Personalized Polynomial Creating the polynomial that passes through a set of letter-points from a word. x-cordinate of a letter-point is the position of the letter in the word. The first letter has a position of one, the second letter has a position of two... The y-cordinate of the letter-point is the depth of the letter in the alphabet. A has a depth of 1, B has a depth of two... The word for this personalized polynomial is “SAMUEL”. ClearAll; Defining the Polynomial The word “SAMUEL” is six letters long. Part S Defining the part of the polynomial for “S”. “S” is the first letter in “SAMUEL” and the 19th letter of the alphabet. Sa@x_D:=19*Product@Hx-iL, 8i, 2, 6<D Product@H1-iL, 8i, 2, 6<D; Part A Defining the part of the polynomial for “A”. “A” is the second letter in “SAMUEL” and the 1st letter of the alphabet. Aa@x_D:=1*Product@Hx-iL, 8i, 1, 1<D*Product@Hx-iL, 8i, 3, 6<D HProduct@H2-iL, 8i, 1, 1<D*Product@H2-iL, 8i, 3, 6<DL; Part M Defining the part of the polynomial for “M”. “M” is the third letter in “SAMUEL” and the 13th letter of the alphabet. Ma@x_D:=13*Product@Hx-iL, 8i, 1, 2<D*Product@Hx-iL, 8i, 4, 6<D HProduct@H3-iL, 8i, 1, 2<D*Product@H3-iL, 8i, 4, 6<DL; Part U Defining the part of the polynomial for “U”. “U” is the forth letter in “SAMUEL” and the 21st letter of the alphabet. 4/5/14 B Group Ua@x_D:=21*Product@Hx-iL, 8i, 1, 3<D*Product@Hx-iL, 8i, 5, 6<D HProduct@H4-iL, 8i, 1, 3<D*Product@H4-iL, 8i, 5, 6<DL; Part E Defining the part of the polynomial for “E”. “E” is the fifth letter in “SAMUEL” and the fifth letter of the alphabet. Ea@x_D:=5*Product@Hx-iL, 8i, 1, 4<D*Product@Hx-iL, 8i, 6, 6<D HProduct@H5-iL, 8i, 1, 4<D*Product@H5-iL, 8i, 6, 6<DL; Part L Defining the part of the polynomial for “L”. “L” is the sixth letter in “SAMUEL” and the twelveth letter of the alphabet. La@x_D:=12*Product@Hx-iL, 8i, 1, 5<D Product@H6-iL, 8i, 1, 5<D; Tying It Together Defining the polynomial as the sum of all of its parts. In[938]:= SAMUEL@x_D:= Sa@xD + Aa@xD +Ma@xD +Ua@xD + Ea@xD + La@xD; Simplify@SAMUEL@xDD 1 Out[939]= 120 I7440 - 4018 x - 3595 x2 + 3125 x3 - 725 x4 + 53 x5 M Displaying the Polynomial Displaying the Polynomial in a Chart In[940]:= Inputs1=Table@i, 8i, 6<D; Outputs1=Table@SAMUEL@iD, 8i,6<D; TableData= Transpose@8Inputs1, Outputs1<D; Table1=TableForm@TableData, TableHeadings® 8None, 8"Input", "Output"<<D Out[943]//TableForm= Input 1 2 3 4 5 6 Output 19 1 13 21 5 12 Page 2 of 4 Weaver Personalized Polynomial.nb | Displaying the Polynomial in a Graph The Points and Their Labels S2=Show@Graphics@8Orange, Disk@81,19<, 8.04,1<D<D, Graphics@Text@Style@"S", Large, Bold, BlueD, 81.07, 21.5<DDD; A2=Show@Graphics@8Orange, Disk@82,1<, 8.04,1<D<D, Graphics@Text@Style@"A", Large, Bold, BlueD, 82, 4<DDD; M2=Show@Graphics@8Orange, Disk@83,13<, 8.04,1<D<D, Graphics@Text@Style@"M", Large, Bold, BlueD, 82.9, 15.8<DDD; U2=Show@Graphics@8Orange, Disk@84,21<, 8.04,1<D<D, Graphics@Text@Style@"U", Large, Bold, BlueD, 84.05, 23.5<DDD; E2=Show@Graphics@8Orange, Disk@85,5<, 8.04,1<D<D, Graphics@Text@Style@"E", Large, Bold, BlueD, 85.07, 8<DDD; L2=Show@Graphics@8Orange, Disk@86,12<, 8.04,1<D<D, Graphics@Text@Style@"L", Large, Bold, BlueD, 85.95, 14.8<DDD; DataPointsAndLabels=Show@S2, A2, M2, U2, E2, L2D; The Domain and Range In[951]:= MinDomain=0; MaxDomain=7; Outputs2=Table@SAMUEL@i1000D, 8i, 1000*MinDomain, 1000*MaxDomain<D; MinRange=Floor@Min@Outputs2DD; MaxRange=Ceiling@Max@Outputs2DD; Range1=Abs@MaxRange-MinRangeD; The Function In[961]:= FunctionPlot=Plot@SAMUEL@xD, 8x, MinDomain, MaxDomain<, AxesLabel® 8"Input", "Output"<, PlotStyle®Blue, PlotRange® 8MinRange-10100*Range1, MaxRange-60100*Range1<, PlotLabel® "Personalized Polynomial"D; 3 4/5/14 B Group Weaver Tying It Together In[962]:= Show@FunctionPlot, DataPointsAndLabelsD Personalized Polynomial Output 80 60 40 Out[962]= 20 U S M L E A 1 2 Input 3 4 -20 Page 4 of 4 5 6 7
© Copyright 2024