Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 1 of "& McMaster University MATH 1M03,Spring-Summer 2009 Final Exam-Sample-Answers Time: August 6, 2009 Duration: 3 hours Instructor: Z. Kovariik Name:____________________________ ID #:______________ Instructions: This test paper contains 20 multiple choice questions printed on both sides of 18 pages. Letter answers to all questions must be recorded on the lower part of this page. Part A contains 14 multiple choice questions worth 2 marks each; no part marks will be given. Ä A missing answer or a multiple answer receives zero marks. Part B contains 6 multiple choice questions worth 4 marks each; however, incorrect answers will be reviewed for possible part marks. Maximum total marks: 52 The questions are on pages 2 to 14. Pages 15 through 17 are available for scrap work. Helpful formulas are provided on page 18. Only the McMaster standard calculator, Casio fx 991, is permitted. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETEÞ BRING ANY DISCREPANCY TO THE ATTENTION OF THE INVIGILATOR. Question Answer Question Answer Question Answer Marks A-1 A-2 A-8 A-9 B-15 B-16 A-3 A-10 B-17 A-4 A-5 A-6 A-11 A-12 A-13 B-19 B-20 B-18 A-7 A-14 Total á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 2 of "& PART A: Enter all answers into the appropriate boxes on the front page. THERE ARE NO PART MARKS IN THIS SECTION. A-1 Suppose the graph below gives several level curves of the function D œ 0 aBß Cb. Then which of the following functions (a), (b), (c), (d) can be 0 aBß Cb? (a) B C# (b) B# C (c) C B# (d) B C# Solution (not required) The typical equation is B œ GC# , corresponding to CB# œ G , as in (d). _________________________________________________________________ A-# '"" $B .B œ (a) # ln $ (b) $ ln) $ Solution (not required) ' $B .B œ ' /B ln $ .B œ /lnB ln$$ G '"" $B .B œ " /B ln $ ln $ ¹" œ " ˆ ln $ $ (c) $" ‰ œ # ln $ (d) ) ln $ $ ) $ ln $ á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 3 of "& Enter your choice on the front page! ÈBC B# C# b A-3 Consider the functions J aBß Cb œ lnaBC" ß KaBß Cb œ BC# Which of the following points aBß Cb are in the domain of J K À (a) a!ß "b (b) a"ß !b (c) a #ß #b (d) a#ß "b Solution (not required) J a"ß !b Ka"ß !b œ lna"# !# b a"ba!b" È"! a"ba!b# is well-defined (equal to "# ) The other three points always make one of J ß K undefined. Try out on your own. _________________________________________________________________ A-4 A tree is currently 2 meters high, and in B years from now it will grow at a rate 5 meters per year. Its height at the end of year 4 will be a1Bb# (a) 6 meters Solution (not required) L w aBb œ & a"Bb# L aBb œ & "B L aBb œ ( (b) 3 meters Gß L a!b œ # œ & "B L a%b œ # '! or shorter: % & .B a"Bb# & " Gß L a% b œ ( œ#ˆ (c) 7 meters (d) 5 meters & & & ‰% "B k! G œ( œ' œ# & & & " œ' á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 4 of "& Enter your choice on the front page! A-5 If 1w aBb œ &B% " and 1a"b œ 1 then 1a "b œ (a) ! (b) ' (c) ' (d) Solution (not required) " 1a "b œ " ' ˆ&B% "‰.B & " œ " aB& Bbk" œ " a " "b a" "b " œ & _________________________________________________________________ A-6 If /BC œ # and /#BC œ % then /B œ (a) 4 (b) 2 (c) È# (d) "# Solution (not required) Shortcut: Multiply a/BC ba/#BC b œ /$B œ a#ba%b œ ) Long way: /B œ a/$B b "Î$ œ )"Î$ œ # B C œ ln # #B C œ ln % solve for B by your favourite method to find Bœ ln #ln % $ œ ln ) $ œ $ ln # $ œ ln # /B œ /ln # œ # á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 5 of "& Enter your choice on the front page! A-7 Suppose $1000 is invested at 5% interest compounded continuously. Then it will double in value after how many years? (a) 20 (b) 2 ln #0 (c) ln#0# (d) #0 ln # Solution (not required) Rate < œ !Þ!&ß Ea>b œ Ea!b/<> Data: Ea!b œ "!!!ß Ea>b œ #!!! #!!! œ "!!! /!Þ!& > # œ /!Þ!& > !Þ!& > œ ln # > œ #! ln # _________________________________________________________________ # '#_ B" A-8 .B œ (a) ln $ (b) ln % (c) #$ (d) a divergent integral Solution (not required) # '#R B" œ # lnaR "b # ln $ß diverges to _ as R Ä _ á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 6 of "& Enter your choice on the front page! ' lnBB .B œ A-9 (a) B"# lnB#B G (b) #" aln Bb# G (c) ln ln B G (d) B# ln B G Solution (not required) Change variable: ln B œ ?ß ' lnBB .B œ ' ? .? œ " B .B " # #? œ .?ß G œ #" aln Bb# G _________________________________________________________________ A-10 Suppose the function 0 aBß Cb has partial derivatives 0B œ $B# 'Cß 0C œ 'B #C Then the point aBß Cb œ a'ß ")b is (a) a point of relative minimum (b) a point of relative maximum (c) not a critical point (d) a saddle point Solution (not required) Check critical point: 0B a'ß ")b œ a$ba'b# a'ba")b œ "!) "!) œ ! 0C a'ß ")b œ a 'ba'b a#ba")b œ $' $' œ ! Second derivatives: 0BB œ 'B 0BC œ ' 0CC œ # # H œ a0BB ba0CC b a0BC b œ "#B $' Ha'ß ")b œ a"#ba'b $' œ $' ! not a saddle point 0BB a'ß ")b œ a'ba'b œ $' ! Ä local minimum á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 7 of "& Enter your choice on the front page! A-11 Consider 0 aBß Cb œ B/BC Þ Then the partial derivative 0BC aBß Cb is (a) BC# /BC (b) #B/BC B# C/BC (c) B/#BC (d) #C/BC BC# /BC Solution (not required) 0B œ a"b/BC BC/BC 0BC œ B/BC aB/BC B# C/BC b œ #B/BC B# C/BC _________________________________________________________________ A-12 For a random variable \ with the probability density function Ú! B! " 0 aBb œ Û ) B ! Ÿ B Ÿ % Ü! B% the probability of \ 2 is (a) "# (b) $% (c) "% (d) () Solution (not required) T a\ #b œ '# 0 aBb.B œ '# ") B .B ! _ œ " # "' a% % ## b œ "# "' œ $ % á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 8 of "& Enter your choice on the front page! A-13 Suppose a random variable \ has normal distribution with mean ' and standard deviation 3. Then the probability T a& Ÿ \ Ÿ )b is (a) greater than T a% Ÿ \ Ÿ (b (b) less than T a% Ÿ \ Ÿ (b (c) equal to T a% Ÿ \ Ÿ (b (d) twice as much as T a% Ÿ \ Ÿ (b Solution (not required) Standard: ^ œ \' $ : Tˆ " $ Tˆ # $ 5Ÿ\Ÿ8 Ä &' $ Ÿ^ Ÿ )' $ Ä " $ Ÿ^ Ÿ # $ %Ÿ\Ÿ( Ä %' $ Ÿ^ Ÿ (' $ Ä # $ Ÿ^ Ÿ " $ Ÿ ^ Ÿ #$ ‰ œ T ˆ " $ Ÿ ^ Ÿ !‰ T ˆ! Ÿ ^ Ÿ #$ ‰ Ÿ ^ Ÿ "$ ‰ œ T ˆ # $ Ÿ ^ Ÿ !‰ T ˆ! Ÿ ^ Ÿ "$ ‰ œ T ˆ! Ÿ ^ Ÿ "$ ‰ T ˆ! Ÿ ^ Ÿ #$ ‰ œ T ˆ! Ÿ ^ Ÿ #$ ‰ T ˆ! Ÿ ^ Ÿ "$ ‰ á they are equal Of course the symmetry can be observed already with \ . _________________________________________________________________ .C A-14 The differential equation .B œ BC has a general solution (a) C œ GB (b) C œ GB (c) B# C# œ G (d) B# C# œ G Solution (not required) Separated: .C C œ .B B ln kCk œ ln kBk G" C œ „ /G" B œ GB á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 9 of "& PART B: For all the remaining questions, continue to enter your answers into the appropriate box on the front page. If you record an incorrect answer, your work on the question will be reviewed for possible part marks. Please show your work. B-15 The temperature X a>b at time > in hours changes from midnignt to 6am by the formula X a>b œ ") "' a' >b# (in degrees Celsius), ! Ÿ > Ÿ 'Þ The average temperature over this part of the day is (a) 13°C (b) 14°C (c) 15°C (d) 16°C Solution ' Average œ "' ' ˆ") "' a' >b# ‰.> ! œ "' ˆ")> " ") a' >b$ ‰¸! œ '" ˆ"!) ' " ‰ ") ! "' ˆ! " ‰ ") #"' œ ") # œ "' Another arrangement: X a>b œ ") "' a' >b# œ "# #> "' ># Average œ " ' '!' ˆ"# #> "' ># ‰.> œ "' ˆ"#> ># ")" >$ ‰¸'! œ "' ˆ(# $' #"' ‰ ") œ "' a"!) "#b œ "' á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 10 of "& B-16 Enter your choice on the front page and show your work! The lifetime \ of a light bulb is a random variable with probability density " /BÎ)!!! B ! 0 aBb œ œ )!!! 0 B! where B is measured in hours. The probability that the light bulb will work for more than 8000 hours is (a) "/ (b) " "/ (c) "# (d) È"/ Solution _ _ " T a\ )!!!b œ ')!!! 0 aBb.B œ ')!!! )!!! /BÎ)!!! .B Improper integral: R " BÎ)!!! ')!!! .B œ )!!! / /BÎ)!!! ¸)!!! R œ /R Î)!!! /" lim ˆ/R Î)!!! /" ‰ œ R Ä_ " / á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 11 of "& Enter your choice on the front page and show your work! B-17 The random variable \ is uniformly distributed over the interval # Ÿ B Ÿ &Þ Then its variance is È (a) %& (b) $% (c) #$ (d) #$ Solution Probability density: 0 aBb œ "$ for # Ÿ B Ÿ &ß 0 aBb œ ! otherwise. I a\ b œ '_ B0 aBb .B œ '# "$ B .B œ "' a&# ## b œ _ & _ & '_ B# 0 aBb .B œ '# "$ B# .B œ œ ""( * " $ * a& ( # #$ b œ "$ Vara\ b œ "$ ˆ (# ‰ œ "$ # %* % œ $ % á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 12 of "& Enter your choice on the front page and show your work! .C B-18 Consider the differential equation B .B #C œ B with initial condition Ca"b œ #Þ The solution is (a) $B# B (b) $B# & (c) $B# " (d) $B# B Solution .C # Standard: .B B C œ " M aBb œ /' B .B œ # " ˆ .C B# .B " B# C B# C‰ œ œ " B " B# . ˆ " ‰ .B B# C œ " B# to integrate: G C œ B GB# Initial condition: # œ " G"# G œ$ C œ B $B# like in (d) á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 13 of "& Enter your choice on the front page and show your work! B-19 The minimal value of 0 aBß Cb œ B C# subject to the constraint 1aBß Cb œ BC# "' œ ! is (a) "' (b) % (c) ) (d) # Solution Using Lagrange multipliers: P œ B C# -aBC# "'b PB œ " -C# œ ! PC œ #C #-BC œ ! P- œ aBC# "'b œ ! C Á ! because BC# œ "' From PC œ #C #-BC œ ! À By whatever correct method - mine would be C - œ C"# œ BC ß BC œ C$ ß B œ C# Constraint: BC# œ C# C# œ C% œ "'ß C œ #ß OR C œ #ß # 0 a%ß #b œ 0 a%ß #b œ % # œ ) B œ ## œ % Bœ% Eliminating a variable: BC# œ "' 0 Š "' C# ß C ‹ œ Bœ "' C# "' C# C # œ 2 aC b Critical pont: 2w aCb œ Again, C œ # or #ß $# C$ #C œ $##C% C$ B œ "' % œ! œ% We are also in a position to classify the extremum: 2ww aCb œ *' C% # ! relative minimum in both places. á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 14 of "& Enter your choice on the front page and show your work! '"/ %B ln B .B œ B-20 (a) /# " (b) /# " (c) #/# (d) %/ Solution By parts, ?w œ %B ? œ #B# @ œ ln B @w œ B" ' %B ln B .B œ #B# ln B ' #B .B œ #B# ln B B# G '"/ %B ln B .B œ a#B# ln B B# bk/" œ a#/# /# b a! "b œ /# " á Continued on next page Math 1M03, Spring/Summer 2009, Final Exam Sample Answers, page 15 of "& Helpful formulas a,B bC œ ,BC a+,bB œ +B ,B ,! œ " ,B ,C œ ,BC ," œ , log, aBCb œ alog, Bb alog, Cb ,B œ ,"B 8 ,"Î8 œ È , log, Š BC ‹ œ alog, Bb alog, C b log, aB< b œ <alog, Bb log, " œ ! log, , œ " log, a,B b œ B ,log, B œ B -B log, B œ log ln B œ log/ B lna/B b œ B /ln B œ B log- , Exponential growth/decay: T a>b œ T! /<> . " " . B B .B log, B œ ln , B .B , œ aln , b, ' 0 a?aBbb ?w aBb .B œ ' 0 a?b .? '+, ? .@ œ a?@bk,+ '+, @ .? '+, 0 aBb.B œ ',+ 0 aBb.B '++ 0 aBb.B œ ! '+, 0 aBb.B œ '+- 0 aBb.B '-, 0 aBb.B R , lim ! 0 aB3 b?B œ '+ 0 aBb.B where ?B œ ,+ R R Ä_ 3œ" '+_ 0 aBb.B œ average: " ,+ '+, 0 aBb.B R lim '+ 0 aBb.B lim R : /5R œ ! if 5 !ß : ! R Ä_ .D .> œ `D .B `B .> R Ä_ `D .C `C .> HaBß Cb œ 0BB aBß Cb0CC aBß Cb a0BC aBß Cbb# 0B aBß Cb œ -1B aBß Cb 0C aBß Cb œ -1C aBß Cb Cw T C œ U À C œ M" Š' MU .B G ‹ I a\ b œ '_ B0 aBb.B _ 1aBß Cb œ 5 where M œ /' T .B 5 a\ b œ ÈZ +<a\ b Z +<a\ b œ '_ aB I a\ bb# 0 aBb.B œ '_ B# 0 aBb.B aI a\ bb# _ _ END OF TEST PAPER
© Copyright 2024