FOR OCR GCE Examinations Advanced / Advanced Subsidiary Core Mathematics C2 Paper K MARKING GUIDE This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for using a valid method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong Solomon Press These sheets may be copied for use solely by the purchaser’s institute. C2 Paper K – Marking Guide 1. 4x + 3 =2 x −1 4x + 3 = 52 = 25 x −1 log5 M1 M1 4x + 3 = 25(x − 1) 21x = 28 x = 43 2. 3. A1 6 (1 − x)6 = 1 + 6(−x) + (−x)2 + ... = 1 − 6x + 15x2 2 6 (1 + x)(1 − x) = (1 + x)(1 − 6x + 15x2 + ...) coeff. of x2 = 15 − 6 = 9 M1 A1 (i) AP: a = 77, l = −70 S50 = 50 [77 + (−70)] = 25 × 7 = 175 2 B1 M1 A1 (ii) AP: a = 2, d = Sn = = 4. M1 (i) M1 A2 1 2 (5) B2 n [4 + 12 (n − 1)] 2 1 n[8 + (n − 1)] = 14 4 cos2 P = 1 − ( 23 )2 = M1 n(n + 7) [k= 1 4 ] 5 9 acute ∴ cos ∠QPR = (ii) (4) A1 (7) M1 5 9 = 1 3 5 QR2 = 72 + ( 3 5 )2 − (2 × 7 × 3 5 × A1 1 3 5) M1 2 QR = 49 + 45 − 70 = 24 QR = 24 = 4 × 6 = 2 6 (iii) sin Q 3 5 = 2 3 M1 2 6 sin Q = 5. M1 A1 5 6 ∠PQR = 65.9° (1dp) A1 (i) = 4x2 + x−2 + c M1 A2 (ii) (1, 1) ∴ 1 = 4 + 1 + c c = −4 y = 4x2 + x−2 − 4 M1 A1 y = (2x − C2K MARKS page 2 1 2 ) x [ a = 2, b = −1 ] M1 A1 Solomon Press (7) (7) 6. (i) −27 + 63 − 3p − 6 = 0 p = 10 M1 A1 (ii) remainder = f(2) = 8 + 28 + 20 − 6 = 50 M1 A1 (iii) x = −3 is a solution ∴ (x + 3) is a factor B1 x2 + 4x x3 + 7x2 x3 + 3x2 4x2 4x2 x+3 − 2 + 10x − 6 + + − − 10x 12x 2x − 6 2x − 6 M1 A1 ∴ (x + 3)(x2 + 4x − 2) = 0 x = −3 or x2 + 4x − 2 = 0 other solutions: x = −4 ± 16 + 8 = −4.45, 0.45 2 7. = log3 42 log3 4 = 2 log3 4 log3 4 =2 M2 A1 = log3 22 2 = 2 log3 2 2 = log3 2 M1 A1 log3 16 log3 4 (i) r= (ii) ar = log3 4 a= (iii) S6 = log3 4 2 (26 − 1) log3 2 2 −1 = 63 log3 2 lg 2 lg 3 ∴ S6 = 63 × A1 = 39.7 (3sf) A1 (10) (i) 2x = 1.2490, π + 1.2490 = 1.2490, 4.3906 x = 0.62, 2.20 (2dp) B1 M1 M1 A1 (ii) 2 sin y cos y = sin y sin y (2 cos y − 1) = 0 sin y = 0 or cos y = 12 M1 M1 A1 π 3 y = 0, π or (i) (ii) π 3 , 2π − π 3 B2 M1 5π 3 A1 x = 4 ∴ y = 12 − 8 + 2 = 6 dy −1 = 3 − 2x 2 dx grad = 3 − 1 = 2 ∴ y − 6 = 2(x − 4) y − 6 = 2x − 8 y = 2x − 2 B1 y = 0, 9. M1 lg 2 lg 3 y= , π, 4 area = ∫0 = ∫0 4 (11) M1 A1 M1 M1 A1 [(3x − 4 x + 2) − (2x − 2)] dx M1 (x − 4 x + 4) dx = [ 12 x2 − = (8 − (9) M1 A1 y let y = log3 2 ∴ 3 = 2 8. M1 A1 64 3 8 3 3 x 2 + 4x] 04 + 16) − (0) = M1 A2 8 3 Solomon Press M1 A1 (12) Total (72) C2K MARKS page 3 Performance Record – C2 Paper K Question no. 1 2 3 4 5 6 7 8 9 Topic(s) logs binomial AP cosine rule, sine rule integr. remain. theorem, alg. div. GP, logs trig. eqn area by integr. Marks 4 5 7 7 7 9 10 11 12 Student C2K MARKS page 4 Solomon Press Total 72
© Copyright 2024