A log-normal distribution and two- PURPOSE

A log-normal distribution and twosample tests for the full diffusion tensor
227 T-AM
Armin Schwartzman, Robert F. Dougherty, Jonathan E. Taylor
Departments of Statistics and Psychology, Stanford University, California, USA
PURPOSE
Normal distribution for symmetric matrices:
To develop formal testing tools for group
comparisons of DTI maps using eigenvalues
and eigenvectors, or both.
BACKGROUND
• DTI data: 3 × 3 positive definite matrix at each voxel.
• Previous DTI group studies use only scalar measures
(e.g. FA – Deutsch et al.) and principal diffusion
direction (Schwartzman et al.).
• Simulated
example:
⎛ 4 0⎞
⎟⎟ , σ = 0.5 , n = 100
exp(M ) = ⎜⎜
⎝ 0 1⎠
(2π)q / 2 σ q
q=6
(# independent
entries)
⎛ 1
2⎞
exp⎜ − 2 tr (Y − M ) ⎟
⎝ 2σ
⎠
f (Y ) =
Y1 = V1 Λ1V1 ' , Y2 = V2 Λ2V2 ' ,
Y = VΛV '
• Test H0: M1=M2:
The space of positive definite matrices:
T=
⎧a > 0, b > 0
⎛a c⎞
⎜⎜
⎟⎟ > 0 ⇔ ⎨
2
⎝ c b⎠
⎩ab − c > 0
⎛ 1 .1 0 ⎞
⎟⎟
X 1 = ⎜⎜
⎝ 0 0.4 ⎠
1
⎛ N (0,1) N (0, 12 ) N (0, 12 ) ⎞
⎜
⎟
Z =⎜ ∗
N (0,1) N (0, 12 ) ⎟
⎜ ∗
∗
N (0,1) ⎟⎠
⎝
• Mean M,
variance σ2:
• Estimates (assume
common variance σ2):
METHODS
c
( )
1
⎛ 1
⎞
f (Z ) =
exp⎜ − tr Z 2 ⎟
(2π)q / 2 ⎝ 2
⎠
Two-sample testing:
• New statistical methods needed for testing full set of
eigenvalues and eigenvectors in tensor imaging data.
• E.g.: 2 × 2
case:
• Standard
normal:
n1n2
2
tr (Y1 − Y2 ) ~ F (q, q(n − 2))
H0
qns 2
⎛ 0 .4 0 ⎞
⎟⎟
X 2 = ⎜⎜
⎝ 0 1.1⎠
n
⎞
1 ⎛ n1
⎜ ∑ tr (Yi − Y1 )2 + ∑ tr (Yi − Y2 )2 ⎟
⎜
⎟
q(n − 2) ⎝ i =1
i = n1 +1
⎠
• Test H0: M1, M2 have same eigenvectors
(assume same eigenvalues):
T=
• Test H0: M1, M2 have same eigenvalues
(regardless of eigenvectors):
nn
2
T = 1 22 tr ( Λ1 − Λ2 )
pns
s2 =
n →∞
~ F ( p, q(n − 2))
H0
n
(q − p )s 2
⎛⎛ n Λ + n Λ ⎞
⎞
tr⎜ ⎜ 1 1 2 2 ⎟ − Λ2 ⎟
⎜⎝
⎟
n
⎠
⎝
⎠
2
n →∞
~ F (q − p, q(n − 2))
H0
3
Y1
60
Y
Y2
DATA
EXAMPLE
a
b
Arithmetic
mean
Geometric
mean
0 ⎞
⎛ 0.75
⎟
⎜⎜ 0
0.75 ⎟⎠
⎝
0 ⎞
⎛ 0.65
⎟
⎜⎜ 0
0.65 ⎟⎠
⎝
• Straight line violates boundaries.
• Log-straight line stays within space.
Log transform:
• Scalars:
• Matrices:
x∈ℝ+
X∈Sym+(p)
log
exp
log
exp
y∈ℝ
Y∈Sym(p)
• Positive definite matrices are transformed into symmetric
matrices with no restrictions on their coefficients.
X i = Vi ΛiVi ' ⇒ Yi = log( X i ) = Vi log( Λi )Vi '
References
•
•
•
•
• Source Deutsch et al.:
2 groups, 6 subjects in
each group.
• Voxelwise test for
equality of
eigenvectors between
group means.
• E.g.: voxel with
direction differences in
corpus callosum /
corona radiata area
(Schwartzman et al.)
Group 1
Group 2
Test statistic map
Matrix geometric mean across subjects
(principal diffusion direction shown) p-values 1 10-1 10-2 10-3 10-4 10-5
CONCLUSIONS
We have developed an integrated representation of diffusion tensors in log-space including:
• Removal of positive-definiteness constraints.
• A normal distribution for symmetric matrices.
Website:
• Formal two-sample tests of full tensor, eigenvalues or eigenvectors.
www.stanford.edu/~armins
Chikuse (2003). Statistics on special manifolds. Springer-Verlag, New York.
Deutsch et al. (2005). Correlations between white matter microstructure and reading performance in children. Cortex, 41(3): 354-363.
Schwartzman et al. (2005). Analysis tools for DTI maps using the full diffusion tensor. Poster, HBM 11th meeting, Toronto, Canada.
Schwartzman et al. (2005). Cross-subject comparison of principal diffusion direction maps. Mag Reson Med, 53: 1423-1431.
Acknowledgments
William R. and Sara Hart Kimball Stanford
Graduate Fellowship, NIH EY-015000 and
the Schwab Foundation for Learning.