Sample Math Placement Test 1. Divide [(-18) – (6)(-2)+34 – 15] by (1-11) and simplify. 2. Find the missing numerator for 3. Arrange 4. 5. 6. 7. 3 x . = 7 42 7 5 6 , , from smallest to largest. 19 13 17 2 1 + Simplify and reduce to lowest terms: 3 2 1 2 3 − 2 3 Change 0.4825 to a fraction in lowest terms. Divide 36.174 by 52.19 and round to two decimal places. Convert 6.73 kL to L. 8. Multiply: (3a – 2b)(2a + b) 7 9. Write 16 % as a fraction in lowest terms. 8 10. Given T = 3 (T2 – T1), solve for T1. 25. Which of the following are true? a) -(x – 1) = -x + 1 a −b a b) = −1 + b b m c) =0 0 d) x2 − 9 = x −3 e) (q + 2) 2 = q 2 + 4 26. State the values(s) of t for which the expression t 2 − 7t + 12 t2 −9 ⎛ 2 p 2 q − 2 27. Evaluate ⎜ ⎜ r −3 ⎝ 13. Simplify: 128x − 5 2x ( 3 29. Evaluate xy ) 6 x2 − a2 10 17. Solve 3 log (2x – 3) = 0 for x. 18. Find α if cot α = -4.5247 and 0° ≤ α ≤ 360°. 19. Find the value of α if the terminal side of angle α (an angle in standard position) passes through the point (1.41, 3.51). 20. Given the right triangle ABC, find side b if ∠C = 90.0°, ∠B = 76.0°, and side a = 14.5 cm. 21. Change 3 t − 3r 1 / 3 radians to degrees. 22. Evaluate csc 31. Simplify: a+ x 2 [log t − 5 log n + 2 log y] as a single logarithm. 3 π for p=2 , q=-2 and r=1. for r=8 and t=4. ⎛ y 1 / 3 r 2 / 3 30. Simplify: ⎜ ⎜ m 3 r 4 / 3 ⎝ 15. Change log b x = y to exponential form. 16.Write 3r − 2t 1 / 2 x 14. Simplify: −3 ⎞ ⎟ ⎟ ⎠ 28. Write –7x2y0 z-5 without zero or negative exponents. 11. Write 0.00934 in scientific notation. 12. Simplify: is undefined. 5π and round to 4 decimal places. 4 23. Indicate the slope (m) and y-intercept (b) for the equation 4x – 3y = 12. 24. Solve the following system of equations: 2x – y + 2z = 6 x+y+z=6 3x + 2y – z = 4 32. Simplify: ⎞ ⎟ ⎟ ⎠ 3 m2 − 9 5m − 15 ÷ 2 2m − 12 m − 2m − 24 x 2 x − 4x + 3 − 3 2x 3 + 4 3 x − 3x 2 33. Solve for k: -3 (k – 1) = -2 (k – 4) 34. Solve for x: 2 5 5 − = x − 2 x 2x E R+r = e r 36. An employer gave an employee a raise of 15%. The new salary is $36,000 per year. What was the employee's salary before the raise? 35. Solve for r: 37. A rectangle has a perimeter of 300 cm. The length is 10 more than 1 1/3 times the width. Find the length and width. 38. How much water must be added to a litre of 90% pure alcohol to reduce it to 80% pure alcohol? 39. For the right triangle ABC, ∠C = 90.0°, c = 8.20 mm, and a = 6.50 mm. Find ∠B. 40. A guy wire whose grounded end is 11.5 m from the pole it supports makes an angle of 64.3° with the ground. Find the length of the guy wire. Sample MPT solutions !!" ! ! !! !!! !!" 1. 2. 3. 4. 5. 6. 7. 8. 9. ! = ! ! , ! !" ! !" = !!" = −6 !!" ⇒ 3 42 = 7𝑥 ⇒ 𝑥 = 18 ! , !"#$ !"!# !"#$ ⇒ !" !" !" ! ! ! ! ! ! ! ! ! ! ! !!"!!"!!"!!" = !!!! ! ! !" ! = , , !"## !"## !"## 7 6 6 17 = × 4825 10000 = 7 17 ⇒ ! , ! , ! !" !" !" 193 400 0.4825 = = 36.174 ÷ 52.19 = 0.693121288 = 0.69 1000 L 6.73 kL × 1 kL = 6370 L 3a − 2b 2a + b = 6a! + 3ab − 4ab − 2 = 6a! − ab − 2b! 7 16 8 % = 135 8 135 % 8 = 100 27 = 135 = 160 800 3T2 −T 3 10. T = 3 T! − T! ⇒ T = 3T! − 3T! ⇒ 3T! = 3T! − T ⇒ T! = 11. 0.00934 = 1000 = 9.34× 1000 = 9.34×10!! 128𝑥 − 5 2𝑥 = 64 2𝑥 − 5 2𝑥 = 8 2𝑥 − 5 2𝑥 = 3 2𝑥 12. 13. 9.34 ( ! !" )! 16. 17. ( ! !" )! ! 10 𝑥 ! − 𝑎! 𝑎+𝑥 ⇒ 14. 15. ! = 1 ! = !" ! ! = !!!! ! = 𝑥𝑦 ! 10 𝑥 + 𝑎 (𝑥 − 𝑎) 𝑎+𝑥 ⇒ (𝑥 − 𝑎) 10 ⇒ 10(𝑥 − 𝑎) log ! 𝑥 = 𝑦 ⇒ 𝑏 ! = 𝑥 2 2 10 4 t 2 3y4 3 23 10 3 43 logt − 5log n + 2 log y = logt − log n + log y = logt − log n + log y = log [ ] 3 3 3 3 n10 3 0 ⇒ log(2 x − 3) = 0 3 ⇒ x=2 3 log(2 x − 3) = 0 ⇒ log(2 x − 3) = ⇒ 1 = 2x − 3 ⇒ 4 = 2x ⇒ 10 0 = 2 x − 3 cot α = −4.5247 First find the reference angle, α ref 18. 1 1 ⎛ 1 ⎞ = − 4.5247 ⇒ tan α ref = ⇒ α ref = tan −1 ⎜ ⎟ ⇒ α ref = 12.46 tan α ref 4.5247 ⎝ 4.5247 ⎠ Since cot α is negative, then α lies in the second and fourth quadrants. Solution 1: α = 180° − α ref ⇒ α = 167.54° ; Solution 2 : α = 360° − α ref ⇒ α = 347.54° 19. The right triangle setup yields tan α = 20. tan 76° = b 14.5 ! 21. ! radians = csc 22. !! ! = ! ! × ! 5𝜋 !"# 4 3.51 ⎛ 3.51 ⎞ ⇒ α = tan −1 ⎜ ⎟ ⇒ α = 68.1° 1.41 ⎝ 1.41 ⎠ ⇒ b = 14.5 tan 76° ⇒ !"#° = = ! !"#° ! !!.!"!# ! b = 52.8cm = 60° = −1.4142 ! 4𝑥 − 3𝑦 = 12 ⇒ 𝑦 = ! 𝑥 − 4 This is 𝑦 = 𝑚𝑥 + 𝑏 form. 23. ! Slope (𝑚) = ! and y-‐intercept (b) = −4 Equation 1: Equation 2: Equation 3: 24. 2x – y + 2z = 6 x + y + z = 6 3x + 2y – z = 4 Step 1: Add equation 1 to equation 2 2x – y + 2z = 6 (+) x + y + z = 6 3x + 3z = 12 Equation 4 Step 2: Multiply equation 1 by 2 and add to equation 3 2x – y + 2z = 6 ⇒ 25. 4x – 2y + 4z = 12 (+) 3x + 2y – z = 4 7x + 3z = 16 Equation 5 Step 3: Subtract equation 4 from equation 5 3x + 3z = 12 (-‐)7x + 3z = 16 -‐4x = -‐4 x=1 Step 4: Substitute x=1 into equation 4; z=3 Step 5: Substitute x=1 and z=3 into equation 2; y=2 (a) True. (b) True. (c) False. Division by zero is undefined. (d) False. x ! − 9 = (x − 3)(x + 3) ≠ x − 3. (e) False. (q + 2)! = q + 2 q + 2 ≠ q! + 4 26. ! ! !!!!!" ! ! !! ! ! !!!!!" = is undefined when the denominator is zero. !!! !!! 𝑡 + 3 𝑡 − 3 = 0 ⇒ 𝑡 = 3 𝑜𝑟 𝑡 = −3 27. !! !!! ! !! ! !! !!! !!! ! ! = !! = !! !! ! ! ! ! 28. 1 𝑧5 −7𝑥 ! 𝑦 ! 𝑧 !! = −7𝑥 ! 1 29. !!!!! ! ! ! ! !! 31. !(!)!! ! = ! !!! ! = ! ! ! !" ! !!!!" ! ! !!!!!" ! !" = ! (!)! ! (!)(!")(!) = ! !"!! !!! !! ! !! ! ! = = ! ! !! !!!!" = !" !! ! !! ! ! = −10 ! ! !!!!!" 𝑥 !!!!" = 𝑚 − 3 (𝑚 + 3) (𝑚 − 6)(𝑚 + 4) (𝑚 + 3)(𝑚 + 4) 𝑥 = 2(𝑚 − 6) 5(𝑚 − 3) 10 ! − ! ! 𝑥3 + ! 𝑥3 !!𝑥2 ⇒ ! !!! !!! − ! ! 𝑥3 + ! 𝑥2 !!! ⇒ 𝑥 2𝑥3 − 3 𝑥 − 3 𝑥 − 1 + 4 2𝑥 𝑥 − 1 2𝑥4 − 3 𝑥2 − 4𝑥 + 3 + 8𝑥 𝑥 − 1 ⇒ 2𝑥3 𝑥 − 3 𝑥 − 1 2𝑥3 𝑥 − 3 𝑥 − 1 ⇒ 2𝑥4 − 3𝑥2 + 12𝑥 − 9 + 8𝑥2 − 8𝑥 2𝑥4 + 5𝑥2 + 4𝑥 − 9 ⇒ 2𝑥3 𝑥 − 3 𝑥 − 1 2𝑥3 𝑥 − 3 𝑥 − 1 −3 𝑘 − 1 = −2 𝑘 − 4 ⇒ −3𝑘 + 3 = −2𝑘 + 8 ⇒ −1𝑘 = 5 ⇒ 𝑘 = −5 34. = !! −7𝑥2 𝑧5 = !! !!! ! = ÷ !!!!" 𝑥2 !!!!! 33. !!! ! !! ! ! ! ! ! !! !!! ! 30. 32. !!!! ! = !!!! ! ! (!!)! = ! !!! ! ! ! !! − = ⇒ !!!(!)(!!!) (!!!)(!) = ! !! ⇒ !!!!!!!" (!!!)(!) = ! !! −3𝑥 + 10 2𝑥 = 5 𝑥 − 2 𝑥 ⇒ −3𝑥 + 10 2 = 5 𝑥 − 2 ⇒ −6𝑥 + 20 = 5𝑥 − 10 ⇒ −11𝑥 = −30 ⇒ 𝑥 = 35. ! ! = !!! ! ⇒ 𝐸 𝑟 = 𝑒 𝑅+𝑟 30 8 = 2 11 11 ⇒ 𝐸𝑟 = 𝑒𝑅 + 𝑒𝑟 ⇒ 𝐸𝑟 − 𝑒𝑟 = 𝑒𝑅 𝑒𝑅 ⇒ 𝑟 𝐸 − 𝑒 = 𝑒𝑅 ⇒ 𝑟 = 𝐸−𝑒 36. 37. 36 000 (1.15)(x) = 36 000 ⇒ 𝑥 = 1.15 ⇒ 𝑥 = $31 304.45 = original salary Equation 1: 2 L + 2 W = 300 ! Equation 2: L = ! W + 10 Substitute equation 2 into equation 1: 4 8 2 W + 10 + 2 𝑊 = 300 ⇒ W + 20 + 2 𝑊 = 300 3 3 8 6 ⇒ W + W = 280 ⇒ 14 W = 840 ⇒ W = 60 cm 3 3 Substituting W=60 back into equation 1: 38. 2 L + 2 (60) = 300 ⇒ 2L = 180 ⇒ L = 90 cm (x)(0%) + (1)(90%) = (x + 1)(80%) ⇒ 0 + .90 = 0.80x + 0.8 ⇒ 0.1 = 0.80x ⇒ 0.125 L = x 39. cos 𝐵 = 40. 6.50 ⇒ 𝐵 = cos−1 6.50 ⇒ ∠𝐵 = 37.6o 8.20 8.20 cos 64.3! = 11.5 ⇒ 𝑥 = 26.5 𝑚 𝑥
© Copyright 2024