SPEC/5/MATME/SP1/ENG/TZ0/XX/M MARKSCHEME SPECIMEN MATHEMATICS Standard Level Paper 1 11 pages –5– SPEC/5/MATME/SP1/ENG/TZ0/XX/M SECTION A 1. (a) 1 AE ! AD 2 A1 attempt to find AD M1 e.g. AB ! BD , u ! v 1 AE # (u ! v ) 2 1 ! " 1 "# u ! v# 2 % $ 2 A1 N2 [3 marks] (b) 1 ED # AE # (u ! v ) 2 A1 DC # 3v A1 attempt to find EC 1 e.g. ED ! DC, (u ! v ) ! 3v 2 M1 1 7 " 1 ! EC # u ! v " # (u ! 7v ) # 2 2 $ 2 % A1 N2 [4 marks] Total [7 marks] 2. (a) min value of r is &1 , max value of r is 1 (b) C (c) linear, strong negative A1A1 N2 [2 marks] A1 N1 [1 mark] A1A1 N2 [2 marks] Total [5 marks] –6– 3. SPEC/5/MATME/SP1/ENG/TZ0/XX/M (a) 4 (ms 1 ) A1 (b) recognising that acceleration is the gradient 4!0 e.g. a (1.5) " 2!0 M1 a " 2 (ms 2 ) (c) A1 recognizing area under curve e.g. trapezium, triangles, integration M1 correct substitution 6 1 e.g. (3 # 6) 4, $ v(t ) dt 0 2 A1 distance " 18 (m) A1 N1 [1 mark] N1 [2 marks] N2 [3 marks] Total [6 marks] 4. (a) (b) (i) new mean is 20 # 10 " 30 A1 N1 (ii) new sd is 6 A1 N1 [2 marks] (i) new mean is 20 % 10 " 200 A1 N1 (ii) METHOD 1 A1 A1 N2 variance is 36 new variance is 36 % 100 " 3600 METHOD 2 new sd is 60 new variance is 602 " 3600 A1 A1 N2 [3 marks] Total [5 marks] –7– 5. (a) SPEC/5/MATME/SP1/ENG/TZ0/XX/M attempt to use substitution or inspection du " ex e.g. u # 1 ! e x so dx M1 correct working A1 du " ln u e.g. # u ln (1 ! e x ) ! C (b) A1 N3 [3 marks] METHOD 1 attempt to use substitution or inspection e.g. let u " sin 3x du " 3cos3 x dx 1 1 u2 u du " $ ! C # 3 3 2 sin 2 3 x # sin 3x cos3xdx " 6 ! C M1 A1 A1 A1 N2 [4 marks] METHOD 2 attempt to use substitution or inspection e.g. let u " cos 3 x du " %3sin 3x dx 1 1 u2 % # u du " % $ ! C 3 3 2 cos 2 3 x # sin 3x cos 3xdx " 6 ! C M1 A1 A1 A1 N2 [4 marks] METHOD 3 recognizing double angle correct working 1 e.g. sin 6 x 2 % cos 6 x !C 6 1 cos 6 x # 2 sin 6 xdx " % 12 ! C # sin 6 xdx " M1 A1 A1 A1 N2 [4 marks] Total [7 marks] –8– 6. (a) recognizing double angle e.g. 3 ! 2sin x cos x , 3sin 2 x M1 A1A1 a " 3, b " 2 (b) substitution 3sin 2 x " 3 2 N3 [3 marks] M1 1 2 finding the angle # $# e.g. , 2 x " 6 6 A1 sin 2 x " x" SPEC/5/MATME/SP1/ENG/TZ0/XX/M A1 5# 12 A1 N2 Note: Award A0 if other values are included. [4 marks] Total [7 marks] 7. (a) 1 & % ) or ( 2 ' x ( ) 2& 3 % f ''( x) " 2 x ) or 3 ' ( x ) 6 & % f '''( x) " (6 x 4 ) or ( 4 ' x ) ( % 24 & f (4) ( x) " 24 x 5 ) or 5 ' ( x ) f '( x) " ( x 2 A1 N1 A1 N1 A1 N1 A1 N1 [4 marks] (b) f ( n ) ( x) " ((1) n n ! or ((1)n n!* x xn 1 ( n 1) + A1A1A1 N3 [3 marks] Total [7 marks] –9– SPEC/5/MATME/SP1/ENG/TZ0/XX/M SECTION B 8. (a) f ( x) ! 3( x 2 " 2 x " 1) # 12 A1 2 A1 AG ! 3 x " 6 x " 3 # 12 ! 3x 2 " 6 x # 9 (b) N0 [2 marks] (i) vertex is (#1, # 12) A1A1 N2 (ii) y ! #9, or (0, # 9) A1 N1 (iii) evidence of solving f ( x) ! 0 e.g. factorizing, formula M1 correct working A1 e.g. 3( x " 3)( x # 1) ! 0, x ! #6 $ 36 " 108 6 x ! #3, x ! 1, or (#3, 0), (1, 0) A1A1 N2 [7 marks] A1A1A1 N3 (c) Note: Award A1 for a parabola opening upward, A1 for vertex in approximately correct position, A1 for intercepts in approximately correct positions. Scale and labelling not required. [3 marks] (d) % p & % #1 & ' (!' (, t ! 3 ) q * ) #12 * A1A1A1 N3 [3 marks] Total [15 marks] – 10 – 9. (a) (i) (ii) number of ways of getting X ! 6 is 5 5 P ( X ! 6) ! 36 number of ways of getting X , 6 is 21 P ( X , 6) ! (iii) 21 " 7 ! "! # 36 $ 12 % P ( X ! 7 | X , 6) ! 6 " 2! "! # 21 $ 7 % SPEC/5/MATME/SP1/ENG/TZ0/XX/M A1 A1 N2 A1 A1 N2 A2 N2 [6 marks] (b) attempt to find P ( X # 6) 5 21 e.g. 1 $ $ 36 36 10 36 fair game if E (W ) ! 0 (may be seen anywhere) attempt to substitute into E ( X ) formula P ( X # 6) ! M1 A1 R1 M1 " 5 ! " 21 ! " 10 ! e.g. 3 " # % 1" # $ k " # $ 36 % $ 36 % $ 36 % correct substitution into E (W ) ! 0 A1 " 5 ! " 21 ! " 10 ! e.g. 3 " # % 1" # $ k " # ! 0 $ 36 % $ 36 % $ 36 % work towards solving e.g. 15 % 21 $ 10k ! 0 M1 36 ! 10k 36 k! (! 3.6) 10 A1 A1 N4 [8 marks] Total [14 marks] – 11 – 10. (a) (b) SPEC/5/MATME/SP1/ENG/TZ0/XX/M A1A1 f !( x) " # sin x $ 3 cos x (i) at A, f !( x) " 0 R1 correct working e.g. sin x " 3 cos x A1 tan x " 3 % 4% x" , 3 3 attempt to substitute their x into f ( x) A1 N2 [2 marks] A1 M1 & 4% ' & 4% ' e.g. cos ( ) $ 3 sin ( ) 3 * + * 3 + (ii) correct substitution & 1 3' e.g. # $ 3 (( # )) 2 * 2 + A1 correct working that clearly leads to #2 1 3 e.g. # # 2 2 A1 q " #2 AG correct calculations to find f !( x) either side of x " 4% 3 N0 A1A1 e.g. f !( ! " " # #$ f !%& ! " " $ # f !( x) changes sign from negative to positive so A is a minimum (c) max when x " e.g. N0 [10 marks] R1 % into f ( x) 3 A1 & 3' 1 $ 3 (( )) 2 * 2 + max value is 2 (d) AG % 3 correctly substituting x " R1 r " 2, a " % 3 A1 N1 [3 marks] A1A1 N2 [2 marks] Total [17 marks]
© Copyright 2025