Quantifying patterns of scientific excellence Roberta Sinatra Percy Spencer Percy Spencer “What’s the opposite of ‘Eureka’?” are there patterns of excellence in ? evolution of perfoRmance in psychology Ericsson, et al. Psychological review 100 , 363 (1993). Ericsson et al., Harvard Business Review 85, 114 (2007) Jones & Weinberg. PNAS, 108(47), 18910-18914 (2011). Simonton, Psychological Review 104, 66 (1997). Nature vs nurture Simonton, D. F. (1997). Psychological Review 104, 66. Nature vs nurture Jones, B. F., & Weinberg, B. A. (2011). PNAS, 108(47), 18910-18914. Nature vs nurture Ericsson, K. A. & al. (2007). Harvard Business Review 85, 114 . Ericsson, K. A. & al. (1993). Psychological review 100, 363. Gladwell, M. (2008). Outliers: The story of success. Penguin UK. ? We study scientific success through publications and citations All papers All citations Kenneth G. Wilson 400 Nobel in physics in 1982 c (citations) 300 200 100 0 0 10 20 30 time (in years) Sinatra, Wang, Deville, Song, Barabási, in review (2014) Kenneth G. Wilson Nobel in physics in 1982 400 c c (citations) 300 ⇤ 200 100 0 0 t ⇤ 10 20 30 time (in years) Sinatra, Wang, Deville, Song, Barabási, in review (2014) timing of the hit is high between 0 and 20 years, decays afterwards 0.2 Data Randomized P (t⇤ ) 0.15 0.1 0.05 0 0 10 20 t ⇤ 30 40 Sinatra, Wang, Deville, Song, Barabási, in review (2014) are there patterns before and after the scientific hits? there are patterns of Productivity 4 hn (t)i 3 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are patterns of Productivity 4 hn (t)i 3 High Impact (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are patterns of Productivity 4 hn (t)i 3 High Impact (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are patterns of Productivity 4 hn (t)i 3 High Impact (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are patterns of Productivity 4 hn (t)i 3 High Impact (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are patterns of Productivity 4 hn (t)i 3 High Impact (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact 2 1 −10 −5 t* 5 time in years 10 Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are no patterns of impact 300 hcitationsi 250 200 150 100 50 0 High Impact −8 −6 −4 −2 N* 2 4 6 8 (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are no patterns of impact 300 hcitationsi 250 200 150 100 50 0 High Impact −8 −6 −4 −2 N* 2 4 6 8 (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are no patterns of impact 300 hcitationsi 250 200 150 100 50 0 High Impact −8 −6 −4 −2 N* 2 4 6 8 (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact Sinatra, Wang, Deville, Song, Barabási, in review (2014) there are no patterns of impact 300 hcitationsi 250 200 150 100 50 0 High Impact −8 −6 −4 −2 N* 2 4 6 8 (c∗10 ≥ 200 ) Middle Impact (20 < c∗10 < 200 ) (c∗10 ≤ 20 ) Low Impact Sinatra, Wang, Deville, Song, Barabási, in review (2014) We can’t see the hit coming. Nor do we learn from it Timing of the hit is random 0.2 Data Randomized P (t⇤ ) 0.15 0.1 0.05 0 0 10 20 t ⇤ 30 40 Sinatra, Wang, Deville, Song, Barabási, in review (2014) Timing of the hit is random 0.2 Data Randomized P (t⇤ ) 0.15 0.1 0.05 0 0 10 20 t ⇤ 30 40 Sinatra, Wang, Deville, Song, Barabási, in review (2014) Impact is random within a scientific career Frank G. Wilczek Physics Nobel, 2004 John B. Fenn Chemistry Nobel, 2002 6 5 4 3 Mean 2 10 1 10 Productivity 2 N ∗ highest impact log cpaper log c⇤ highest impact paper log c⇤ there are statistical Regularities comparing scientists 8 6 4 2 0 0 Mean 1 2 3 −∗ !log c average impact"hlog c 4 ⇤ i average expected maximum grows with the number of trials 1 toss 100 toss hs max hs i = 3.5 max i⇠6 6 5 4 3 Mean Null Model 2 10 1 Productivity 10 2 N highest impact paper log c⇤ highest impact paper log c⇤ there are statistical Regularities comparing scientists 8 6 4 2 0 0 Mean Null Model 1 2 3 average impact hlog c ⇤ 4 i Sinatra, Wang, Deville, Song, Barabási, in review (2014) Individuals have different impact distributions 1 one scientist P( c) 0.8 0.6 0.4 N=100 0.2 A third scientist 0 0 10 1 10 2 10 c Another Scientist Sinatra, Wang, Deville, Song, Barabási, in review (2014) Individuals draw paper impact from different boxes ? ? ? a universal stochastic principle driving individual impact ? Excellence model cij = pj Ei Sinatra, Wang, Deville, Song, Barabási, in review (2014) Excellence model cij = pj Ei Sinatra, Wang, Deville, Song, Barabási, in review (2014) Excellence model cij = pj Ei 3d lognormal Sinatra, Wang, Deville, Song, Barabási, in review (2014) Excellence model cij = pj Ei 3d lognormal P (p)P (E, N ) Sinatra, Wang, Deville, Song, Barabási, in review (2014) Excellence model cij = pj Ei P (p) uncoupled P (E) Sinatra, Wang, Deville, Song, Barabási, in review (2014) Excellence model cij = pj Ei Universal P (p) uncoupled P (E) Everyone has the same initial chance to make a major discovery Sinatra, Wang, Deville, Song, Barabási, in review (2014) Untangling skill and luck P(p) Data P( c) 1 P(p) 0.8 0.6 0.4 0.2 0 10 0 10 1 10 2 is universal Untangling skill and luck P(p) is universal Data 1 P(p) c/E) 0.8 0.6 0.4 P( P( c) 1 Rescaled Data 0.2 0 P(p) 0.8 0.6 0.4 0.2 10 0 10 1 10 2 0 10 0 10 1 10 2 Excellence model a Increasing E 1 c10 13.9 8.1 0.6 4.8 c10 10,i 0.4 2.8 0.2 0 b 1.6 c10 ) PP (≥( c c) 0.8 E 1 10 500 c c10,i c d 300 250 200 150 100 50 0 300 250 200 150 100 50 0 300 250 200 150 100 50 0 E=8.48 1 10 20 30 E=3.49 1 10 20 30 E=1.34 1 10 20 30 time (in years) 8 6 6 5 log c∗ log c∗ The excellence model works 4 2 0 0 1 2 !log c Mean Excellence −∗ 3 " 4 3 4 Mean Excellence 2 10 1 N 10 2 Sustained excellence detects Nobel Laureates Nobel Laureates 1 0.8 0.6 0.4 excellence E, 0.98 total citations Ctot, 0.94 h−index, 0.93 highest impact c∗10, 0.92 productivity N, 0.71 0.2 0 0 0.2 0.4 0.6 0.8 1 Other scientists Sinatra, Wang, Deville, Song, Barabási, in review (2014) It is not (just) a new indicator, rather it explains all other indicators 1. Impact is random within a scientist’s career 2. Sustained excellence: a universal principle for individual impact Team László Barabási Pierre Deville Chaoming Song Dashun Wang Thank you! @robysinatra www.robertasinatra.com
© Copyright 2025