr'kr crkb;s (OCN– ds fy, Kb = 10–10 gS) (1) 0.1 (3) 0.0001 (2) 0.01 (4) dksbZ ugha dsydkstu ds gkbMªkbM ds fy, pKa dk lgh Øe A LL EN 71. (1) 0.1 (2) 0.01 (3) 0.0001 (4) None Select correct order of pK a for hydride of chalcogens (1) OH2 > SH2 > SeH2 > TeH2 (2) TeH2 > SH2 > SeH2 > OH2 (3) TeH2 > SeH2 > SH2 > OH2 (4) OH2 > TeH2 > SeH2 > SH2 Select correct order of ionization energy (1) N > N+ (2) N > O (3) N > F (4) N > Si Select correct order of H – M – H bond angle (1) PH3 > PH4+ (2) P2H4 > PH4+ (3) PH3 > NH4+ (4) PH4+ > NH3 In which of the following underlined atom use hybrid orbital (with 25% s–character 75% p-character) for bond formation(1) SF4 (2) [Ni(CN)4]2– (4) [MnCl4]2– (3) [HgI3]– gkbMª k st u ijek.kq esa mifLFkr byS DVª k W u ds fy,] 4 th mÙks f tr voLFkk rFkk vk| voLFkk ds e/; laØe.k ds nkjS ku mRlftZr lEHkkfor LisDVªeh js[kkvksa (ckej Js.kh esa fdlh js[kk ds mRltZu ds fcuk) dh dqy la[;k crkb;s - 71. gS (1) (2) (3) (4) 72. 73. 74. SPACE FOR ROUGH WORK / H-24/31 OH2 > SH2 > SeH2 > TeH2 TeH2 > SH2 > SeH2 > OH2 TeH2 > SeH2 > SH2 > OH2 OH2 > TeH2 > SeH2 > SH2 vk;uu ÅtkZ dk lgh Øe crkb;s (1) N > N+ (2) N > O (3) N > F (4) N > Si H – M – H ca/k dks.k ds lgh Øe dks crkb;sA (1) PH3 > PH4+ (2) P2H4 > PH4+ (3) PH3 > NH4+ (4) PH4+ > NH3 fuEu esa ls dkSuls js[kkafdr ijek.kqvksa esa ca/k fuekZ.k ds fy, ladfjr d{kd (25% s–y{k.k 75%-p y{k.k ds lkFk) dk mi;ksx fd;k x;k gS (1) SF4 (3) [HgI3]– (2) [Ni(CN)4]2– (4) [MnCl4]2– jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 75. Yellow solution of chromate ions is produced 75. when(1) CrO2Cl2 is hydrolysed ØksesV vk;uksa dk ihyk foy;u curk gS tc (1) CrO2Cl2 ty vi?kfVr gksrk gS (2) Cr2O72– foy;u dks {kkj ds lkFk mipkfjr djrs (2) Cr2O72– solution is treated with alkali gS (3) alkaline solution of Cr2(SO4)3 is treated (3) Cr 2(SO 4) 3 ds {kkjh; foy;u dks H 2O 2 ds with H2O2 77. (4) All of the above Which of the following is not a bleaching agent. 76. (1) O 3 (1) O 3 (2) CaCl2.Ca(OCl)2 (2) CaCl2.Ca(OCl)2 (3) ClO2 (3) ClO 2 (4) KCl.MgCl2.6H2O (4) KCl.MgCl2.6H2O (4) mijksDr lHkh fuEu esa ls dkuS lk ;kSfxd fojatd vfHkdeZd ugha gS A LL EN 76. mipkfjr djrs gS Type of isomerism possible for given complex is. 77. fn;s x;s ladqy ds fy, lEHkkfor leko;ork dk iz dkj gS en en Pt en Br2 en Pt Cl Cl (1) (2) (3) (4) Optical isomerism Geometrical isomerism Ionization isomerism All of the above SPACE FOR ROUGH WORK / ALLEN (1) (2) (3) (4) Br2 Cl Cl izdkf'kd leko;ork T;kfefr; leko;ork vk;uu leko;ork mijksDr lHkh jQ dk;Z ds fy;s txg H-25/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 78. Ore Calcination Residue dil HNO3 aq. solution (of metal M) 78. Zn dust v;Ld fuLrkiu vo'ks "k ruq HNO3 tyh; foy;u (/kkrq M dk ) Zn pw.kZ 2+ Metal (M) + Zn (aq.) 80. 81. 2+ + Zn (tyh;) above metallurgy is possible when ore is (1) ZnCO3 (2) CaCO3.MgCO3 (3) CuCO3.Cu(OH) 2 (4) PbS 79. "Chemilumiscence" is the property of (1) Rhombic Sulphur (2) Red Phosphorus (3) Atomic Nitrogen (4) White Phosphorus Which of the following process is writen with 80. their correct initial ingredient(1) Barkland Eyed process - NH3, O2 (2) Ostwald process = N2, H2, Fe-Mo alloy (3) Solvey process = KCl, CO2, NH3, H2O (4) Deccan process - HCl, O2, CuCl2 Which of the following compounds will show 81. geometrical isomerism - fuEu esa ls dkuS lk izØe mlds lgh izkjfEHkd vo;o ds lkFk fy[kk x;k gS (1) cdZyS.M vkbZMizØe - NH3, O2 (2) vksLVokWYM izØe = N2, H2, Fe-Mo feJ/kkrq (3) lksYos izØe = KCl, CO2, NH3, H2O (4) MsDdu izØe - HCl, O2, CuCl2 fuEu esa ls dkuS lk ;kSfxd T;kfefr; leko;ork iznf'kZr djsxk - (1) (2) (1) (2) (4) (3) (4) mijksDr /kkrqdeZ ftl v;Ld ds fy, lEHko gS og gS (1) ZnCO3 (2) CaCO3.MgCO3 (3) CuCO3.Cu(OH) 2 (4) PbS "jlk;fudizfrfnIr" fdldk xq.k gksrk gS (1) jksf Ecd lYQj (2) yky QkW LQks jl (3) ijekf.od ukbVªk t s u (4) 'osr QkWLQks jl A LL EN 79. /kkrq (M) (3) SPACE FOR ROUGH WORK / H-26/31 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 82. What will be the correct order of stability of following carbocations : 82. Å fuEu dkcZ/kuk;uks a ds LFkkf;Ro dk lgh Øe D;k gksxk : Å CH2 CH2 Å Å CH2 CH2 (II) (I) O–CH3 Å 84. (IV) CH3 (1) II > III > I > IV (2) II > IV > II > III (3) I > II > III > IV (4) IV > III > II > I What will be the correct order of reactivity of the following alcohols, with Lucas reagent : OH (I) (II) OH OH (III) (1) II > I > III (2) II > III > I (3) III > II > I (4) I > II > III Which of the following compound is most reactive when reacts with Grignards reagent (MeMgBr) ? O O || || (1) CH3–CH2–C–CH2–CH3 (2) Ph–C–Ph O || (3) CH 3–C–Ph 83. Å CH2 (III) (IV) CH3 (1) II > III > I > IV (3) I > II > III > IV (2) II > IV > II > III (4) IV > III > II > I Y;q dkl vfHkdeZd ds lkFk fuEu ,Ydksg kW yksa dh fØ;k'khyrk dk lgh Øe D;k gksxk : (I) OH (III) (1) II > I > III (3) III > II > I 84. O || (4) H–C–H SPACE FOR ROUGH WORK / ALLEN O–CH3 CH2 CH2 A LL EN 83. (II) Å Å CH2 (III) (I) (II) OH OH (2) II > III > I (4) I > II > III fuEu es a ls dk S u lk ;k S f xd fxz U ;kj vfHkdeZ d (MeMgBr) ds lkFk vfHkfØ;k djkus ij lokZf/kd fØ;k'khy gksxk ? O O || || (1) CH3–CH2–C–CH2–CH3 (2) Ph–C–Ph O || (3) CH 3–C–Ph O || (4) H–C–H jQ dk;Z ds fy;s txg H-27/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 CH3 CH3 Å 85. Å 85. H KMnO4 ¾¾¾¾ ® x ; H KMnO4 ¾¾¾¾ ® x ; CH2–CH2–CH3 CH2–CH2–CH3 Å H KMnO4 ¾¾¾¾ ®y ; Å H KMnO4 ¾¾¾¾ ®y ; CH 2–CH 2–CH2–CH2–CH3 CH 2–CH 2–CH2–CH2–CH3 Å H KMnO4 ¾¾¾¾ ® z Å A LL EN H KMnO4 ¾¾¾¾ ® z Identify correct sequence representing x, y & z respectively : COOH (1) COOH CH2CH2COOH CH2CH2CH2CH2COOH COOH COOH COOH COOH COOH CH2–OH COOH CH2CH2CH2CH2COOH (2) CH2–OH (3) CH2CH2CH2CH2COOH (1) COOH (2) CH2CH2COOH x, y rFkk z dks iznf'kZr djus okyk lgh Øe Øe'k% gS : COOH CH2CH2CH2CH2COOH (3) CH=CH2 CH2–CH 2–COOH COOH (4) SPACE FOR ROUGH WORK / H-28/31 CH=CH2 CH2–CH 2–COOH COOH (4) jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 87. 88. Select correct statement : 86. (1) Sucrose is a trisaccharide & non reducing sugar (2) Sucrose is a disaccharide & reducing sugar (3) Sucrose is a disaccharide & non reducing sugar (4) Sucrose is a trisaccharide & reducing sugar Select the incorrect statement about natural 87. rubber: (1) Gutta percha is naturally occuring isomer of it (2) It is having all the double bonds cis (3) It is a polymer of 2-methyl-1, 3-butadiene (isoprene) (4) It is also known as Orlon lgh dFku dk p;u dhft, : (1) lqØkst ,d VªkbZld S js kbM rFkk vuvipk;d 'kdZjk gksrh gS (2) lqØkst ,d MkbZlSdsjkbM rFkk vipk;d 'kdZjk gksrh gS (3) lqØkst ,d MkbZld S js kbM rFkk vuvipk;d 'kdZjk gksrh gS (4) lqØkst ,d VªkbZld S js kbM rFkk vipk;d 'kdZjk gksrh gS izkd`fr jcj ds lUnHkZ esa xyr dFku gS : (1) xqV~Vk ipkZ bldk izkd`frd :i ls izkIr gksus okyk leko;oh gS (2) blesa lHkh f}cU/k lei{k (cis) gksrs gS (3) ;g 2-es f Fky-1, 3-C;wVkMkbZu (vkblksizhu) dk cgqyd gksrk gS (4) bls vkWjyksu ds :i esa Hkh tkuk tkrk gS A LL EN 86. Br2 CH3 -Cl CrO2Cl2 ® P¾¾¾ ¾¾¾® ¾ ® P3 P1¾¾ Fe AlCl3 Ac 2 O 2 Identify P3 CH3 CH3 (1) (2) (1) (4) CH3 (2) Br COOH CHO (3) (4) Br Br SPACE FOR ROUGH WORK / ALLEN P3 igpkfu, % CH3 Br COOH CHO (3) Br2 CH3 -Cl CrO2Cl2 ® P¾¾¾ ¾¾¾® ¾ ® P3 P1¾¾ Fe AlCl3 Ac 2 O 2 88. jQ dk;Z ds fy;s txg H-29/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 03 Br Br EtONa ¾¾¾ ® P (major product) 89. EtONa ¾¾¾ ® P (eq[; mRikn) 89. Which of the following is P - fuEu esa ls dkSulk P gS - (1) (1) OEt (3) 90. OEt (4) (3) Carbylamine reaction is positively given 90. by : (1) (3) (2) A LL EN (2) NH–CH3 NH2 (2) N–CH3 CH3 (4) Me2NH SPACE FOR ROUGH WORK / H-30/31 (4) fdlds }kjk /kukRed dkfcZy,ehu vfHkfØ;k nh tkrh gS : (1) (3) NH–CH3 NH2 N–CH3 (2) CH3 (4) Me2NH jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 03 jQ dk;Z ds fy;s txg A LL EN SPACE FOR ROUGH WORK / 2014 SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-31/31
© Copyright 2025