. MARINE ECOLOGY PROGRESS SERIES _ . M ar. Ecol. Prog. Ser. o, . Vol. 119: 311-314, 199o „ P ublished M arch 23 ! Total sample area and estimates of species richness in exposed sandy beaches Eduardo Jaramillo1, Anton McLachlan2, Jenifer Dugan3 'Instituto de Zoología, Universidad Austral de Chile, Casilla 567, Valdivia, Chile 2Zoology Department, University oí Port Elizabeth, PO Box 1600, Port Elizabeth 6000, South Africa 3Marine Science Institute, University oí California, Santa Barbara, California 93106, USA ABSTRACT: Recent studies have show n th at m acroinfaunal species richness of exposed sandy b eaches increases from reflective to dissipative conditions. To analyse if this tren d is affected by sam pling strategies (primarily area sam pled), we com pared results from surveys carried out in different b each types of South Africa, A ustralia and Chile. Total area sam pled in those surveys w as 4.5 m 2. The p ercen tag e of species p re dicted for each beach increased in relation to an in crease in total sam pling area. Only at a total sam ple area of 4 m 2 w ere most (>95%) of the species p resen t collected. Sam pling areas of 1 m 2 and 2 m 2 result in av erag e underestim ations of nearly 40% and 20% of the species, respectively. Beaches h a rb o u r ing the highest num ber of species (the most dissipative ones) need to be sam pled m ore extensively to collect most of the species, as com pared with b eaches having low er species rich ness. A bibliographic survey show ed th a t most of th e studies carried out on sandy beaches have b een b ased upon sam pling areas considerably sm aller th an 4 to 4.5 m 2, suggesting that in m any of the studies the sandy beach m acrofauna was undersam pieu. dynam ic beach types w ere com pared using data from m acroinfaunal surveys of exposed sandy beaches on the coasts of south-central Chile, southeastern South Africa, and southern and n ortheastern A ustralia (Table 1). The beach state index calculated for each site shows that the beaches exam ined spanned a w ide range of m orphodynam ic beach types. T hree replicate sam ples of sedim ents (each 0.1 m 2 in area and 25 cm deep) w ere collected at 15 equally spaced levels along a transect extending from above the drift line to the low er lhnit of the sw ash zone (the across-shore strat egy). Total area sam pled w as 4.5 m 2. The sedim ent was sieved through 1 mm m esh and the collected anim als stored in 5 % form alin until sorting. A program based on probability theory (H artnoil 1983) w as used to con struct species-area curves for sam ple areas up to 5 m 2 KEY WORDS: relationships Table 1. Beach characteristics for the sandy b eaches studied at each geographic area. BSI: b each state index in w hich values <0.5 are for reflective beaches, 0.5 to 1.0 are for in ter m ediate beaches, 1.0 to 1.5 for dissipative beaches and 1.5 to 2.0 for fully dissipative beaches (M cLachlan et al. 1993). The C hilean b eaches w ere sam pled in S eptem ber 1993, th e South African one in July 1993 an d those of A ustralia in July 1992 Sandy beach m acroinfauna • Species-area Studies carried out on sandy beaches of the n o rth w est of USA, South Africa, A ustralia and south-central Chile (McLachlan 1990, Jaram illo & M cLachlan 1993, M cLachlan et al. 1993) have show n th at b eaches of different m orphodynam ic types h arbour differences in m acrofaunal com munity attributes including species richness, ab u ndance and biomass. Species richness increases linearly from reflective to dissipative condi tions (e.g. M cLachlan et al. 1993). A lthough changes in beach type ap p ear to result in p redictable changes in m acrofaunal species richness, it is also possible that the above general trends m ay be affected by sam pling strategies, prim arily area sam pled. Materials and methods. To exam ine the possibility that estim ates of species richness m ay be affected by sam pling strategy (specifically, the area sam pled), species-area relationships from a ran g e of m orpho © Inter-R esearch 1995 Resale o f full article not p erm itted Site Area Chile Los Molinos Temperate Mehuin Temperate South Africa King Beach Warm temperate Australia Coorong Goolwa McKay Grasstree Sarina Cassuarina Temperate Temperate Tropical Tropical Tropical Tropical BSI Type of beach 0.50 1.50 Reflective, microtidal Dissipative, microtidal 0.95 Intermediate, microtidal 1.03 1.28 1.42 1.52 1.43 1.79 Dissipative, microtidal Dissipative, microtidal Ultradissipative, macrotidal Ultradissipative, macrotidal Ultradissipative, macrotidal Ultradissipative, macrotidal for each beach. A second sam pling strategy (the along shore strategy) was used on 2 beaches studied in Chile. Five sam ples of sedim ent (0.03 m 2 each) w ere collected at 5 equally spaced levels along 30 transects (1 m apart) extending from above the drift line to the low er limit of the sw ash zone. Since the five 0.03 m2 sam ples of each of the 30 transects w ere pooled (0.15 m 2 for each transect), the total area sam pled u n d er both strategies was 4.5 m 2. The 2 sam pling strategies used in Chile allow ed analysis of the effect of num ber of b each levels sam pled on estim ates of species richness. Results. Table 2 shows the results for the acrossshore strategy. The p ercen tag e of species predicted for each beach increased in relation to an increase in total sam pling area. The n um ber of species at 5 m 2 sam pling area was arbitrarily tak en to be 100 %, recognizing that the curves never flatten out com pletely and thus never reach 100% in absolute term s. Only at a total sam ple area of 4 m 2 w ere most (>95% ) of th e species p resen t collected. Sam pling areas of 1 m 2 an d 2 m 2 resulted in average underestim ations of nearly 40 and 20% of the species, respectively (Table 2). The curves w hich re p resen t the situation for each b each (15 beach levels sam pled) are show n in Fig. 1. The highest species rich ness w as found tow ards m ore dissipative conditions (cf. Fig. 1 and Table 1). B eaches h arbouring the h ig h est nu m b er of species (C assuarina and Serina in A us tralia) n eed to be sam pled m ore extensively to collect m ost of the species, as com pared w ith beaches having low er species richness (Fig. 1). As n u m b er of species p resen t increases, total sam pling area needs to be Fig. 2 shows the results of the com parison of sam pling strategies for the C hilean beaches. N um ber of Table 2. Total num ber of species reco rd ed as a function of sam pling area on sandy beaches: total nu m b er of species col lected (n) and predicted p e rcen tag e of species w ith increase in sam pling area Sites n 1 m2 2 m2 3 m2 4 m2 5 m2 Chile Los Molinos M ehuin 6 9 76.8 73.7 90.3 86.3 96.0 93.2 98.8 97.7 100 100 South Africa King Beach 11 48.5 72.9 86.7 95.4 100 Australia Coorong Goolwa McKay G rasstree Serina C assuarina 11 13 13 19 20 28 61.4 56.9 60.8 49.4 64.0 63.1 78.3 77.3 79.7 70.7 81.2 81.5 89.0 89.0 90.2 84.9 90.7 91.3 96.8 96.7 96.9 95.6 96.9 97.2 100 100 100 100 100 100 Average %: 61.6 79.8 90.1 96.9 100 C asuarina 2824S e rin a 20• G rasstree 16McKav Coorong Mehuin "O a> Los Molinos King Beach 4- 2 3 5 4 Fig. 1. P redicted n u m b er of species in relation to an increase in sam pling area (15 levels sam pled at each beach) Mehui n Q. -Q 8 - 6 - Los M o lin o s 2- 2 3 4 5 acro ss-shore s t r a t e g y a lo n g -s h o re s t r a t e g y Fig. 2. P redicted n u m b er of species in relation to an increase in sam pling a rea w ith the 2 sam pling strategies used on the 2 b eaches studied in Chile (see text) beach levels sam pled does not affect the estim ates of species richness, since both strategies p ro duced a sim ilar trend; i.e. a larg er area of the dissipative beach of M ehuin needs to be sam pled to collect m ost of the species, as com pared w ith the reflective beach of Los Molinos w hich h ad a low er species richness. Jaram illo et al.: Species richness m exposed sandy beach es D iscussion. The overall results of these analyses have profound im plications for sandy b each ecology and biodiversity of sandy b each m acrofauna. M ost of the surveys carried out on sandy b eaches have b een b ased upon sam pling areas considerably sm aller than 4.5 m 2. This assertion is b ased upon a survey we car ried out about sam pling m ethodologies rep o rted in 31 p ublished studies from w hich clear inform ation on sam pling areas could be collected (Table 3). We do not claim that this survey is a com plete one; how ever, it clearly shows th at in m any of th e studies the sandy b each m acrofauna was undersam pled; i.e. the areas sam pled w ere <1 m 2. Only in 2 of these studies, the authors sam pled a total area of 4 to 4.5 m 2 (or more) (Bally 1983, Donn & Cockcroft 1989), the area that our analysis dem onstrated as necessary to obtain >95% of the m acrofaunal species living on exposed sandy beaches of a variety of m orphodynam ic types. In 4 of the studies, the authors sam pled as m uch as 4 m 2 (or more), but only in 1 or some of the studied sites (Gauld Table 3. Total area sam pled (m2) in sandy beach surveys around the world. R anges are given w hen different total areas w ere sam pled in the sam e study Source G auld & B uchanan (1956) Wood (1968) Seed & Lowry (1973) D exter (1974) Location G hana N ew Z ealand Ireland Costa Rica, Colombia C roker et al. (1975) USA D auer & Simon (1975j USA D exter (1976) Mexico C roker (1977) USA M cLachlan (1977) South Africa Jaram illo (1978) Chile D exter (1979) P anam a W ooldridge et al. (1981) South Africa Koop & Griffiths (1982) South Africa ! Sánchez et al. (1982) Chile Bally (1983) South Africa Knott et al. (1983) USA D exter (1984) Australia W endt & M cLachlan (1985) South Africa Ismail (1986) Red Sea D exter (1986/1987) Israel, Egypt Jaram illo (1987) Chile Jaram illo et al. (1987) USA C larke & Peña (1988) Chile D exter (1989) Egypt Donn & Cockcroft (1989) N am ibia D exter (1990) Portugal USA Larsen & D oggett (1990) Jaram illo & González (1991) Chile Perez E drosa & Junoy (1991) Spain Defeo et al. (1992) U ruguay Jaram illo & M cLachlan (1993) Chile A rea sam pled 3.50-5.00 2.00 1.88-2.50 1.20-4.80 0.60-0.72 2.40 2.00-4.00 0.60-0.72 3.00 0.90-1.44 3.00 2.00-3.25 2.50 1.70-2.50 4.00 1.35 1.20 2.00-2.50 0.15 0.30-0.40 0.60-1.30 0.48-0.60 0.72 0.64 6.00-8.40 0.16 0.50 0.54-0.60 1.92-2.08 1.65-4.29 1.20 & B uchanan 1956, D exter '1974, 1976, Defeo et al. 1992). The total area n ee d e d to be sam pled in m acrofauna surveys ta rg e ted to find out estim ates of species rich ness depends on beach type and tide range. The slope of curves p resen ted in Fig. 1 suggests th a t for m icro tidal beaches (Los Molinos, M ehuin, King Beach, Coorong, Goolwa) a sam ple area of 3 to 4 m 2 reaches the point w here the curves start flattening. However, for the m acrotidal beaches g re ater sam pling effort is required, probably at least 5 m 2. A ckn o w led g em ents. T he w ork in Chile w as m ade possible by financial support from CONICYT (Chile) th rough FONDECYT research project 92/191 and U niversidad A ustral de Chile (DID project S92/36) to E.J.; th at in A ustralia and South Africa w as su pported by South Africa FRD Core G rant to A.M. We th an k the following p eople who assisted us in the field: in Chile, Pedro Quijón, M arcia G onzález, Jacq u elin e M uñoz, M aria Avellanal, H eraldo C ontreras, R obert Brumer, R obert Stead, and Victor Poblete; in Australia, An de Ruyck; in South Africa, An de Ruyck, M ariano Lastra, A lexandre Soares, A ndrew Bentley, Ted Donn, an d David Schoem an. We also than k 3 anonym ous referees for com m ents on an earlier manuscript. LITERATURE CITED Bally, R. (1983). Intertidal zonation on sandy b eaches of the w est coast of South Africa. Cah. Biol. mar. 24: 85-103 Clarke, M., Peña, R. (1988). Zonación de la m acroinfauna en una playa de a re n a del norte de Chile. Estud. O ceanol. 7: 17-31 Croker, R. A. (1977). M acroinfauna of n o rth ern N ew E ngland m arine sand: lo ng-term intertidal com m unity structure. In: Coull, B. C. (ed.) Ecology of m arine benthos. Belle W. B aruch Library in M arine Science No. 6. Univ. of S. C aro lina Press, p. 439-450 Croker, R. A., H ager, R. P., Scott, K. J. (1975). M acroinfauna of n orthern N ew E n g lan d m arine sand. II. A m phipod-dom inated intertidal com m unities. Can. J. Zool. 53: 42-51 Dauer, D. M., Simon, J. L. (1975). Lateral or along-shore dis tribution of th e polychaetous annelids of an intertidal, sandy habitat. Mar. Biol. 31: 363-370 Defeo, O., Jaram illo, E., Lyonnet, A. (1992). C om m unity stru c ture and intertidal zonation of the m acroinfauna on the Atlantic coast of U ruguay. J. coast. Res. 8: 830-839 Dexter, D. M. (1974). S an dy-beach fauna of the Pacific and A tlantic coasts of C osta Rica and Colombia. Rev. Biol. Trop. 22: 51 -6 6 Dexter, D. M. (1976). The san d y -b each fauna of Mexico. Southwest. N at. 20: 479-485 Dexter, D. M. (1979). C om m unity structure a n d seasonal vari ation in intertid al P an am an ian sandy beaches. Estuar. coast, mar. Sei. 9: 5 43-558 Dexter, D. M. (1984). Tem poral and spatial variability in the comm unity stru cture of th e fau n a of four sandy b eaches in south-eastern N ew South W ales. Aust. J. mar. Freshw at. Res. 35: 663-672 Dexter, D. M. (1986/87). Sandy beach fauna of M ed iterran ean and Red Sea coastlines of Israel an d the Sinai peninsula. Isr. J. Zool. 34: 125-138 Dexter, D. M. (1989). The sandy beach fauna of Egypt. Estuar. coast. Shelf Sei. 29: 261-271 314 Mar. Ecol. Prog. Ser. 119: 311-314, 1995 Dexter, D. M. (1990). The effect of exposure and seasonality on sandy beach com m unity stru ctu re in Portugal. Cienc. Biol. Eco*l. Syst. (Portugal) 10: 3 1 -5 0 Donn, T. E., Cockcroft, A. C. (1989). M acrofaunal comm unity structure and zonation of two sandy beaches on the cen tral N am ib coast, South W est A frica/N am ibia. M adoqua 16:129-135 Gauld, D. T., Buchanan, J. B. (1956). The fauna of sandy beaches in the Gold Coast. Oikos 7: 293-301 Hartnoll, R. G. (1983). The sp ecies-area relationship on a sandy beach. In: M cLachlan, A., Erasm us, T. (eds.) Sandy b eaches as ecosystems. Dr W. Ju n k Publishers, The H ague, p. 473-479 Ismail, N. (1986). Com m unity structure of m acrobenthic invertebrates in sandy b each es of the Jo rd an Gulf of Aqaba, Red Sea. Int. Rev. ges. Hydrobiol. 71: 225-232 Jaram illo, E. (1978). Zonación y estructura de la com unidad m acrofaunística en playas de a re n a del sur de Chile (M e huin, Valdivia). Stud. N eotrop. F au n a Environ. 13: 71-92 Jaram illo, E. (1987). Sandy b each m acroinfauna from the C hilean coast: zonation p attern s an d zoogeography. Vie M ilieu 37: 165-174 Jaramillo, E., Croker, R. A., H atfield, E. B. (1987). Long-term structure, disturbance, an d recolonization of m acroin fauna in a N ew H am pshire sand beach. Can. J. Zool. 65: 3024-3031 Jaram illo, E .t González, M. (1991). C om m unity structure and zonation of the m acroinfauna along a dissipative reflective range of b each category in so u th ern Chile. Stud. N eotrop. Fauna Environ. 26: 193-212 Jaram illo, E., M cLachlan, A. (1993). C om m unity and p o p u la tion responses of th e m acroinfauna to physical factors over a range of exposed sandy b each es in south-central Chile. Estuar. coast. Shelf. Sei. 37: 615-624 Knott, D. M., Calder, D. R., Van Dolah, R. F. (1983). M acro benthos of sandy b each and n earsh o re environm ents at M urrells Inlet, South Carolina, U.S.A. Estuar. coast. Shelf Sei. 16: 573-590 Koop, K., Griffiths, C. L. (1982). The relative significance of bacteria, meio- and m acrofauna on an exposed sandy beach. Mar. Biol. 66: 295-300 Larsen, P. F., D oggett, L. F. (1990). Sand beach m acrofauna of th e Gulf of M aine w ith inference on the role of oceanic fronts in d eterm ining com m unity composition. J. coast. Res. 6: 913-926 M cLachlan, A. (1977). Composition, distribution, abundance an d biom ass of the m acrofauna a n d m eiofauna of four sandy beaches. Zool. Aír. 12: 279-306 M cLachlan, A. (1990). Dissipative b each es an d m acrofauna com m unities on exposed intertidal sands. J. coast. Res. 6: 57-71 M cLachlan, A., Jaram illo, E., Donn, T. E., W essels, F. (1993). Sandy b each m acrofauna com m unities and their control by the physical environm ent: a g eo graphical comparison. J. coast. Res. (Spec. Issue) 15: 27-38 Perez Edrosa, J. C., Junoy, J. (1991). M acrofauna interm areal de las playas de A rea Longa, Peizas y A nguieira y Altar (Lugo, NW España). Thalassas 9: 37-48 Sánchez, M., Castilla, J. C., M ena, O. (1982). V ariaciones v er ano-invierno de la m acrofauna de a ren a en playa M orril los (Norte Chico, Chile). Stud. N eotrop. F auna Environ. 1 7 :3 1 -4 9 Seed, R., Lowry, B. J. (1973). The intertidal m acrofauna of seven sandy b eaches of C ounty Down. Proc. R. Irish Acad. B 73:21 7 -2 3 0 W endt, G .E ., M cLachlan, A. (1985). Zonation and biomass of th e intertidal m acrofauna along a South African sandy beach. Cah. Biol. mar. 26: 1-14 Wood, D. H. (1968). An ecological study of a sandy beach n ear A uckland, N ew Z ealand. Trans. R. Soc. N.Z., Zool. 10: 89-115 W ooldridge, T., Dye, A. H., M cLachlan, A. (1981). The ecol ogy of sandy b eaches in Transkei. S. Aír. J. Zool. 16: 210-218 This note was su bm itted to the editor M anuscript first received: Ju ly 14, 1994 R evised version accepted: D ecem b er 27, 1994
© Copyright 2025