YANGON TECHNOLOGICAL UNIVERSITY DEPARTMENT OF CIVIL ENGINEERING CE 3013 ADVANCED THEORY OF STRUCTURES I Sample Questions (For Semester II) August 2008 1 CE 3013 – Advanced Theory of Structures I Sample Questions and Solutions for Semester II Chapter 2: Force Method of Analysis 1. Use the force method to find the bending moment at the intermediate supports of the continuous beam shown in the figure. q / unit length A C B 0.8 l D 0.8 l l 1 2 Coordinate system Solution: See in Worked-out examples No.2. 2. By using force method, find the reactions at the supports of the continuous beam shown in the figure due to downward translation of A = l / 100. The beam has a constant flexural rigidity EI. B A l C A C B 2 1 l Coordinate System Solution: See in Example 2.2 of the Textbook. 3. By using force method, find the reactions at the supports of the continuous beam shown in the figure due to downward translation of B = l / 100 together with a clockwise rotation of C = 0.004 radian. The beam has a constant flexural rigidity EI. B A l C A l C B 2 1 Coordinate System Solution: See in Example 2.2 of the Textbook. 4. Analyze the continuous beam shown in the figure due to a uniformly distributed load of intensity q on all spans. The beam has a constant flexural rigidity EI. Coordinate System Solution: See in Example 2.3 of the Textbook. 2 5. Analyze the continuous beam shown in the figure due to a unit downward movement of support A. The beam has a constant flexural rigidity EI. Coordinate System Solution: See in Example 2.3 of the Textbook. 6. Analyze the continuous beam shown in the figure due to a unit downward movement of support B. The beam has a constant flexural rigidity EI. Coordinate System Solution: See in Example 2.3 of the Textbook. 7. Find the reactions at the supports of the continuous beam shown in the figure by using force method. The beam has a constant flexural rigidity EI. q per unit length A C B l A C B 2 1 l Coordinate System Solution: (1) The displacements at supports B and C due to the external load on the released structure, q per unit length where D1 = - 5ql 4 ql 3 , and D2 = . 24 EI 3EI 3 (2) The displacements at supports B and C due to the unit values of redundants, F1 = 1 and F2 = 1, on the released structure, where f11 = 2l l3 l2 l2 . , f21 = , f12 = , and f22 = 6 EI 4 EI 4 EI 3EI (3) To find the redundants, F1 and F2, solve the following equation, [f]{F} = {-D} (1) {F} = [f]-1{-D} (2) ⎧F ⎫ where {F} = ⎨ 1 ⎬ ⎩ F2 ⎭ 3 2 f12 ⎤ ⎡l 6 EI l 4 EI ⎤ ⎥ = ⎢ 2l ⎥ f 22 ⎥⎦ ⎢l 2 3EI ⎦ ⎣ 4 EI ⎧D ⎫ ql 3 ⎧5l ⎫ {-D}= - ⎨ 1 ⎬ = ⎨ ⎬ ⎩ D2 ⎭ 24 EI ⎩ 8 ⎭ ⎡f [f] = ⎢ 11 ⎣ f 21 and [f]-1 = 12 EI 7l 3 ⎡ 8 − 3l ⎤ ⎢− 3l 2l 2 ⎥ ⎣ ⎦ ⎧ F ⎫ ql ⎧16⎫ Then solving equation (2), {F} = ⎨ 1 ⎬ = ⎨ ⎬, ⎩ F2 ⎭ 14 ⎩ l ⎭ 8 ql 2 . where F1 = ql , and F2 = 7 14 (4) To find the reactions at supports A and C by the superposition of the effect of external loads on the released structure and the effect of redundants, 17 1 ql 2 8 2 ql ( RA = + ql ) = 28 2l 14 7 15 1 8 2 ql 2 RC = ql ( ql )= 28 2l 7 14 The reactions at the supports of the continuous beam are shown in the following figure. 17 ql 28 15 ql 28 4 8. Find the reactions at the supports of the continuous beam shown in the figure by using force method. Also draw the shear force diagram. 2q/unit length A 3ql 2EI 1.5l 4ql B 0.5l 3q/unit length C 2EI 0.6l 1.8l Solution: To form {D} ql 3 21Pl 2 21Pl 2 + + 24 EI 384 EI 384 EI 3 2q (2l ) 21(3ql )(2l ) 2 21(4ql )(2.4l ) 2 = + + 24(2 EI ) 384(2 EI ) 384(2 EI ) D1 = 0.333ql 3 0.33ql 3 0.63ql 3 + + EI EI EI 3 1.293ql = EI = 15 Pl 2 ql 3 + 384 EI 24 EI 15(4ql )(2.4l ) 2 3q(1.5l ) 3 = + 384(2 EI ) 24 EI D2 = 0.45ql 3 0.42ql 3 + EI EI 3 0.87ql = EI = {∆ - D} = − ql 3 ⎧1.293⎫ ⎨ ⎬ EI ⎩ 0.87 ⎭ To form [f] Ml Ml 1 × 2l 1 × 2.4l 0.73l = + = + 3EI 3EI 3 × 2 EI 3 × 2 EI EI Ml 1 × 2.4l 0.2l = = = 6 EI 6 × 2 EI EI Ml 1 × 2.4l 0.2l = = = 6 EI 6 × 2 EI EI Ml Ml 1 × 2.4l 1 × 1.5l 0.9l = = + = + 3EI 3EI 3 × 2 EI 3EI EI f11 = f21 f12 f22 EI 1.5l D 5 [f] = l ⎡0.73 0.2⎤ EI ⎢⎣ 0.2 0.9⎥⎦ EI ⎡ 0.9 − 0.2⎤ 0.671l ⎢⎣− 0.2 0.73 ⎥⎦ [F] = [f]-1{∆-D} EI ⎡ 0.9 − 0.2⎤ − ql 3 ⎧1.293⎫ = x ⎨ ⎬ 0.671l ⎢⎣− 0.2 0.73 ⎥⎦ EI ⎩ 0.87 ⎭ [f]-1 = = − ql 2 0.617 ⎧ 0.99 ⎫ ⎨ ⎬ ⎩0.377⎭ ⎧− 1.605ql 2 ⎫ =⎨ 2⎬ ⎩− 0.611ql ⎭ F1 = -1.605 ql2, F2 = -0.611 ql2 Support Reactions RA RB RC RD = 1.9475 ql = 8.4667 ql = 3.2431 ql = 1.8427 ql 2q/unit length 1.9475 ql 3ql 4ql 3q/unit length 8.4667 ql 3.2431 ql 1.8427 ql Support Reactions 3.4142 ql 1.9475 ql 2.6573 ql + + + 1.0525 ql - - 0.5858 ql 4.0525 ql 5.0525 ql Shear Force Diagram 1.8427 ql 6 9. Find the reactions at the supports of the continuous beam shown in the figure by using force method. Also draw the shear force diagram. 5k A 2EI 6' 7k 3k/ft B EI 6' 10' C EI 7.5' Solution: To form {D} D1 = Pl 2 ql 3 5 × 12 2 3 × 10 3 295 + = + = 16 EI 24 EI 16 × 2 EI 24 EI 2 EI D2 = ql 3 15Pl 2 3 × 10 3 15 × 7 × 10 2 4875 + = + = 24 EI 384 EI 24 EI 384 EI 32 EI 1 {D}= EI ⎧⎪ 295 ⎫⎪ 1 ⎧4720⎫ 2 ⎨4875 ⎬ = ⎬ ⎨ 32 EI ⎩4875⎭ ⎪⎩ ⎪ 32⎭ To form [f] f11 = Ml Ml 12 10 16 = + = + 3EI 3EI 3 × 2 EI 3EI 3EI f21 = Ml 10 = 6 EI 6 EI f12 = Ml 10 = 6 EI 6 EI f22 = Ml Ml 10 10 20 = + = + 3EI 3EI 3EI 3EI 3EI [f] = 1 6 EI [f]-1 = 6 EI 1180 ⎡32 10 ⎤ ⎢10 40⎥ ⎣ ⎦ ⎡ 40 − 10⎤ ⎢− 10 32 ⎥ ⎣ ⎦ D 2.5' 7 [F] = [f]-1{∆-D} = 6 EI 1180 ⎡ 40 − 10⎤ − 1 ⎧4720⎫ ⎡− 22.25⎤ ⎢− 10 32 ⎥ x 32 EI ⎨4875⎬ = ⎢ − 17.29 ⎥ ⎭ ⎣ ⎣ ⎦ ⎩ ⎦ F1 = -22.25 k.ft, F2 = -17.29 k.ft Support Reactions RA RB RC RD = 0.65 k = 19.85 k = 17.97 k = 3.521 k 5k 7k 3k/ft 0.65 k 19.85 k 17.97 k 3.521 k Support Reactions 15.5 k 0.65 k 3.479 k + + - + - 4.35 k 14.75 k Shear Force Diagram 3.512 k 8 Chapter 3: Displacement Method of Analysis 1. Form [S] and {F} matrices for the frame shown in figure. Use the displacement method. 9P 2 3 1 l 4P Constant EI l l 2l Coordinate system Solution: See in Worked-out examples No.3. 2. Draw the bending moment diagram for the frame shown in the figure, which has a constant flexural rigidity EI. Use the displacement method. Solution: See in Example 3.2 of the Textbook. Coordinate System 3. By using the displacement method, draw the bending moment diagram for the frame shown in the figure, which has a constant flexural rigidity EI. Deformations due to axial forces are to be neglected. Coordinate System Solution: See in Example 3.3 of the Textbook. 9 4. Find the three reaction forces (vertical force, bending and twisting couples) at end A of the horizontal grid shown in the figure due to a uniform vertical load of intensity q acting on AC. All bars of the grid have the same cross section with the ratio of torsional and flexural rigidities GJ / EI = 0.5. Coordinate System Solution: See in Example 3.4 of the Textbook. 5. The continuous beam shown in the figure of a constant flexural rigidity EI has two fixed supports A and D and two roller supports B and C. Draw the bending moment diagram for the beam when support A settles vertically a distance of ∆. Coordinate System Solution: See in Example 3.5 of the Textbook. 6. The continuous beam shown in the figure of a constant flexural rigidity EI has two fixed supports A and D and two roller supports B and C. Draw the bending moment diagram for the beam when the beam is rotated at B through an angle θ in a clockwise direction. Coordinate System Solution: See in Example 3.5 of the Textbook. 10 7. Form {F}, [S], {Ar} and [Au] matrices to find the three reaction components at joint 'B' GJ for the horizontal grid shown. Assume = 0.5 EI B Downward load 2q/unit length 1.5l A C Z X Y E Downward load q/unit length 1.5l D l 2.5 l Solution: B3 B A B1 3 E Z B2 Y 2 X 1 D C To find {F} q/unit length 2q/unit length E A D E l F1 = 2q × l q × 1.5l − 3.5ql + = 2 2 2 F2 = − q × (1.5l ) 2 − 2.25ql 2 = 12 12 F3 = + 2q × (l ) 2 + ql 2 = 12 6 1.5 l 11 ⎧ − 3.5ql ⎫ ⎪ ⎪ 2 ⎪ ⎪ ⎪ − 2.25ql 2 ⎪ {F } = ⎨ ⎬ ⎪ ⎪ 12 ⎪ ⎪ + ql 2 ⎪ ⎪ 6 ⎭ ⎩ To find [S] S11 + = 12 EI 12 EI 12 EI 12 EI + + + 3 3 3 l (2.5l ) (1.5l ) (1.5l ) 3 1 1 1 ⎫ ⎧1 + + = + 12EI ⎨ 3 + ⎬ 3 3 15.625l 3.375l 3.375l 3 ⎭ ⎩l 19.88 EI l3 =+ S21 = MED + MEB = + MED – MEB 6 EI 6 EI − =0 2 (1.5l ) (1.5l ) 2 = + S31 = MEA + MEC = - MEA + MECw =- = 6 EI 6 EI + 2 l (2.5l ) 2 6 EI ⎛ 1 ⎜−1+ 2 ⎜ l ⎝ (2.5) 2 E A 1 ⎞ − 5.04 EI ⎟⎟ = l2 ⎠ E C l 2.5 l GJ 0.5EI = l l GJ 0.5EI 0.2 EI = = 2.5l 2.5l l E D 4 EI 1.5l ∴S22 = = = E 2.67 EI l 4 EI 1.5l 0.5EI 0.2 EI 2.67 EI 2.67 EI + + + l l l l 6.03EI , l B S32 = 0 12 1 A E C E 1.5l 1.5 l GJ 0.5EI = 1.5l 1.5l GJ 0.5EI 0.33EI = = 2.5l 2.5l l = 0.33EI l 4 EI l A E E C 4 EI 1.6 EI = 2.5l l S33 = 0.33EI 0.33EI 4 EI 1.6 EI + + + l l l l = 6.27 EI l S23 = 0 S13 = 6 EI 6 EI 6 EI − 2 = 2 (0.16 − 1) 2 l l (2.5l ) = − 5.04 EI l2 ⎡ + 19.88EI ⎢ l3 ⎢ ⎢ [S] = ⎢ 0 ⎢ ⎢ ⎢ − 5.04 EI ⎢⎣ l2 + 6.03EI l 0 To find [Ar] Ar1 = Ar2 = Ar3 = 0 ∴ {Ar} = {0} ⎤ symmetrical ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 6.27 EI ⎥ ⎥⎦ l 13 To find [Au] Au21 == 1 E Au11 = 1.5l 6 EI − 2.67 EI = 2 (1.5l ) l2 − 12 EI − 3.56 EI = (1.5l ) 3 l3 Au31 = 0 E B ⎡ − 3.56 EI ⎢ l3 ⎢ − 2.67 EI [Au] = ⎢ 2 ⎢ l ⎢ 0 ⎢⎣ + 6 EI + 2.67 EI = (1.5l ) 2 l2 Au12 = Au32 =0 Au33 = + 2.67 EI l2 2 EI 1.5l 0 GJ − 0.5EI − 0.33EI = = l 1.5l l ⎤ ⎥ ⎥ ⎥ 0 ⎥ − 0.33EI ⎥ ⎥⎦ l 0 14 8. Form {F}, [S], and [Au] matrices to find the three reaction components at joint 'B' for the horizontal grid shown. 1 k/ ft B 1 2 3 3 C 4 8' 4 1 10' 10 k 5 D 10' 2 A 12' Solution: To form {F} b a 2 b ab 2 F1 = − P ( − 3 + 3 ) , a = 8', b = 10', l = 18', P = 10 k l l l 2 10 8 × 10 8 × 10 2 + F1 = -10 ( − ) = -5.83 k 18 18 3 18 3 10 × 8 2 × 10 Pa 2 b = -19.75 k.ft F2 = − 2 = − l 18 2 Pab 2 ql 2 10 × 8 × 10 2 1 × 12 2 F3 = = = 12.69 k.ft 12 12 l2 18 2 ql 2 1 × 12 2 = = 12 k.ft F4 = 12 12 F5 = 0 ⎧ − 5.83 ⎫ ⎪− 19.75⎪ ⎪⎪ ⎪⎪ {F} = ⎨ 12.69 ⎬ ⎪ 12 ⎪ ⎪ ⎪ ⎪⎩ 0 ⎪⎭ To form [s] D1 = 1 12EI 12EI 12 EI 12 EI + = 0.01406 EI S11 = 3 + 3 = 3 l l 18 10 3 6EI 6 EI S21 = - 2 = - 2 = -0.0185 EI 18 l 6EI 6 EI S31 = - 2 = - 2 = -0.0185 EI l 18 Coordinate system 15 6EI 6 EI = - 2 = -0.06 EI 2 l 10 6EI 6 EI S51 = - 2 = - 2 = -0.06 EI 10 l S41 = - D2 = 1 6EI 6 EI = - 2 = -0.0185 EI 2 l 18 4 EI 4EI S22 = = = 0.222 EI l 18 2 EI 2EI = = 0.111 EI S32 = l 18 S42 = S52 = 0 S12 = - D3 = 1 6EI 6 EI = - 2 = -0.0185 EI 2 l 18 2 EI 2EI S23 = = = 0.111 EI l 18 4EI 4EI + = 0.555 EI S33 = 18 12 2EI = 0.167 EI S43 = 12 S53 = 0 S13 = - D4 = 1 S14 = - 6EI 6 EI = - 2 = -0.06 EI 2 l 10 S24 = 0 2EI = 0.167 EI S34 = 12 4EI 4EI + = 0.733 EI S44 = 12 10 2EI S54 = = 0.2 EI 10 D5 = 1 6EI 6 EI = - 2 = -0.06 EI 2 10 l S25 = S35 = 0 2EI = 0.2 EI S45 = 10 4EI = 0.4 EI S55 = 10 S15 = - 16 ⎡ 0.01406 − 0.0185 − 0.0185 0.06 0.06⎤ ⎢− 0.0185 0.222 0.111 0 0 ⎥⎥ ⎢ [S] = EI ⎢− 0.0185 0.111 0.555 0.167 0 ⎥ ⎥ ⎢ 0 0.167 0.733 0.02⎥ ⎢ − 0.06 ⎢⎣ − 0.06 0 0 0.2 0.4 ⎥⎦ To form {Au} 6EI 6 EI Au11 = - 2 = - 2 l 18 Au21 = Au31 = 0 6EI 6 EI Au41 = - 2 = - 2 10 l 2EI 18 Au22 = Au32 = Au42 = 0 Au12 = 4EI 18 4EI Au23 = 12 2EI Au33 = 12 Au13 = Au43 = 0 Au14 = 0 2EI Au24 = 12 4EI Au34 = 12 4EI Au44 = 10 Au15 = Au25 = Au35 =0 2EI Au45 = 10 2 4 ⎡− 6 0 0 ⎤ 18 18 ⎢ 324 ⎥ 4 2 0 0 ⎥ ⎢ 0 12 12 [Au] = EI ⎢ ⎥ 2 4 0 0 0 ⎥ ⎢ 12 12 ⎢− 6 4 2 ⎥ 0 0 ⎢⎣ 100 10 10⎥⎦ 17 9. Form {F}, [S], {Ar} and [Au] matrices to find the three reaction components at joint 'B' for the horizontal grid shown. 18k B 2 2 C 5 4k/ft 16' 3 10' 4 D 1 1 A 6' 6' Solution: To form {F} F1 = 0 Pl = -27 k.ft F2 = 8 Pl ql 2 100 − 19 = k.ft F3 = = 27 8 12 3 3 100 ql 2 k.ft F4 = = 12 3 ql = -20 k F5 = 2 ⎧ 0 ⎫ ⎪ − 27 ⎪ ⎪ 19 ⎪ ⎪ ⎪ {F} = ⎨− 3 ⎬ ⎪ 100 ⎪ ⎪ ⎪ ⎪ 3 ⎪ ⎩ − 20 ⎭ To form [S] D1 = 1 4EI = S11 = 16 2EI = S21 = 16 S31 = S41 = 0 6EI = S51 = 16 2 EI 4 EI 8 3EI 128 Coordinate system 18 D2 = 1 2EI S12 = 16 4EI S22 = 16 2EI S32 = 12 S42 = 0 6EI S52 = 16 2 D3 = 1 S13 = 0 2EI S23 = 12 4EI S33 = 12 2EI S43 = 10 6EI S53 = 10 2 EI 8 4EI 7EI + = 12 12 EI = 6 = = 3EI 128 EI 6 4EI 11EI + = 10 15 EI = 5 3EI = 50 = D4 = 1 S14 = S24 = 0 2EI EI = S34 = 10 5 4EI 2EI = S44 = 10 5 6EI 3EI = S54 = 50 10 2 D5 = 1 6EI 3EI = S15 = 2 128 16 6EI 3EI = S25 = 2 128 16 6EI 3EI = S35 = 2 50 10 6EI 3EI = S45 = 50 10 2 12EI 12EI + = 0.015 EI S55 = 3 16 10 3 19 3 1 ⎤ ⎡ 1 0 0 8 128 ⎥ ⎢ 4 7 3 1 0 ⎥ ⎢ 1 12 6 128 ⎥ ⎢ 8 3 ⎥ 1 11 1 [S] = EI ⎢ 0 6 15 5 50 ⎥ ⎢ 3 1 2 0 ⎢ 0 5 5 50 ⎥ ⎢3 3 3 3 0.015⎥ 50 50 ⎦ ⎣ 128 128 To form {Ar} Ar1 = 0, Ar2 = -27, Ar3 = 27, Ar1 = - ⎧ 0 ⎫ ⎪ − 27 ⎪ ⎪ ⎪ {Ar} = ⎨ 27 ⎬ ⎪ ⎪ ⎪− 100 ⎪ 3⎭ ⎩ To form [Au] D1 = 1 EI 4 EI = 16 4 Au21 = Au31 = Au41 = 0 Au11 = D2 = 1 EI 2 EI = 16 8 EI 4 EI Au22 = = 12 3 EI 2 EI Au32 = = 12 6 Au42 = 0 Au12 = D3 = 1 Au13 = 0 EI 2 EI Au23 = = 12 6 EI 4 EI Au33 = = 12 3 4 EI 2 EI Au43 = = 10 5 D4 = 1 Au14 = Au24 = Au34 = 0 EI 2 EI Au44 = = 10 5 100 3 20 D5 = 1 6 EI 3EI = 2 128 16 Au25 = Au35 = 0 6 EI 3EI Au45 = = 2 50 10 Au15 = ⎡1 ⎢ 4 ⎢0 [Au] = EI ⎢ ⎢0 ⎢ 0 ⎣⎢ 1 1 1 8 3 6 0 0 1 6 1 3 2 5 0 0 0 1 5 3 ⎤ 128⎥ 0 ⎥ ⎥ 0 ⎥ 3 ⎥ 50 ⎦⎥ 21 Chapter 4: Flexibility and Stiffness Matrices 1. The grid in figure is formed by four main girders and two cross girders of a bridge deck, with a flexural rigidity in the ratio EIm : EIc = 2:1. The torsional rigidity is neglected. Form [S], {F}, {Ar}, [Au] matrices for a cross girder due to a concentrated vertical load "P" acting at joint 3. 1 3b 2 P 3b 3 3b 4 3b 3b 3b hinge Solution: See in Worked-out examples No.4. 2. Form [F] and [S] matrices for the simply supported beam shown in the figure. Solution: See in Example 4.1 of the Textbook. 3. The grid shown in the figure is formed by four simply supported main girders and one cross-girder of a bridge deck, with a flexural rigidity in the ratio EIm : EIc = 3 : 1. The torsional rigidity is neglected. Draw the bending moment diagram for the cross-girder due to a concentrated vertical load “P” acting at joint 1. Solution: See in Example 4.2 of the Textbook. 22 4. The grid in figure is formed by four main girders and one cross girder of a bridge deck, with a flexural rigidity in the ratio EIm : EIc = 2:1. The torsional rigidity is neglected. Form [S], {F}, {Ar}, [Au] matrices for the cross girder due to a concentrated vertical load "P" acting at the center of the cross girder. 2b P b b 2b 4b 4b Solution: EIm : EIc = 2 : 1 Neglect torsional rigidity To form {F} {F} = {0 , − P P , − , 0} 2 2 To Form [S] D1 = 1 Main girder - 23.9998 EI/l3 Cross-girder EI L3 1 3.6 - 1.6 -2.4 0.4 23 + 1.60 EI C 24 EI m + (2b) 3 (4b) 3 EI = 3C (0.2 + 1.125) b EI = 1.325 3C b − 1.6 EI C EI S21 = = - 0.2 3C 3 (2b) b 2.4 EI C EI S31 = = 0.3 3C 3 (2b) b − 0.4 EI C EI S41 = = -0.05 3C 3 (2b) b S11 = D2 = 1 Main girder - 6 EI/l3 Cross-girder EI L3 3.6 8.4 -9.6 − 3.6 EI C EI = - 0.45 3C 3 (2b) b + 9.6 EI C 6 × 3 EI C + S22 = (2b) 3 (4b) 3 EI = 1.48 3C b − 8.4 EI C EI S32 = = - 1.05 3C 3 (2b) b + 2.4 EI C EI S42 = = 0.3 3C 3 (2b) b S12 = -2.4 24 D3 = 1 Main girder - 13.71428 EI/l3 Cross-girder -4.15384 10.61538 3.69231 EI L3 -10.15384 4.15384 EI C EI = 0.51923 3C 3 (2b) b − 10.61538 EI C S23 = (2b) 3 EI = -1.32692 3C b 13.71428 × 3EI C 10.15384 EI C S33 = + (4b) 3 (2b) 3 EI = 1.9121 3C b − 3.69231EI C EI S43 = = -0.46154 3C 3 (2b) b S13 = D4 = 1 Cross-girder 0.4 -2.4 EI L3 3.6 -1.6 0.4 EI C EI = 0.05 3C 3 (2b) b 2.4 EI C EI S24 = = 0.3 3C 3 (2b) b − 3.6 EI C EI = -0.45 3C S34 = 3 (2b) b S14 = 25 1.6 EI C 13.71428 × 3EI C + (2b) 3 (4b) 3 EI = 0.84286 3C b S44 = − 0.05 ⎤ ⎡ 1.325 − 0.45 0.51923 ⎢ − 0.2 1.48 − 1.32692 0.3 ⎥⎥ EI [S] = 3C ⎢ 1.9121 − 1.05 − 0.45 ⎥ b ⎢ 0.3 ⎢ ⎥ 0.3 − 0.46154 − 0.84286⎦ ⎣− 0.05 To form {Ar} {Ar} = {0, - Pb Pb , , 0} 4 4 To form [Au] ⎡− 1.6 [Au] = ⎢ ⎣ 0.4 3.6 - 2.4 - 2.4 3.6 0.4⎤ EI C - 1.6⎥⎦ (2b) 2 26 Chapter 5: Deflection of Various Structures Using Matrix Algebra 1. The rigid frame shown in the figure is made of a commonly used steel I sections which has the following section properties: a = 1.34 x 10-4 l2, ar = aweb = 0.65 x 10-4 l2, I = 5.30 x 10-8 l4 and G = 0.4 E. Determine the contribution of bending deformation to the displacement at the three coordinates shown in the figure. Coordinate System Solution: See in Example 5.1 of the Textbook. 2. The rigid frame shown in the figure is made of a commonly used steel I sections which has the following section properties: a = 1.34 x 10-4 l2, ar = aweb = 0.65 x 10-4 l2, I = 5.30 x 10-8 l4 and G = 0.4 E. Determine the contribution of deformation due to axial force to the displacement at the three coordinates shown in the figure. Coordinate System Solution: See in Example 5.1 of the Textbook. 3. The rigid frame shown in the figure is made of a commonly used steel I sections which has the following section properties: a = 1.34 x 10-4 l2, ar = aweb = 0.65 x 10-4 l2, I = 5.30 x 10-8 l4 and G = 0.4 E. Determine the contribution of shear deformation to the displacement at the three coordinates shown in the figure. Coordinate System Solution: See in Example 5.1 of the Textbook. 27 4. Determine the flexibility matrix of the frame shown in the figure corresponding to the three coordinates. Consider the bending deformation only. Coordinate System Solution: See in Example 5.1 of the Textbook. 5. Determine the stiffness matrix of the frame shown in the figure by the assemblage of members using the equation 5.38 Solution: See in Example 5.3 of the Textbook. 28 Chapter 6: Influence Lines for Beams, Frames and Grids 1. Calculate the influence ordinates for the end moment MCD in the bridge frame shown at 0.4l and 0.8l of each span. Use these influence ordinates to find the influence ordinates of shear force Vn. The relative values of I are shown in the figure. B A n C I=3 I=2 D I =3 2b 2b I =1 I =1 b E F 4b 5b 6b Solution: See in Worked-out examples No.5. 2. Neglecting the torsional rigidity of the girders, form [F] and [S] matrices to find the influence lines for the following actions. (a) bending moment at the center of girder AB (b) bending moment in the cross-girder at J reaction RC at support C (c) Moment of inertia of main girder = 3I Moment of inertia of cross girder = I N A B 1 l/3 J C D 2 l/3 K E F 3 l l Solution: See in Worked-out examples No.6. 3. Determine the influence line for the end moment MBA in the bridge frame shown in the figure. Use this influence line to find the influence ordinate of the bending moment MG at the center of AB. The relative values of I are shown in the figure. Solution: See in Example 6.1 of the Textbook. 29 4. Determine the influence line for the end moment MBA in the bridge frame shown in the figure. Use this influence line to find the influence ordinate of the shear Vn at a point “n” just to the left of B. The relative values of I are shown in the figure. Solution: See in Example 6.1 of the Textbook. 5. Find the influence line for the bending moment at section n, just to the left of joint C, in the grid shown in the figure. The main girders are encastre. The relative moment of inertia is 4 for all main girders and 1 for the cross-girders. The ratio of the torsional rigidity GJ to the flexural rigidity EI is 1 : 4 for all members. Solution: See in Example 6.2 of the Textbook. 6. Neglecting the torsional rigidity of the girders, find the influence lines for the following actions for the interconnected bridge system shown in the figure. (a) bending moment at the center of girder AB (b) bending moment at the center of girder CD (a) Solution: See in Example 6.3 of the Textbook. (b) 30 7. Neglecting the torsional rigidity of the girders, find the influence lines for the following actions for the interconnected bridge system shown in the figure. (a) bending moment in the cross-girder at J (b) reaction RC at support C (b) (b) Solution: See in Example 6.3 of the Textbook. 8. Find the influence line for the reaction at B and the forces in the members labeled Z1 and Z2 in the truss shown in the figure. The unit load can act at the nodes of the lower chord only. All the members are assumed to have the same value of L/AE, L being the length and A the cross-sectional area of the members. Solution: See in Example 6.4 of the Textbook. 9. Determine the influence line for the end moment MCD in the bridge frame shown in the figure. Use this influence line to find the influence ordinate of the bending moment Mn and of the shear Vn at a point “n” to the right of C at 0.3l, 0.6l and 0.8l of each span. The relative values of I are shown in the figure. A B n C I=3 I=3 I =3 3b I =1 4b 4b I =1 E F 4b D 6b 31 Solution: Introduce a unit rotation (Counterclockwise) at end 'C' of 'CD'. 1 D C − 3E (3I ) EI ⎛ 3EI ⎞ = = 1.5 ⎟ 6b b ⎝ l ⎠ CD -⎜ KAB 3 3I =- × = 0.5625 4 4b KBE = KBC = ΣK = 1.5625 I = 0.25 4b 3I = 0.75 4b 0.5625 = 0.36 1.5625 0.25 = = 0.16 1.5625 0.75 = = 0.48 1.5625 DFBA = DFBE DFBC End DF's FEM's Multiplier EI 100b BA 0.36 0 BE 0.16 0 -15 -7 -1 -16 BC 0.48 0 +41 -20 +3 -1 +23 -1 -8 CB 0.545 0 +82 -10 +5 CF 0.182 0 +27 CD 0.273 -150 +41 +2 +3 +77 +29 -106 Ordinates of I.L for End Moment Mn ( b / 10 ) Inf: coefficients ηMs I ηMCD 2 Inf: ordinates - Member AB 0.3 l 0.6 l 0.8 l 0 0 0 MemberBC 0.3 l 0.6 l 0.8 l 0 0 0 Member CD 0.3 l 0.6 l 0.8 l 9 12 6 0.194 0.273 0.205 -0.57 -0.97 -0.79 -3.79 -3.56 -2.04 0.194 0.273 0.205 -0.57 -0.97 -0.79 5.21 3.96 8.44 32 ηv = ηvs - 0 1 (ηMCD + ηMDC) l = ηvs - 1 ηMCD 6b Ordinates of I.L for shear Vn Member AB Inf: coeff 0.3 l 0.6 l 0.8 l ηVs I ηMCD 6b Inf: ordinates - MemberBC 0.3 l 0.6 l 0.8 l Member CD 0.3 l 0.6 l 0.8 l 0 0 0 0 0 0 -0.3 0.4 0.2 -0.006 -0.009 -0.007 0.019 0.032 0.026 0.126 0.119 0.068 -0.006 -0.009 -0.007 0.019 0.032 0.026 -0.174 0.519 0.268 33 Chapter 1: Effects of Axial Forces 1. Find the end-moments for the members in the frame shown in the figure, taking into account the beam-column effect. The relative values of I are shown in the figure. Figure: (a) Frame properties and loading, (b) Coordinate system. Solution: See in Example 1.2 of the Textbook.
© Copyright 2024