Irradiation history and resulting isotope decay scheme influence on yttrium sample gamma activity S. Kilim1, M. Bielewicz1, A. Polanski1, E. Strugalska-Gola1, M. Szuta1, A. Wojciechowski1, I. Adam2, M. Kadykov2, V. Pronskikh2, S.Tyutyunnikov2, V. Wagner3, O.Svoboda3, V.Chilap4 1. 2. 3. 4. National Centre for Nuclear Research, Otwock-Świerk 05-400, Poland Joint Institute for Nuclear Research, 141980 Dubna, Russia Nuclear Physics Institute of CAS, 25068 Rez, Czech Republic CPTP “Atomenergomash”, Moscow, Russia Yttrium-89 activation reactions taken into account Reaction Y89(n,g) Y89(n,2n) Y89(n,3n) Y89(n,4n) Y89(n,5n) Stanislaw Kilim Produced Isotope Y90 T1/2 3.19h Reaction Threshold [MeV] -6.8570* Y88 106,65d 11.5 Y87m 13,37h 20.8 γ-line Energy [keV] γ-line Intensity [%] 202.51 97.3 479.17 90.74 898.042 93.7 1836.063 99.2 380.79 78 388.53 82.00 484.805 89.7 Y87 79,8h 20.8 Y86 14,74h 32.7 1076.64 82.00 2.68h 42.633 231.67 84.00 4.86h 42.633 231.67 22.8 Y85 Dubna 2012-09 2 A typical formula for isotope production rate S γ ⋅ 100 N Aσ k t real λt + λ k ⋅ t ir 1 ≡ Ik = ⋅ ⋅ ⋅ ⋅e − λ ⋅tir − λt real A m ⋅ ε p ⋅ I γ ⋅ φ ⋅ COI 1 − e t live 1− e ( NA – Avogadro’s number A – sample’s gram atom σk – reaction channel k cross section Ik – isotope k production rate per gram Sγ – gamma peak area m – activation sample mass [g] εp – gamma spectrometer efficiency )( ) Iγ – correction for gamma line intensity [%] φ - deuteron fluence COI – correction for gamma quanta coincidence λk – isotope decay constant tir – irradiation time treal – real time of measurement tlive – live time of measurement The formula is based on constant accelerator beam assumption λ k ⋅ t ir (1 − e − λ ⋅tir ) - correction for irradiation time Irradiation history – constant beam case ϕi - neutrons in pulse i ϕ i = const = φ∆t t ir Nk(tir) – isotope k nuclei at the EoIr mN Aσ k φ∆t tir −λk (tir −ti ) N k (t ir ) = e ∑ A t ir i =1 mN Aσ k φ ⇒ A t ir tir − λk (tir − t ) e dt ∫ 0 mN Aσ k φ N k (t ir ) = 1 − e −λk tir A λk t ir ( N k (t + ) = N k (t ir )e − λk t + ) Variable beam case 9,0E+09 8,0E+09 7,0E+09 6,0E+09 5,0E+09 4,0E+09 3,0E+09 2,0E+09 1,0E+09 0,0E+00 07:15:55 05:50:00 04:18:47 02:53:05 01:30:43 00:06:04 22:43:42 21:21:29 19:59:07 18:36:35 17:14:11 15:51:05 14:27:57 13:05:43 11:43:09 4 GeV 09:07:04 Beam intensity [d/pulse] 4 GeV deuteron beam run 8-9.03.2011 on Quinta setup Here the constant beam approximation can’t be applied! Each pulse contribution should be calculated separately. Time [hh:mm:ss] mN Aσ k − λ (t ( ) N k t ir = ϕ ⋅ e ∑ i k A i ir −t i ) Variable beam case 16-17.12.2011 Ed = 4 GeV experiment - "reversed" Time [hh:mm:ss] Fluence t-irr[hh:mm:ss] 14:51:02 16:28:20 18:06:36 19:44:18 21:21:52 22:59:19 00:38:30 02:16:29 03:54:19 Beam 07:10:01 07:39:42 05:58:40 04:17:53 02:37:14 00:56:12 23:14:06 21:33:35 19:53:13 18:12:27 16:31:16 Beam 3,0E+10 2,5E+10 2,0E+10 1,5E+10 1,0E+10 5,0E+09 0,0E+00 05:31:54 Beam 3,00E+10 2,50E+10 2,00E+10 1,50E+10 1,00E+10 5,00E+09 0,00E+00 14:51:02 Beam 16-17.12.2011 Ed = 4 GeV experiment Time [hh:mm:ss] 3,37E+13 17:31:00 Example irradiation history influence on yttrium isotopes production Y88 Y87m Y87 Y86 Y85 Beam run averaged 1,00 1,00 1,00 1,00 1,00 Reversed beam run 1,00 1,18 1,03 1,16 1,83 Real beam run 1,00 0,84 0,97 0,86 0,55 Irradiation history has negligible effect on Y88 production. For Y86 this effect can’t be neglected. Shorter isotope half life time the irradiation history makes larger effect on measured production. Residual isotope decay scheme effect on production - Y87 example – constant beam case 87mY T1/2 = 13.38 hours 380.79 keV ε+β+ dN1 mN Aσ 1ϕ = − λ1 N1 dt A t < t irr dN 2 mN Aσ 2ϕ = + λ1 N 1 − λ 2 N 2 dt A 9/2+ 1.57(10) % << ε+β+ 98.43(10) % 87Y 1/2- T1/2 = 79.8 hours Y87 and Y87m production and decay 1,2E+12 N(tir and t+) 1,0E+12 N1(t) 8,0E+11 N2(t) 6,0E+11 N2direct(t) N2asympt 4,0E+11 N1+N2direct 2,0E+11 N1(t+)+N2(t+) 0,0E+00 0 10 20 tir 5 15 25 35 45 55 65 75 t+ [h] dN 1 = −λ1 N1 dt t + > t irr dN 2 = λ1 N1 − λ 2 N 2 dt Residual isotope decay scheme effect on production - Y87 example – constant beam case 87mY φ (1 − e − λ t N 1 (t ir ) = mI 1 λ1t ir T1/2 = 13.38 hours 380.79 keV ) 1 ir ε+β+ 9/2+ 1.57(10) % << 98.43(10) % (t ) = mI φ (1 − e ) λt − λ2tir ε+β+ 87Y N2 1/2- ir 2 ( T1/2 = 79.8 hours 2 ir ) ( ) 1 − e −λ2tir e −λ2tir − e −λ1tir + mI 1φ − ( ) λ t λ − λ t 2 ir 1 2 ir Y87 and Y87m production and decay 1,2E+12 N(tir and t+) 1,0E+12 N1(t) 8,0E+11 N2(t) 6,0E+11 N2direct(t) N2asympt 4,0E+11 N1+N2direct 2,0E+11 N 1 (t + ) = N 1 (t ir )e − λ1t+ N 2 (t + ) = N 2 (t ir )e −λ2t N1(t+)+N2(t+) 0,0E+00 0 10 20 tir 5 15 25 35 45 55 65 75 t+ [h] + N 1 (t ir ) λ1 (λ1 − λ2 () e − λ2 t + − e −λ1t+ ) Residual isotope decay scheme effect on production - Y87 example – variable beam case 87mY ir N 1 (t ir ) = mI 1 ∑ ϕ i e −λ1 (tir −ti ) T1/2 = 13.38 hours 380.79 keV ε+β+ 9/2+ 1.57(10) % << ε+β+ i =1 ir 87Y i =1 1/2- ir + mI 2 ∑ ϕ i e −λ2 (tir −tl ) T1/2 = 79.8 hours i =1 Y87 and Y87m production and decay 1,2E+12 N(tir and t+) 1,0E+12 N1(t) 8,0E+11 N2(t) 6,0E+11 N2direct(t) N2asympt 4,0E+11 N1+N2direct 2,0E+11 N1(t+)+N2(t+) 0,0E+00 0 10 20 tir 5 15 25 35 45 55 65 75 t+ [h] ( ) N 2 (t ir ) = mI 1 ∑ ϕ i 1 − e −λ1 (tir −ti ) e −λ2 (tir −ti ) 98.43(10) % Experiment by experiment illustration of irradiation history and decay scheme influence on yttrium isotope production final results will follow Experiment QUINTA 2011-03-5-6 2 GeV Variable beam to constant beam treatment ratio. 1,20E+10 1,00E+10 8,00E+09 6,00E+09 2 GeV 4,00E+09 2,00E+09 Y88 Y87m Y87 Y86 Y85 1,00 1,09 1,01 1,08 1,56 20:55:01 20:03:21 19:11:26 18:19:54 17:28:15 16:36:36 15:43:36 14:37:58 13:32:14 12:30:49 11:39:09 10:47:46 09:55:17 09:03:14 08:11:34 07:19:31 06:27:59 05:36:28 04:44:57 03:53:02 03:01:31 02:09:35 0,00E+00 Time [h:m:s] Fluence t-irr[hh:mm:ss] 1,54E+13 18:50:29 Y87 S2 - axial distr - effect of correctio for Y87m Y87 S1 - axial distr - effect of correction for Y87m 2,5E-05 2,5E-05 2,0E-05 2,0E-05 R4 S1 no corr. 1,5E-05 R4 S1 corr for Y87m R8 S1 no corr. 1,0E-05 R8 S1 corr. for Y87m 5,0E-06 0,0E+00 Isotope production Isotope production Beam intensity [d/puls] 2 GeV beam run (6.03.2011) R4 S2 no corr 1,5E-05 R4 S2 corr for Y87m R8 S2 no corr. 1,0E-05 R8 S2 corr. for Y87m 5,0E-06 0,0E+00 0 1 2 3 4 Axial position [plane number] 5 0 1 2 3 4 5 Axial position [plane number] Experiment QUINTA 2011-03-8-9 4 GeV Variable beam to constant beam treatment ratio. 9,0E+09 8,0E+09 7,0E+09 6,0E+09 5,0E+09 4,0E+09 3,0E+09 2,0E+09 1,0E+09 0,0E+00 07:15:55 05:50:00 04:18:47 02:53:05 01:30:43 00:06:04 22:43:42 21:21:29 19:59:07 18:36:35 17:14:11 15:51:05 14:27:57 13:05:43 11:43:09 09:07:04 4 GeV Time [hh:mm:ss] Fluence t-irr[hh:mm:ss] Y88 Y87m Y87 Y86 Y85 1,00 1,04 1,01 1,04 0,85 1,50614E+13 22:53:01 Y87 S2 - axial distr - effect of correction for Y87m Y87 S1 - axial distr - effect of correction for Y87m 5,0E-05 4,5E-05 5,0E-05 4,0E-05 3,5E-05 3,0E-05 4,0E-05 3,5E-05 4,5E-05 R4 S1 no corr R4 S1 corr for Y87m 2,5E-05 2,0E-05 1,5E-05 1,0E-05 R8 S1 no corr R8 S1 corr for Y87m Production Production Beam intensity [d/pulse] 4 GeV deuteron beam run 8-9.03.2011 on Quinta setup R4 S2 no corr 3,0E-05 R4 S2 corr for Y87m 2,5E-05 R8 S2 no corr 2,0E-05 R8 S2 corr for Y87m 1,5E-05 1,0E-05 5,0E-06 5,0E-06 0,0E+00 0,0E+00 0 1 2 3 Plane number 4 5 0 1 2 3 Plane number 4 5 Experiment QUINTA 2011-03-20-21 6 GeV Variable beam to constant beam treatment ratio. 2,0E+10 1,5E+10 1,0E+10 6 GeV Y88 Y87m Y87 Y86 Y85 1,00 1,05 1,01 1,04 1,11 5,0E+09 10:43:40 9:36:08 7:56:00 6:48:27 5:11:54 4:05:17 2:58:49 0:17:12 23:10:23 21:49:48 20:32:22 18:12:59 16:59:55 0,0E+00 Time [hh:mm:ss] Fluence t-irr[hh:mm:ss] 2,17E+13 18:35:52 Y87 S1 - axial distr - effect of correction for Y87m Y87 S2 - axial distr - effect of correction for Y87m 7,0E-05 7,0E-05 6,0E-05 6,0E-05 5,0E-05 R4 S1 no corr 4,0E-05 R4 S1 corr for Y87m R8 S1 no corr 3,0E-05 R8 S1 corr for Y87m 2,0E-05 5,0E-05 Production Production Beam intensity [d/pulse] 6 GeV deuteron beam run 20-21.03.2011 on QUINTA setup R4 S2 no corr 4,0E-05 R4 S2 corr for Y87m 3,0E-05 R8 S2 no corr R8 S2 corr for Y87m 2,0E-05 1,0E-05 1,0E-05 0,0E+00 0 1 2 3 Plane number 4 5 0,0E+00 0 1 2 3 Plane number 4 5 QUINTA experiment 2011-12-14-15 1 GeV 14-15.12.2011 Ed=1 GeV experiment Variable beam to constant beam treatment ratio. 1,00E+10 Beam 8,00E+09 6,00E+09 Beam 4,00E+09 2,00E+09 Y88 Y87m Y87 Y86 Y85 1,00 1,01 1,00 1,01 1,06 07:44:49 05:39:22 03:35:04 01:31:08 23:26:51 21:23:09 19:15:21 17:11:33 15:08:18 13:04:08 10:58:55 0,00E+00 Time [hh:mm:ss] Fluence t-irr[hh:mm:ss] 6,791E+13 21:07:06 Y87 S1 - axial distr - effect of correction for Y87m Y87 S2 axial distr - effect of corr. for Y87m 2,5E-06 2,5E-06 2,0E-06 R4 S2 no corr R4 S1 no corr 1,5E-06 R4 S1 corr for Y87m R8 S1 no corr. 1,0E-06 R8 S1 corr for Y87m Production Production 2,0E-06 5,0E-07 0,0E+00 0,0E+00 1 2 3 Plane number 4 5 R8 S2 no corr R8 S2 corr for Y87m 1,0E-06 5,0E-07 0 R4 S2 corr for Y87m 1,5E-06 0 1 2 3 Plane num ber 4 5 QUINTA experiment 2011-12-16-17 4GeV 16-17.12.2011 Ed = 4 GeV experiment 07:39:42 05:58:40 04:17:53 02:37:14 00:56:12 23:14:06 21:33:35 19:53:13 18:12:27 16:31:16 Beam 14:51:02 Beam Variable beam to constant beam treatment ratio. 3,00E+10 2,50E+10 2,00E+10 1,50E+10 1,00E+10 5,00E+09 0,00E+00 Time [hh:mm:ss] Fluence t-irr[hh:mm:ss] Y88 Y87m Y87 Y86 Y85 1,00 0,84 0,97 0,86 0,55 3,37E+13 17:31:00 Y87 S2 axial distr - effect of correction for Y87m Y87 S1 axial distr - effect of corr for Y87m 2,5E-05 2,0E-05 R4 S1 no corr 1,5E-05 R4 S1 corr for Y87m R8 S1 no corr 1,0E-05 R8 S1 corr for Y87m 5,0E-06 2,0E-05 Production Production 2,5E-05 R4 S2 no corr R4 S2 corr for Y87m 1,5E-05 R8 S2 no corr R8 S2 corr for Y87m 1,0E-05 5,0E-06 0,0E+00 0,0E+00 0 1 2 3 Plane number 4 5 0 1 2 3 Plane num ber 4 5 Conclusions • In case of resulting isotope produced both directly and in decay chain the effect of decay scheme can be neglected if the measurement starts later than decaying parent isotope half life time. • In case of variable beam the irradiation history (beam run) effect depends on produced isotope half life time. The effect is large for isotopes with half life time shorter than irradiation time and negligible for isotopes with the longer one. It is recommended, therefore , not to apply or apply with care the constant beam approximation while sample gamma activity working over. Thank you for attention
© Copyright 2024