FOR OCR GCE Examinations Advanced / Advanced Subsidiary Core Mathematics C3 Paper D MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for using a valid method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C3 Paper D – Marking Guide 1. (i) (ii) LHS = sin x cos 30 + cos x sin 30 + sin x cos 30 − cos x sin 30 = 2 sin x cos 30 = 3 sin x [a= 3] M1 A1 let x = 45, M1 sin 75 + sin 15 = 3 sin 45 3× = 2. 6 M1 A1 (ii) 3e2y − 16ey + 5 = 0 (3ey − 1)(ey − 5) = 0 ey = 13 , 5 M1 M1 A1 1 3 (i) , ln 5 M1 A1 dy 6 = 2ex − x dx x = 1, y = 2e, grad = 2e − 6 ∴ y − 2e = (2e − 6)(x − 1) [ y = (2e − 6)x + 6 ] 1 2 area = (i) 2 ×6 1 2x − 1 ∫1 = 1 2 = A1 M1 A1 −6 2e − 6 3 × 3− e = = 3 3− e 9 3− e M1 A1 M1 A1 (ln 3 − 0) = = π∫ 2 1 (2 x − 1)2 1 1 2 M1 A1 ln 3 M1 A1 dx = π[ − 16 − ( − 12 )] = M1 A1 1 3 π M1 A1 ( 3π , 5) 2 B2 O ( ( π , −1) 2 3π , −5) 2 adding, (iii) (8) y ( π2 , 1) (ii) (8) dx = π[ − 12 (2x − 1)−1] 12 (i) (7) M1 = [ 12 ln2x − 1] 12 (ii) (6) x=0 ⇒ y=6 y = 0 ⇒ (2e − 6)x + 6 = 0 x= 5. M1 A1 2x − 3 = e x = 12 (e + 3) (ii) 4. = 1 2 (i) y = ln 3. 1 2 A1 x ⇒ −1 = a + b ⇒ −5 = a − b B1 −6 = 2a ∴ a = −3, b = 2 −3 + 2 cosec x = 0 cosec x = 32 , sin x = 2 3 M1 x = 0.73, π − 0.7297 x = 0.73, 2.41 (2dp) A2 Solomon Press C3D MARKS page 2 M1 A1 (8) 6. (i) 2 cos 2 x sin x + sin 2 x cos x cos 2 x sin x + sin x cos x cos x LHS ≡ ≡ (ii) 7. (i) (ii) M1 ≡ cos 2 x + sin 2 x sin x cos x A1 ≡ (cos 2 x − sin 2 x ) + sin 2 x sin x cos x M1 ≡ cos 2 x sin x cos x ≡ cot x ≡ RHS A1 cot x = 1 + cot2 x − 7 (cot x + 2)(cot x − 3) = 0 M1 M1 A1 M1 ≡ cos x sin x cot x = cosec2 x − 7, cot2 x − cot x − 6 = 0, cot x = −2 or 3 tan x = − 12 or 13 x = π − 0.4636 or 0.32 x = 0.32, 2.68 (2dp) A2 f(x) > 0 B1 y = 3e x = 1 + ln y 3 y 3 M1 x 3 f −1(x) = 1 + ln , x ∈ , x>0 (iii) f(ln 2) = 3eln 2 − 1 = 3e−1eln 2 = 6e−1 gf(ln 2) = g(6e−1) = 30e−1 − 2 (iv) f −1g(x) = f −1(5x − 2) = 1 + ln ∴ 1 + ln x= (i) 1 5 5x − 2 3 A2 M1 A1 A1 5x − 2 3 5x − 2 = e3 3 = 4, M1 A1 M1 (3e3 + 2) dy = 2x − dx 1 (4 + ln 2 A1 x) x = 1, y = −1, grad = ∴ y+1= 7 4 − 12 × 1 x = 2x − 1 2 x 4 + ln x 7 4 A1 (x − 1) SP: 2x − 1 2 x 4 + ln x let f(x) = 2x − M1 A1 =0 M1 1 2 x 4 + ln x f(0.3) = −0.40, f(0.4) = 0.088 sign change, f(x) continuous ∴ root (iii) 2x − 1 2 x 4 + ln x =0 ⇒ M1 A1 2x = 1 2 x 4 + ln x x2 = 1 4 4 + ln x = 1 (4 + ln 4 x) x= (iv) (11) M1 A1 4y + 4 = 7x − 7 7x − 4y = 11 (ii) (11) x−1 x − 1 = ln 8. M1 1 (4 + ln 4 − 12 = x) − 12 1 (4 + ln 2 x1 = 0.381512, x2 = 0.378775, x3 = 0.378999, ∴ α = 0.37898 (5dp) x4 = 0.378981, x5 = 0.378982, M1 x) − 14 A1 M1 A1 A1 (13) Total (72) Solomon Press C3D MARKS page 3 Performance Record – C3 Paper D Question no. Topic(s) 1 2 3 4 5 6 7 8 Total trigonometry exponentials differentiation integration functions, trigonometry functions differentiation, and trigonometry numerical logarithms methods Marks 6 7 8 8 8 Student Solomon Press C3D MARKS page 4 11 11 13 72
© Copyright 2024