FOR OCR GCE Examinations Advanced / Advanced Subsidiary Core Mathematics C4 Paper J MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for using a valid method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C4 Paper J – Marking Guide 1. 2. 3 = [ 13 (x2 − 4) 2 ] 42 3 2 = 1 3 (12 = 1 3 × ( 2 3 )3 = (i) = M1 A1 − 0) M1 1 3 ×8× 3 3 = 8 3 (2 x − 3)( x + 3) (2 x − 3)( x − 2) (ii) M1 A1 x+3 x−2 = (5) M1 A1 2 x2 + 0 x + 4 4 3 2 x − 2 2x + 0x + 0x + 0x − 1 4 3 2 x + 0 x − 4 x2 4 x2 + 0 x − 1 4 x2 + 0 x − 8 7 2 ∴ quotient = 2x2 + 4, remainder = 7 3. (i) dy =0 dx 4 cos 2x − sec2 y 4. (i) grad = 4 × ∴ y− π 3 1 2 × = 1 2 y− π 3 = 1 2 y= 1 2 x+ 1 4 (x − x− M1 A1 = 1 2 B1 π 6 ) M1 π 12 π 4 A1 y − 12 dy = ∫ k dx 2 y = kx + c M1 A1 (0, 4) ⇒ 4 = c ∴ 2 y = kx + 4 M1 A1 (2, 9) ⇒ 6 = 2k + 4, k = 1 ∴ 2 y = x + 4, y = 12 (x + 4) M1 M1 y= (i) (ii) (7) M1 1 2 5. (6) dy = k y dx ∫ (ii) A2 M1 A1 dy = 4 cos 2x cos2 y dx (ii) M2 1 4 (x + 4)2 x = 0 ⇒ t2 = 2 t≥0 ∴ t= 2 ∴ (0, 2 + y = 0 ⇒ t(t + 1) = 0 t≥0 ∴ t=0 ∴ (2, 0) dx dy = −2t, = 2t + 1 dt dt dy 2t + 1 =− 2t dx A1 2) M1 A1 A1 M1 M1 A1 t = 2, x = −2, y = 6, grad = − 54 M1 ∴ y − 6 = − 54 (x + 2) M1 4y − 24 = −5x − 10 5x + 4y − 14 = 0 A1 Solomon Press C4J MARKS page 2 (8) (9) 6. (i) (ii) 1 + 3x ≡ A(1 − 3x) + B(1 − x) x=1 ⇒ 4 = −2A ⇒ 1 x= 3 ⇒ 2 = 23 B ⇒ = 1 4 ∫0 ( 3 1 − 3x − 2 1− x M1 A1 A1 A = −2 B=3 ) dx 1 = [−ln1 − 3x + 2 ln1 − x] 04 1 4 = (−ln = ln (iii) 7. (i) (ii) 9 16 + 2 ln − ln 1 4 3 4 ) − (0) M1 9 4 A1 = ln f(x) = 3(1 − 3x)−1 − 2(1 − x)−1 (1 − x)−1 = 1 + x + x2 + x3 + … (1 − 3x)−1 = 1 + 3x + (3x)2 + (3x)3 + … = 1 + 3x + 9x2 + 27x3 + … ∴ f(x) = 3(1 + 3x + 9x2 + 27x3 + …) − 2(1 + x + x2 + x3 + …) = 1 + 7x + 25x2 + 79x3 + … 1 3 4 . a 5 b = 0 ∴ 3 + 4 a + 5b = 0 sub. (3) ⇒ sub (a) ⇒ t(15 − b) = 28, 12 − a = 15 − b, , −3 1 −6 3 3 −3 , −4 + 2 −2 = t=2 ∴ r= (i) u = x2, u′ = 2x, v′ = e 2 , v = 2 e 2 1 1 1 x 2 = 2 x2 e (ii) M1 A1 t= 28 15 − b A1 b=a+3 ∫ − 4x e 1 x 2 − [8x e 1 x 2 1 x 2 8e − 8x e + 16 e du u = sin t ⇒ = cos t dt 2 2 π 2 1 x 2 1 x 2 1 x 2 I = ∫0 =4∫ 2 M1 A1 (12) M1 d x] A1 + c or 2 e 1 x 2 (x2 − 4x + 8) + c A1 M1 2 B1 2 sin 2t = 4 sin t cos t = 4 sin t (1 − sin t) 1 M1 A1 M1 ⇒ u=1 2 M1 A2 , v = 2e ∫ 1 x 2 t = 0 ⇒ u = 0, t = x dx 1 x 2 − ∴ (3, −3, −4) 1 x 1 x 2 u = 4x, u′ = 4, v′ = e I = 2 x2 e 28 12 − a 3 + 4a + 5(a + 3) = 0, a = −2, b = 1 (iii) I = 2 x2 e t= 1 + 5(3t − 7) = −6 + bt 28 15 − b = (12) B1 M1 t(12 − a) = 28, 15t − 28 = bt, 28 12 − a B1 M1 A1 M1 A1 M1 A1 4 + s = −3 + 3t (1) (2) 1 + 4s = 1 + at 1 + 5s = −6 + bt (3) (1) ⇒ s = 3t − 7 sub. (2) ⇒ 1 + 4(3t − 7) = 1 + at 12t − 28 = at, 8. M1 A1 M1 2 4u (1 − u ) du 1 0 ( u 2 − u 4) d u = 4[ 13 u3 − = 4[( 13 − 1 5 1 5 A1 u5] 10 ) − (0)] = M1 8 15 M1 A1 (13) Total (72) Solomon Press C4J MARKS page 3 Performance Record – C4 Paper J Question no. 1 Topic(s) integration Marks 5 2 3 4 6 rational differentiation differential parametric partial expressions, equation equations fractions, algebraic integration, division binomial series 6 7 8 Student Solomon Press C4J MARKS page 4 5 9 12 7 8 Total vectors integration 12 13 72
© Copyright 2024