Math 321: Show X and S 2 are independent (Under the assumption the random sample is normally distributed) A well known result in statistics is the independence of X and S 2 when X1 , X2 , · · · , Xn ∼ N µ, σ 2 . This handout presents a proof of the result using a series of results. First, a few lemmas are presented 2 is which will allow succeeding results to follow more easily. In addition, the distribution of (n−1)S σ2 derived. Definition 1. The sample variance is defined as n S2 = 1 X (Xi − X)2 n − 1 i=1 Lemma 1. The sum of the squares of the random variables X1 , X2 , · · · , Xn is n X Xi2 = (n − 1)S 2 + nX 2 i=1 Proof. By Definition 1, (n − 1)S 2 = n X n X (Xi − X)2 = i=1 Xi2 − 2X i=1 n X Xi + i=1 n X 2 X = i=1 n X 2 2 Xi2 − 2nX + nX = n X i=1 Xi2 − nX 2 i=1 It follows that n X Xi2 = (n − 1)S 2 + nX 2 i=1 Lemma 2. The sum of squares of the random variables X1 , X2 , · · · Xn centered about the mean, µ, is n X (Xi − µ)2 = n X (Xi − X)2 + n(X − µ)2 i=1 i=1 Proof. The sum of squares can be simplified as n X (Xi − µ)2 = i=1 n X Xi2 − 2µ i=1 = n X n X i=1 Xi + n X µ2 i=1 Xi2 − 2nµX + nµ2 (1) i=1 By Lemma 1, (1) simplifies to n n X X 2 (Xi − µ)2 = Xi2 − 2nµX + nµ2 = (n − 1)S 2 + nX − 2nµX + nµ2 i=1 i=1 = (n − 1)S 2 + n(X − µ)2 = n X (Xi − X)2 + n(X − µ)2 i=1 (2) X and S 2 are independent, page 2 Lemma 3. If Z ∼ N(0, 1), then Z 2 ∼ χ2 (1). Proof. The moment generating function for Z 2 is defined as 2 Z ∞ 1 2 2 √ etz e−z /2 dz 2 MZ (t) = E etZ = 2π −∞ ∞ Z = −∞ 1 1 √ exp − (1 − 2t)z 2 dz 2 2π # " 1 1 z2 √ exp − dz = 1 2 1−2t 2π −∞ | {z } 1 kernel of a N (0, 1−2t ) # " Z ∞ 1 1 1 z2 exp − dz =√ √ 1 2 1−2t 1 − 2t −∞ 2π √ 1 1−2t | {z } ∞ Z =√ integrates to 1 1 1 − 2t = (1 − 2t)−1/2 Note that this is the moment generating function for a χ2 random variable with one degree of freedom. Hence, Z 2 ∼ χ2 (1) Lemma 4. Suppose X1 , X2 , · · · , Xn are independent and identically distributed χ2 (1) random variables. It follows that Y = n X Xi ∼ χ2 (n) i=1 Proof. The moment generating function of Xi is MXi (t) = (1 − 2t)−1/2 . It follows that the moment generating function for Y is n n Y Y MY (t) = E etY = E etX1 +tX2 +···+tXn = MXi (t) = (1 − 2t)−1/2 i=1 = (1 − 2t)− Pn i=1 i=1 1/2 = (1 − 2t)−n/2 It follows that this is the MGF for a χ2 distribution with n degrees of freedom. Hence, Y = n X i=1 Xi ∼ χ2 (n) X and S 2 are independent, page 3 Theorem 1. Suppose X1 , X2 , · · · , Xn is a random sample from a normal distribution with mean, µ, and variance, σ 2 . It follows that the sample mean, X, is independent of Xi − X, i = 1, 2, · · · , n. Proof. The joint distribution of X1 , X2 , · · · , Xn is ( 2 ) n 1 1 X xi − µ fX (x1 , x2 , · · · , xn ) = exp − n 2 i=1 σ (2π) 2 σ n Transform the random variables Xi , i = 1, 2, · · · , n to Y1 = X X = Y1 Y2 = X2 − X X2 = Y2 + Y1 Y3 = X3 − X X3 = Y3 + Y1 .. . = .. . .. . = Yn = Xn − X .. . Xn = Yn + Y1 The Jacobian of the transformation can be shown to not depend on Xi or X and is equal to the constant n. It follows that fY1 ,Y2 ,··· ,Yn (y1 , y2 , · · · , yn ) = fX (x1 , x2 , · · · , xn )|J| = nfX (x1 , y1 + y2 , · · · , y1 + yn ) ( n 1X = constants · exp − 2 i=1 xi − µ σ 2 ) (3) Note that the sum in the exponent of the joint pdf can be simplified using Lemma 2. It follows that 2 n X xi − µ i=1 σ = n 1 X (xi − µ)2 σ 2 i=1 " n # 1 X = 2 (xi − x ¯)2 + n(¯ x − µ)2 σ i=1 " # n X 1 2 2 2 = 2 (x1 − x ¯) + (xi − x ¯) + n(¯ x − µ) σ i=2 Note that since n X (xi − x ¯) = 0, it follows that i=1 x1 − x ¯=− n X i=2 (xi − x ¯) (4) X and S 2 are independent, page 4 Therefore, equation (4) simplifies to 2 n X xi − µ i=1 σ " # n X 1 ¯)2 + = 2 (x1 − x (xi − x ¯)2 + n(¯ x − µ)2 σ i=2 !2 n n X 1 X = 2 (xi − x ¯) + (xi − x ¯)2 + n(¯ x − µ)2 σ i=2 i=2 !2 n n X 1 X = 2 yi + yi2 + n(y1 − µ)2 σ i=2 i=2 Therefore, the pdf of Y1 , Y2 , · · · , Yn , equation (1), simplifies to ( 2 ) n 1 X xi − µ fY1 ,Y2 ,··· ,Yn (y1 , y2 , · · · , yn ) = constants · exp − 2 i=1 σ = constants · exp 1 − 2σ 2 n X !2 yi i=2 + n X i=2 yi2 + n(y1 − µ)2 !2 n n n n o X 1 X yi + yi2 exp − 2 (y1 − µ)2 = constants · exp − 2 | 2σ 2σ{z } i=2 i=2 | {z } g(y1 ) h(y2 ,y3 ,··· ,yn ) = constants · h(y2 , y3 , · · · , yn ) · g(y1 ) Because fY1 ,Y2 ,··· ,Yn (y1 , y2 , · · · , yn ) can be factored into a product of functions that depend only their respective set of statistics, it follows that Y1 = X is independent of Yi = Xi − X, i = 2, 3, · · · , n. Pn Finally, since X1 − X = − i=2 (Xi − X), it follows that X1 − X is a function of Xi − X, i = 2, 3, · · · , n. Therefore, X1 − X is independent of Y1 = X. Theorem 2. Suppose X1 , X2 , · · · , Xn is a random sample from a normal distribution with mean, µ, and variance, σ 2 . It follows that the sample mean, X, is independent of the sample variance, S 2 . Proof. The definition of S 2 is given in Definition 1. Because S 2 is a function of Xi − X, i = 1, 2, · · · , n, it follows that S 2 is independent of X. Theorem 3. Suppose X1 , X2 , · · · , Xn is a random sample from a normal distribution with mean, µ, and variance, σ 2 . It follows that the distribution of a mulitiple of the sample variance follows a χ2 distribution with n − 1 degrees of freedom. In particular, (n − 1)S 2 ∼ χ2 (n − 1) σ2 Proof. Equation (2) states n X (Xi − µ)2 = (n − 1)S 2 + n(X − µ)2 . i=1 X and S 2 are independent, page 5 It follows that 2 n X Xi − µ i=1 σ 2 n X Xi − µ i=1 σ = 2 X −µ (n − 1)S 2 + n σ2 σ (n − 1)S 2 + = σ2 X −µ √ σ/ n 2 U =W +V 2 Xi − µ Note that since Xi ∼ N µ, σ 2 , it follows that Zi = ∼ N(0, 1). Similarly, since X ∼ N µ, σn , 2 σ 2 X −µ Xi − µ X −µ √ ∼ N(0, 1). By Lemma 3, it follows that √ then ∼ χ2 (1) and V = ∼ χ2 (1). σ σ/ n σ/ n 2 n X Xi − µ ∼ χ2 (n). Therefore, since W and V are independent, By Lemma 4, it follows that U = σ i=1 then the moment generating function of U is MU (t) = MW (t)MV (t) (1 − 2t)−n/2 = MW (t)(1 − 2t)−1/2 =⇒ MW (t) = (1 − 2t)−n/2 = (1 − 2t)−(n−1)/2 (1 − 2t)−1/2 The moment generating function for W is recognized as coming from a χ2 distribution with n − 1 degrees of freedom. Hence, W = (n − 1)S 2 ∼ χ2 (n − 1) σ2
© Copyright 2024