Lecture 3 Stat 255 V. Nguyen Lecture 3 Two Sample Comparison of Survival Distributions Statistics 255 - Survival Analysis Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial Presented October 2, 2012 Vinh Nguyen Department of Statistics University of California, Irvine 3.1 Kaplan-Meier estimator I Show that the KM estimator is the nonparametric maximum likelihood estimator of S(t). . . Lecture 3 Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial 3.2 Uncensored data 1. Two sample t-test, H0 : µ1 = µ2 vs. HA : µ1 6= µ2 I It could be that F1 6= F2 yet µ1 = µ2 I Example: N (µ, σ12 ) vs. N (µ, σ22 ) 2. Kolmogorov-Smirnov, H0 : F1 (x) = F2 (x) for all of x vs. HA : F1 (x) 6= F2 (x) for some x I b1 (x) − F b2 (x)| where Fˆ is the Test statistic: supx |F empirical distribution function Lecture 3 Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial 3. Wilcoxon rank-sum test (Mann-Whitney), H0 : F1 (x) = F2 (x) vs. HA : F1 (x) > F2 (x) for all x 4. Other tests . . . 3.3 Motivation I Recall: 6-MP vs. placebo leukemia trial I 21 patients randomized to 6-MP treatment I 21 patients randomized to placebo-control I Outcome: remission times (in weeks) Lecture 3 Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial 3.4 Survival functions Lecture 3 1.0 Stat 255 V. Nguyen Kaplan-Meier Estimator 0.6 Comparing Two Survival Distributions Logrank test 0.4 Ex: 6-MP Trial 0.0 0.2 Survival Probability 0.8 Control (N=21) 6−MP (N=21) 0 5 10 15 20 25 30 35 Study Time (weeks) 3.5 Comparison I Lecture 3 Question of interest: Is 6-MP associated with the time to cancer remission? Stat 255 V. Nguyen One approach: compare survival at single time point t0 I b 1 (t0 ) − S b 2 (t0 ) Use the Kaplan-Meier estimator to obtain S I Use Greenwood’s variance estimator for the difference in survival probabilities Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial I Test: H0 : S1 (t0 ) = S2 (t0 ) vs. HA : S1 (t0 ) 6= S2 (t0 ) using the test statistic Z =q b 1 (t0 ) − S b 2 (t0 ) S b 1 (t0 )] + V b 2 (t0 )] b [S b [S V . ∼H0 N (0, 1) 3.6 Comparing survival at a single time point Lecture 3 Stat 255 V. Nguyen Problems 1. Clinically, it may not be appropriate to compare survival at a single time point I Example: 1-month survival for childhood leukemia 2. Inefficient since we throw away information on the rest of the survival curves Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial Solution I Goal: compare the entire survival curves (up to the maximum observed time) 3.7 Logrank test Lecture 3 Stat 255 V. Nguyen Setup I Let t1 < t2 < · · · < tD denote the set of distinct and ordered observed survival times from the pooled sample (both groups combined) Kaplan-Meier Estimator I Test H0 : S1 (t) = S2 (t) vs. Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial HA : S1 (t) = [S2 (t)]φ , or equivalently, H0 : λ1 (t) = λ2 (t) vs. HA : λ1 (t) = φλ2 (t), for all t, where φ > 0 I HA : the hazard ratio φ is not 1 3.8 Conditional 2 × 2 table I At each failure time tk , k = 1, . . . , D, consider a 2 × 2 table of the form Group 1 Group 2 Total I Lecture 3 Failure Yes No d1k y1k − d1k d2k y2k − d2k dk yk − dk Risk set size y1k y2k yk Conditional on the risk set at time tk , consider the distribution of deaths in group 1 under H0 : Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial D1k ∼ Hypergeometric(yk , y1k , dk ) I For failure time tk , compute the observed number of deaths in group 1 and the expected number of deaths under H0 : O1k = d1k E1k = y1k (observed) dk yk (expected) Logrank test I 3.9 Lecture 3 Stat 255 V. Nguyen At each failure time, compute: Uk = O1k − E1k I Kaplan-Meier Estimator Under H0 , E[Uk ] = 0 y1k y2k (yk − dk )dk Var[Uk ] = = Vk yk2 (yk − 1) I Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial The logrank statistic is given by hP D k =1 (Ok PD − Ek ) k =1 Vk i2 hP D k =1 Uk = PD k =1 Vk i . ∼ χ21 3.10 Example: 6-MP Trial > library(KMsurv) > data(drug6mp) > drug6mp[1:5, ] pair remstat t1 t2 relapse 1 1 1 1 10 1 2 2 2 22 7 1 3 3 2 3 32 0 4 4 2 12 23 1 5 5 2 8 22 1 > > ##### Transform data to long form > drug6mpLong <- with(drug6mp + , data.frame(time=c(t1, t2) + , irelapse=c(rep(1, length(t1)), relapse) + , sixmp=rep(c(0, 1), each=length(t1)))) > dim(drug6mpLong) [1] 42 3 > drug6mpLong[1:5, ] time irelapse sixmp 1 1 1 0 2 22 1 0 3 3 1 0 4 12 1 0 5 8 1 0 Lecture 3 Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial 3.11 Example: 6-MP Trial > library(survival) > plot( survfit( Surv( time, irelapse ) ~ sixmp, data=drug6mpLong ), + lty=1:2, xlab="Study Time (weeks)", ylab="Survival Probability" ) > legend( 25, 1, lty=1:2, legend=c("Control (N=21)", "6-MP (N=21)"), bty="n" ) > ## > ##### > ##### Logrank test > ##### > ## > library( survival ) > survdiff( Surv( time, irelapse ) ~ sixmp, data=drug6mpLong ) Call: survdiff(formula = Surv(time, irelapse) ~ sixmp, data = drug6mpLong) N Observed Expected (O-E)^2/E (O-E)^2/V sixmp=0 21 21 10.7 9.77 16.8 sixmp=1 21 9 19.3 5.46 16.8 Chisq= 16.8 Lecture 3 Stat 255 V. Nguyen Kaplan-Meier Estimator Comparing Two Survival Distributions Logrank test Ex: 6-MP Trial on 1 degrees of freedom, p= 4.17e-05 3.12
© Copyright 2025