Asymptotic distributions of sample mean and ACVF 29th of October 2013

Asymptotic distributions of sample mean and ACVF
Felix Dietrich and Gundelinde Wiegel
University of Trento
29th of October 2013
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
1 / 24
Overview
1
Repetition
2
¯
Distribution of X
3
Distribution of γˆ
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
2 / 24
What we already know
Let {Xt }t∈Z a stationary process with E[Xt ] = µ and ACVF γ(·).
Definition (Estimator of µ)
n
X
¯n := 1
X
Xi
n
i=1
.
Definition (Estimator of ACVF)
n−h
γˆ (h) =
1X
¯n )(Xt+h − X
¯n )
(Xt − X
n
for
0≤h ≤n−1
i=1
Definition (Estimator of ACF)
ρˆ(h) =
Felix Dietrich and Gundelinde Wiegel (UTN)
γˆ (h)
γˆ (0)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
3 / 24
Mean Estimator
¯n =
For X
1
n
n
P
Xi we have already shown
i=1
¯n ] = µ
E[X
and
¯n ] =
Var [X
X
|h|
1−
γ(h) .
n
h<|n|
Hence
¯n ] → 0
Var [X
∞
X
¯n ] →
nVar [X
γ(h)
h=−∞
if
if
γ(h) → 0,
∞
X
|γ(h)| < ∞ .
h=−∞
¯n distributed?
But how is X
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
4 / 24
¯n
Distribution of X
Theorem
∞
P
Let {Xt } a stationary process, defined as Xt = µ +
ψj Zt−j with
j=−∞
P
¯n is
{Zt } ∼ IID(0, σ 2 ) for each t ∈ Z and ∞
6 0 < ∞. Then X
j=−∞ |ψj | =
asymptotically normal i.e.
¯n ∼ AN µ, ν
X
n
P∞
P
2
where ν = h=−∞ γ(h) = σ 2 ( ∞
j=−∞ ψj ) .
Remark: {Xn } is asymptotically normal distributed with µn and σn > 0 for
n large enough if for n → ∞
Xn ∼ AN(µn , σn2 ).
Felix Dietrich and Gundelinde Wiegel (UTN)
Xn −µn i.d.
−→
σn
Z where Z ∼ N(0, 1) . We write:
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
5 / 24
Tools
Proposition
Let {Xn }n∈N and {Ynj }j∈N,n∈N be random vectors such that
(i) Ynj −→ Yj for each j ∈ N
n→∞
(ii) Yj −→ Y
j→∞
(iii) lim lim supP(|Xn − Ynj | > ε) = 0 for every ε > 0. Then
j→∞ n→∞
i.d.
Xn −→ Y .
n→∞
Lemma (Chebyshevs inequality)
Let X be a random variable such that E [X ] = µ and Var[X ] = σ 2 < ∞
then the following inequality holds for any real number k > 0
P[|X − µ| ≥ k] ≤
Felix Dietrich and Gundelinde Wiegel (UTN)
σ2
k2
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
6 / 24
Tools II
Definition (m-Dependence)
A stationary process {Xt } is called m-dependent with 0 < m ∈ N if for
each t ∈ Z {Xj , j ≤ t} and {Xj , j ≥ t + m + 1} are independent.
Theorem (Central Limit Th. for Stationary m-Dependent Sequences)
Let {Xt } be a stationary and m-dependent
sequence of r.v. with mean
P
zero and ACVF γ(·). If νm = m
γ(j)
=
6
0, then
j=−m
¯n ] = νm
lim nVar [X
¯n ∼ AN 0, νm .
X
n
(1)
n→∞
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
(2)
29th of October 2013
7 / 24
Proof of the Theorem
Xtm := µ +
m
X
ψj Zt−j
j=−m
and
n
Ynm
X
¯nm := 1
Xtm .
:= X
n
t=1
{Ynm }n∈N is an 2m-dependent sequence.
With the central limit theorem for any m ∈ N:
⇒ Ynm −→ Xm as n → ∞ (in distribution)
P
where Xm ∼ N µ, n1 m
j=−m γ(j) .
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
8 / 24
Proof of the Theorem II
Hence we get
√
2
n(Ynm − µ) −→ Ym ∼ N 0, σ (
m
X
j=−m
2
ψj ) =
m
X
γ(j)
j=−m
P
P∞
2
2
2
Since σ 2 ( m
j=−m ψj ) → σ ( j=−∞ ψj ) > 0, we can show that
Ym −→ Y as m → ∞ (in distribuition)
P
2
where Y ∼ N 0, σ 2 ( ∞
j=−∞ ψj ) .Thus we showed property (i) and (ii) of
the first proposition. For (iii) we consider
Var
√
n X
X
X
¯n − Ynm ) = nVar 1
n(X
ψj Zt−j → σ 2 (
ψj )2 .
n
t=1 |j|>m
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
|j|>m
29th of October 2013
9 / 24
Proof of the Theorem III
Hence
n X
X
1 X
ψj Zt−j = lim σ 2 (
ψj )2
lim lim sup Var
m→∞
m→∞ n∈N
n
i=1 |j|>m
|j|>m
=0
Chebyshevs inequalitiy ⇒ (iii)
√
¯n − µ) −→ Y ∼ N 0, σ 2 (
n(X
∞
X
ψj )2
j=−∞
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
10 / 24
Distribution of γˆ
Now to the distribution of
n−h
γˆ (h) =
1X
¯n )(Xt+h − X
¯n )
(Xt − X
n
for
0≤h ≤n−1 .
i=1
Theorem (Distribution of γˆ )
P
Let {Xt } be a two-sided MA-process with Xt = ∞
j=−∞ ψj Zt−j ,
P∞
2
{Zt } ∼ IID(0, σ ), where j=−∞ |ψj | < ∞ and E[Zt4 ] = ησ 4 < ∞. Then
for any h ∈ N





γˆ (0)
γ(0)
 .. 
 .  V 
 .  ∼ AN  ..  , 
n
γˆ (h)
γ(h)
with
V = Cov (γ(p),P
γ(q))p,q=0,...,h =
(η − 3)γ(p)γ(q) + ∞
k=−∞ (γ(k)γ(k − p + q) + γ(k + q)γ(k − p)) p,q .
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
11 / 24
Tools
First of all we show some properties of
n
γ ∗ (h) =
1X
Xt Xt+h
n
with
h∈N .
t=1
Lemma (Lemma 1)
P
P∞
{Xt } MA-process Xt = ∞
j=−∞ ψj Zt−j , where
j=−∞ |ψj | < ∞ and
4
4
E[Zt ] = ησ < ∞. For p, q ∈ N we obtain
lim nCov [γ ∗ (p), γ ∗ (q)]
n→∞
= (η − 3)γ(p)γ(q) +
∞
X
(γ(k)γ(k − p + q) + γ(k + q)γ(k − p))
k=−∞
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
12 / 24
Proof of Lemma 1
As {Zt }t≥0 is i.i.d. with mean 0 and variance σ 2 plus the property
E [Zt4 ] = ησ 4 < ∞, we obtain

4

ησ if t = s = u = v
E [Zt Zs Zu Zv ] = σ 4
if s = t 6= u = v


0
else.
E [Xt Xt+p Xt+p+h Xt+p+h+q ]
XXXX
ψi ψj+p ψk+p+h ψl+h+p+q E [Zt−i Zt−j Zt−k Zt−l ]
=
i
j
= (η − 3)σ
k
l
4
X
ψi ψi+p ψi+p+h ψi+p+h+q + γ(p)γ(q)+
i
γ(h + p)γ(h + q) + γ(h + p + q)γ(h)
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
13 / 24
Proof of Lemma 1 II
Now back to γ ∗ . We know that
E [γ ∗ (h)] = γ(h)
Cov[γ ∗ (p), γ ∗ (q)] = E [γ ∗ (p)γ ∗ (q)] − E [γ ∗ (p)]E [γ ∗ (q)]
X
= n−1
(1 − n−1 |k|)Tk ,
k<|n|
where
Tk : = γ(k)γ(k − p + q) + γ(k + q)γ(k − p)
X
+ (η − 3)σ 4
ψi ψi+p ψi+k ψi+k+q
i
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
14 / 24
Proof of Lemma 1 III
Absolute summability of {ψj }j∈Z
⇒ {Tk }k∈Z is absolutely summable.
∗
∗
lim n Cov[γ (p), γ (q)] =
n→∞
∞
X
Tk
k=−∞
= (η − 3)γ(p)γ(q)
∞
X
+
γ(k)γ(k − p + q) + γ(k + q)γ(k − p) .
k=−∞
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
15 / 24
With this Lemma we show the convergence of the distribution of γ ∗ for a
truncated MA.
Lemma (Lemma 2)
{Xt } MA-process
Xt =
m
X
ψj Zt−j ,
j=−m
where
P∞
j=−∞ |ψj |
< ∞ and E[Zt4 ] = ησ 4 < ∞. Then for any h ∈ N




γ(0)
γ ∗ (0)
 .. 
 .  V 
 .  ∼ AN  ..  , 
n
γ ∗ (h)
γ(h)

with
V = Cov (γ(p),P
γ(q))p,q=0,...,h =
(η − 3)γ(p)γ(q) + ∞
k=−∞ (γ(k)γ(k − p + q) + γ(k + q)γ(k − p)) p,q .
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
16 / 24
Proof of Lemma 2
Yt0 := (Xt Xt , Xt Xt+1 , . . . , Xt Xt+h ) .
{Yt } is again stationary and 2m + h-dependent and
n
1X
Yt =
n
t=1
n
n
1X
1X
Xt+0 Xt+0 , . . . ,
Xt Xt+h
n
n
t=1
!0
= (γ ∗ (0), . . . , γ ∗ (h))0 .
t=1
Central Limit Theorem: Let λ ∈ Rh+1 .
n
1X 0
λ Yt ] = lim nVar [λ0 (γ ∗ (0), . . . , γ ∗ (h))0 ]
lim nVar [
n→∞
n→∞
n
t=1
= lim nVar [λ0 γ ∗ (0) + . . . + λh γ ∗ (h)] = lim n
n→∞
Felix Dietrich and Gundelinde Wiegel (UTN)
n→∞
¯ and γ
Asymptotic distributions of X
ˆ
h
X
λi λj Cov [γ ∗ (i), γ ∗ (j)]
j,i=1
29th of October 2013
17 / 24
Proof of Lemma 2 II
=
Lemma 1
λ0 V λ > 0
with V =
P
(η − 3)γ(p)γ(q) + ∞
k=−∞ (γ(k)γ(k − p + q) + γ(k + q)γ(k − p)) p,q
Central Limit Theorem ⇒
 


γ(0)
n
1X 0
 
 1

λ Yt ∼ AN λ0  ...  , λ0 V λ
n
n
t=1
γ(h)
for every λ ∈ Rh+1 .
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
18 / 24
Lemma 3
Now back to our original two-sided MA.
Lemma (Lemma 3)
{Xt } MA-process
Xt =
∞
X
ψj Zt−j ,
j=−∞
where
P∞
j=−∞ |ψj |
< ∞ and E[Zt4 ] = ησ 4 < ∞. Then for any h ∈ N




γ(0)
γ ∗ (0)
 .. 
 .  V 
 .  ∼ AN  ..  , 
n
γ ∗ (h)
γ(h)

with
V = Cov (γ(p),P
γ(q))p,q=0,...,h =
(η − 3)γ(p)γ(q) + ∞
k=−∞ (γ(k)γ(k − p + q) + γ(k + q)γ(k − p)) p,q .
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
19 / 24
Proof of Lemma 3
The idea is to apply Lemma 2 on the truncated sequence
Xt,m :=
m
X
n
ψj Zt−j
and therefore
∗
γm
(p) :=
1X
Xt,m Xt+p,m
n
t=1
j=−m
Lemma 2 ⇒

∗ (0) − γ (0)
γm
m
√ 
 i.d.
..
n
 −→ Ym ∼ N(0, Vm ) .
.
∗
γm (h) − γm (h)

Besides Vm → V and Ym → Y ∼ N(0, V ). Also we can show, that
√ ∗
lim lim supP[ n|γm
(p) − γm (p) − (γ ∗ (p) − γ(p))| > ε] = 0
m→∞ n→∞
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
20 / 24
Proof of the Theorem
Left
γˆ
.
Hence
√
instead of
n(γ ∗ (p) − γˆ (p)) = op (1)
γ∗
for
n→∞




γ(0)
γˆ (0)
 .. 
 .  V 
 .  ∼ AN  ..  , 
n
γˆ (h)
γ(h)

Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
21 / 24
Some interesting corollaries
Corollary (Distribution of ρˆ)
P
Let {Xt } be the stationary process given by Xt = ∞
j=−∞ ψj Zt−j − µ,
P∞
4
4
where j=−∞ |ψj | < ∞ and E[Zt ] = ησ < ∞. Then for each h ∈ N
W
ρˆ(h) ∼ AN ρ(h),
n
where ρˆ(h)0 = [ˆ
ρ(1), ..., ρˆ(h)]0 and ρ(h)0 = [ρ(1), ..., ρ(h)]0 and W the
Covariance Matrix, whose elements are given by Bartlett’s formula:
wij =
∞
X
[ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ(j)ρ2 (k)
k=−∞
− 2ρ(i)ρ(k)ρ(k + j) − 2ρ(j)ρ(k)ρ(k + i)]
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
22 / 24
Some interesting corollaries
Corollary (Distribution of ρˆ II)
P
Let {Xt } be the stationary process given by Xt = ∞
j=−∞ ψj Zt−j − µ,
P∞
P∞
2
where j=−∞ |ψj | < ∞ and j=−∞ ψj |j| < ∞. Then for each h ∈ N
W
ρˆ(h) ∼ AN ρ(h),
n
where ρˆ(h)0 = [ˆ
ρ(1), ..., ρˆ(h)]0 and ρ(h)0 = [ρ(1), ..., ρ(h)]0 and W the
Covariance Matrix, whose elements are given by Bartlett’s formula:
wij =
∞
X
[ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ(j)ρ2 (k)
k=−∞
− 2ρ(i)ρ(k)ρ(k + j) − 2ρ(j)ρ(k)ρ(k + i)]
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
23 / 24
The End
Felix Dietrich and Gundelinde Wiegel (UTN)
¯ and γ
Asymptotic distributions of X
ˆ
29th of October 2013
24 / 24