DANSK BIOTEK medlemsmøde 3. oktober 2013 ”Industriel bioteknologi i Danmark” Novo Nordisk Foundation Center for Biosustainability, Kogle Allé 6, 2970 Hørsholm Program: 15.00 Registrering og networking 15.30 Velkomst ved Martin Bonde, Formand for DANSK BIOTEK 15.40 Future Cell factories ved Bernhard Palsson, CEO, Novo Nordisk Foundation Center for Biosustainability 16.00 Dansk biomasse til industriel anvendelse, potentiale og barrierer ved Claus Felby KU Life 16.20 Maabjerg Energy Concept – verdens mest avancerede bioraffinaderi? ved Jørgen Udby, bestyrelsesformand for Maabjerg Energy Concept I/S 16.40 Etablering af EU baseret Offentligt-Privat-Partnerskab for industriel bioteknologi ved Lars Christian Hansen, Novozymes 17.00 Afslutning ved Martin Bonde DANSK BIOTEK og Novo Nordisk Foundation Center for Biosustainability byder på en lille forfriskning Velkommen til DANSK BIOTEKS medlemsmøde om Industriel Bioteknologi 07-10-2013 Program 15.00 Registrering og networking 15.30 Velkomst ved Martin Bonde, Formand for DANSK BIOTEK 15.40 Future Cell factories - Bernhard Palsson, CEO, Novo Nordisk Foundation Center for Biosustainability 16.00 Dansk biomasse til industriel anvendelse, potentiale og barrierer ved Claus Felby KU Life 16.20 Maabjerg Energy Concept – verdens mest avancerede bioraffinaderi? ved Jørgen Udby, bestyrelsesformand for Maabjerg Energy Concept I/S 16.40 Etablering af EU baseret Offentligt-Privat-Partnerskab for industriel bioteknologi ved Lars Christian Hansen, Novozymes 17.00 Afslutning ved Martin Bonde DANSK BIOTEK og Novo Nordisk Foundation Center for Biosustainability byder på en lille forfriskning 07-10-2013 TAK til Novo Nordisk Foundation Center for Biosustainability 07-10-2013 Vil tøbrud i USA –smitte af på Danmark? USA Oktober 2013 • 11 biotekvirksomheder børsnoteret i 2012 • 33 biotekvirksomheder har i 2013 rejst omkring 2,2 milliarder USD • 10 virksomheder mere på vej til notering Danmark oktober 2013 • Biogen Idec i gang med at producere sklerosemidlet Tysabri • Nyheder fra Genmab, Zealand og Santaris om milepælsbetalinger og nye eller udvidede samarbejder • REBBLS etableret,’Rising Entrepreneurs in BioBusiness and Life Science’ 07-10-2013 Dårligt signal i Finanslov for 2014 • 21. mia. afsat til forskning sidste år beskæres i det til 20,8 mia. kr. • Højteknologifonden mister 45 mio. kr. sammenlignet med sidste år • Faldende bevillinger på flere områder inden for forskning og innovation • Den offentlige forsknings andel af BNP falder fra 1,12 til 1,09% i 2014 for at komme helt ned på 1.0% i 2017 07-10-2013 Integrated large-scale biomass supply: The Danish + 10 mio tonnes study Dansk biomasse til industriel anvendelse, potentiale og barrierer Uffe Jørgensen, University of Aarhus Niclas Scott Bentsen, Vivian Kvist Johansen, Morten Gylling and Claus Felby University of Copenhagen We can make anything from plants • Food, feed, fuels, chemicals, materials and CCS • Biomass is seen as one of the elements of a future sustainable economy • Building a bio-based low carbon economy requires GIGA TONS of biomass • This presentation is about how we may approach a sustainable biomass supply using the biology, technology and infrastructure already available …in the state of Denmark • Renewables accounts for 27% of the energy supply. 66% is from biomass) • Current use of biomass 8 mill tons/year (3 mill tons inported) • Biomass is planned to take up 20-30% of the total energy supply • This will require approx. +10 mio tons of biomass • How much of that biomass can we produce ourselves? Waste Straw Wood Biogas Skov & Landskab 2G biofuels and biorefineries may avoid the food/fuel conflict • But if we start replacing food and feed crops with energy crops it will basically be the same problem • It is a question of land use, as land is the ultimate limiting factor, not XX tons of biomass So…. • If we put land as the limiting parameter, how should we approach the supply of biomass? • Expansion or intensification? Expansion: Feeding 9 bilion people +++Meat Today we grow crops on an area the size of South America +Meat ++Meat ++++Meat +++++Meat Intensification: Increased biomass ressource from the same area? •For more than 10,000 years we have optimised our crops for food and feed Intensification but under constraints • Existing agriculture and forestry • Crops, trees and farming/forestry practice • Already established established infrastructure • Could danish agriculture and forestry deliver 10 mill tons extra biomass by 2020 under the assumptions of: • No reduction in food production • No extra land use • Reduced environmental impact • Sustainable intensification is it a possibility or a pie in the sky? Danish agriculture and forestry • No idle land -60% of the area is farm land • Current harvest ca. 18 mill t • Mainly agriculture • 80% is used for animal feed • 17 mill tons surplus of manuer • Surplus of straw • Large import of wood Three scenarios for 2020 Business as usual BAU • No change in crops or technology • Annual yield increment approx. 1% • More collection and use of existing biomass/residues • High use of manure Biomass optimized • High straw yield cultivars • Increased collection of straw and wood • Less share of oil crops –higher share of energy crops • Fertilization of grass in wetlands areas • Verges, weeds, secondary crops etc. • High use of manure Environmentally optimized • No removal of straw in low soil carbon areas • Maximum use of secondary and energy crops • No cereals in areas with high nitrate leaching • Increased forestation • High use of manure Data for calculations and scenarios Productivity: • • • • The general agricultural register (GLR), the central livestock register (CHR), StatBank Denmark National Forest Inventory Geographical data: • DJF geodata, • Fertiliser accounts, • GIS maps of roads, watercourses, urban and wooded areas, • Digital field maps, • Nitrogen leaching maps • Soil carbon maps Better solar energy capture: Potential yield increments •Current yield of wheat 9 t/ha • Current yield of corn 12 t t/ha • Potential yield of corn + winter rye 18 t/ha •Potential yield of beet 26 t/ha • Potential yield of Miscanthus : 20 t/ha Make use of the whole growth season C4 Photosynthesis + 10 mio tonnes is possible! BAU can deliver +4 mio tonnes • Achieved by: • Existing technology and existing crops and trees • Use of the full growth season • Intermediate crops • High biomass yield varities • Higher share of perennial crops • Can we mantain food production? • Environmental impact? Can food/feed production be mantained? • Loss of area for food crops approximately 200,000 ha (7%) • Yield increment and more efficient production can not make up for the full loss • High feed value carbohydrates and proteins are present in the biomass • Biorefinery feed products are important • Development of separation technologies are important • Always conserve protein! Environment: Areas with low nitrate retention change to perennial crops -23000 tons N Copenhagen Plant Science Centre Building investments: Approx 400 mio DKK Visions • Create new knowledge on complex functions of plants - as individual organisms and in crop populations • Use synthetic biology to exploit plant systems diversity and identify, characterize and reassembly • Gain fundamental knowledge that can be exploited in molecular breeding to develop crops with stable or increased yields under adverse growth conditions • Increase the yield and sustainability of plant production by optimizing resource use efficiency and population performance. • CPSC director Dr. Dario Leister Technology backend • Biomass from many sources. Technology must handle: • • • • Low Low Low Non to high salt levels to high protein content to high moisture content carbohydrates (lignin) • We need technology for processing of lignin • Need for separation technologies • Processes for upgrading and separation of protein has a high impact on land use efficiency Technology development Metabolic yield vs. process yield • Megaton-scale • Hydrolysis and anaerobic fermentation are thermodynamically dowhill • The lower the energy quality we can use as process energy, the more we can reduce entropy i.e. loss of work • By combined biochemical and thermal processing we may optimize the level of services (work) from the biomass Biomass Biochemical processing and separation Sugars, lignin, protein Fermentation Thermal reforming Conclusions and perspective • We have only presented scearios! • It is possible to boost biomass production in intensive modern agricilture –sustainable intensification • Environmental benefits from perennial crops • Economy –some of the biomass will be to expensive if environemntal benefits are not priced. • Job creation. Direct employment 20000-25000 jobs • A biorefinery sector is important for converting different biomasses and for recovery of protein • Looking ahead; using land as the limiting factor and minimising land use will improve sustainability and avoid technology pitfalls • We need to focus more on ressource efficiency, optimize use of all biomass components • We can make it with existing agriculture and forestry –not one extra m2 of land. Bye, bye ILUC +10 mio tonnes study can be downloaded from www.foi.life.ku.dk/publikationer/ Thank you for your attention Maabjerg Energy Concept 1. Præsentation af MEC konsortiet 2. Grundlæggende om konceptet 3. Råvarer 4. Økonomi 5. Realiseringstidsplan 6. Perspektivering 7. Spørgsmål Ved Bestyrelsesformand Jørgen Udby, MEC I/S Konsortiet Maabjerg Energy Concept I/S Formål: Konsortiets mål er at tilvejebringe et samlet teknisk, juridisk og økonomisk grundlag, for en realiseringsbeslutning. Ejere: Lokalkonsortiet I/S – 50 % - Vestforsyning A/S, Struer Forsyning A/S, Nomi I/S Dong Energy A/S og Novozymes A/S – 50% Kapital: 55,5 mio. kr. - EUDP har støtte projektet med 10 mio. kr. -Den ”grønne omstillingsfond ” har støttet projektet med 5.5 mio. kr. Bestyrelsen: Repræsentanter fra ejerne. Projektorganisation: Egne ressourcer, en række rådgivningsvirksomheder og vidensinstitutioner - tilpasses løbende til opgaverne. IDÉ - Et bioraffinaderi med fokus på energi output Udnyttelse af synergi i ressourceomsætning og procesanlæg Transportbrændstof 34 % (Energi) Biogas Biomasse 2. Generation Bioethanol Maabjerg BioEnergy Biomasse Kraftvarme El & varme 53 % (Energi) VE - gas 13 % (Energi) Maabjergværket Næringsstoffer Teknologiskiftet - Råvarer og deres omsætning 520.000 t husdyrgødning 160.000 t biomasseaffald 50 mio. m3 biogas Biogas Næringsstoffer 120.000 t spildevandsslam 90.000 t vinasse 300.000 t halm 2. G Bioethanol • N : 4.400 tons / år • P : 1.400 tons / år • K : 4.500 ton / år 80 mio. liter bioethanol 57.000 t lignin 36.000 t biobrændsel 100.000 t affald Kraftvarme Varme og el til ca. 25.000 husstande Ressourcestrømme - optimering Opgraderingsanlæg Vindmøllestrøm Brintproduktion El Husholdning/Erhverv Dagrenovation VE- gas Affaldsbehandling Biovæske Genbrug Faststof (RDF) Slam Spildevand Brint Damp Biogas Biogas Fødevareindustri Restbiomasse Biogas Fiber Gylle mv. Lignin Gødning Biomasse Kraftvarme Kraftvarme Varme Varme El Landbrug Vinasse Halm 2. Generation Bioethanol Kølevarme Næringsstoffer Damp Ethanol Transportbrændstof Råvarer – Tilstedeværelse af hvede og byghalm Geografi Mio. tons Ikke bjærget I alt Hvede Byg Jylland (inkl. besluttet udfaset) 1.3 0.2 1.5 Øvrig DK 0.4 0.1 0.5 Danmark 1.7 0.3 2.0 Selskabsøkonomiske nøgletal – basisberegning Emne Mia. kr. Samlet investeringssum (ny investeringer) 2,2 o Bioethanol 1,8 o kraftvarme 0,3 o Biogas og opgradering 0,1 Finansiering o Egenfinansiering 0,8 o Belåning 1,4 Årlig omsætning (fuld produktion) 1,0 Akkumuleret overskud (efter skat) 2,3 Intern Rente (IRR efter skat) 8,8% Samfundsøkonomiske nøgletal Emne Resultat Beskæftigelseseffekt* o Byggeperiode (fuldtidsjob pr. år i 2 år) 1.250-1.550 o Varigt (fuldtidsjob pr. år) 1.000-1.700 Brutto nationalproduktet (BNP - ADAM grundforløb) o Investeringsperioden (mio. kr.) 1.850 o Varigt (mio. kr.) 1.000 Klimaeffekt o CO2 besparelse (tons / år) Heraf i transportsektoren *Lave tal er beregnet efter ADAM grundforløb 264.000 120.000 Beskæftigelsens sammensætning MEC koncernen i realiseringsfasen DONG A/S Novozymes A/S Evt. øvrige 49 Struer Forsyning Varme A/S Vestforsyning Varme A/S 33 67 100 Maabjerg Energy Concept MEC Holding A/S 51 BioEthanol A/S 94 Nøgletal: Aktiver 3.1 mia. kr. Egenkapital 0.6 mia. kr. Omsætning 1.0 mia. kr. 100 BioGas A/S BioEnergy A/S (Maabjerg BioEnergy) (Måbjergværket) Rammevilkår MEC`s behov for politiske vilkår: • Bæredygtighedskriterier og iblandingskrav MEC`s behov for økonomiske vilkår: • Prissikring : 1 kr. liter i 7 år efter NER (2022 – 2029) • Anlægsstøtte : 330 mio. kr. Ansøgt NER støtte på 1 kr. liter i 5 år. Svarer til niveauet i EU`s nye PPP ordning. Forsikringsordning) Projektrealisering Igangsætning 27. aug. 2011 Konceptvurdering april 2012 Valg af Teknologi & design juli 2013 Realiseringsbeslutning sommer 2014 Investeringsbeslutning sommer 2015 Idriftsættelse sommer 2017 Mobiliserings fase 1.2 Analyse fase Mobiliserings- Teknologitilpasning Mobiliserings- Anlægs- Drift- fase 1.1 Ressourceoptimering fase 2 fase fase Sekundære ressourcestrømme Lignin- og sukkerplatform Rammevilkår Perspektivering – Dansk vækstpotentiale Politiske rammevilkår Bæredygtighed Iblandingskrav Prissikring / Støtte F&U midler Forskning & udvikling Uddannelse Forskning Test Demonstration Vidensforankring Mere biomasse ”10 mio. tons planen” Logistikoptimering ”Markedsplads” Videreudvikle bioteknologier Nye produkter og markeder Biogas, Forgasning Lignin- sukkerplatform Anvendelsesteknologi Afsætningsoptimering Erstatte fossile produkter Danmark som nettoeksportør Produkter, systemer, viden MEC`s bioraffinaderi Maabjerg Bioethanol Maabjerg BioEnergy Måbjergværket BRIDGE – Biobased and Renewable Industries for Development and Growth in Europe Realising the biobased economy potential in Europe 3 October 2013 A PUBLIC-PRIVATE PARTNERSHIP ON BIOBASED INDUSTRIES Lars Hansen, Vice President Novozymes Biobased Economy concept What’s in it for Europe? Growth • A global biobased market estimated at €200 billion by 2020* Jobs • Create over 1 million jobs between 2010 and 2030 mainly in rural areas** • Reduce dependence on imports with locally sourced and produced goods and products*** • BRIDGE derived biobased products can achieve an average GHG emissions reduction potential of least 50% compared to fossil alternatives**** Energy and Products Energy security Climate Sources: * McKinsey / World Economic Forum ** Bloomberg New Energy Finance *** European Commission **** BRIDGE 2020 Strategic Innovation and Research Agenda (SIRA) 3 Competing in the global race US • About $50 billion invested over the last decade on biofuels and biochemicals. • In 2012, President Obama committed to further invest and support the development of the bioeconomy as “a major engine for American innovation and economic growth” CHINA • $308,5 billion investment on science & technology with biotechnology as a major priority over 2011-2015 • Substitute 20% of crude oil imports by 2020 BRAZIL • Aims to be N°1 Global Bioeconomy • R$ 3,3 billion support for 2nd generation bioethanol, biochemicals and biomass gasification technologies Policies can make the wheels turn DEMAND Incentives for biobased products Public procurement schemes Standards DEMAND SUPPLY • Support biomass development and collection SUPPLY INVESTMENTS INVESTMENT Loans / guarantees First-of-its-kind commercial plants About BRIDGE Biobased and Renewables Industries for Development and Growth in Europe • A Public-Private Partnership (PPP) between the Biobased Industries and the EU • A joint commitment of €3.8 billion over 2014-2020 o €1 billion (EU) o €2.8 billion (Biobased Industries) • Multi-annual funding programmes for biobased projects • Enabling rural development and re-industrialisation in Europe Focus Feedstock • Fostering a sustainable biomass supply and building new value chains Biorefineries • Optimising efficient processing through R&D and upscaling in large-scale demo/flagship biorefineries Markets, products and policies • Developing markets for biobased products and optimising policy frameworks Lacking EU support for demonstration International benchmark on the share of basic, applied and development activities 100% 6% 2% 90% 80% 70% 58% 48% 60% FP7 50% 92% 40% 30% 32% 24% 11% 0% China US Applied research Basic research/FP7 28% 20% 10% Demonstration EU Source: Key Science and Engineering Indicators, National Scientific Board, 2010 Digest, NSF, http://cordis.europa.eur/erawatch, OECD “Research & Development Statistics” Novozymes is active across the value chain Biobased product value chain Biomass production Enzymatic pesticides Microbial yield enhancers Fertility enhancers Biomass conversion Conversion of biomass to sugars Product formulation Microbiological conversion of sugars to biobased products such as bioethanol, acrylic acid etc. The biobased society and Denmark – a perfect match • One of the World’s strongest food clusters • World leading industrial players • Strong links to academia • Substantial amounts of biomass available Denmark at the forefront in the transformation to a biobased society Investing in new and sustainable ways to organise our economy Cell Factories of Tomorrow The CFB Team The CFB • Vision: – The Center will facilitate the emergence of the next generation of cell factories. Cell factories will transform the production and manufacture of chemical structures. The Center will lead this transformative development • Mission: – To determine the range of molecules that can be produced biologically – Basic research – Shorten the strain design and development process – Translational research – Innovation through development of new technologies and transfer of knowledge to industry for the benefit of society. – Development of talent – the future driving force of bio-based sustainability 3 DTU Biosustain, Technical University of Denmark Current organisms Escherichia coli Fine chemicals, bulk biochemicals, drugs, food ingredients and consumer products Bakers yeast In-silico genome scale evaluation and design Chinese Hamster Ovary cells Therapeutic proteins 4 DTU Biosustain, Technical University of Denmark Pathway exploration and design Omics data generation Genetic manipulation Phenotyping Staff prognosis for CFB 300 250 FTE's 200 Satellites 150 External funding Adm & BD 100 DTU Sections 50 Core 0 2013 2014 2015 2016 2017 Year 9 DTU Biosustain, Technical University of Denmark iLOOP The organizing paradigm of the CFB Cell factory development loop: concept mics cs • Model predictions Host • Literature mining • Public databases Product In silico design and data analysis Genome engineering Systems-level analysis Screening and physiology 1 8 • Fermetation physiology • Growth curves • High throughput screening data • Host genotype • Pathway Adaptive Laboratory components: Evolution Genes, promoters, terminators etc • Oligos • Vectors Data generated in the iLoop • Model predictions • Literature mining • Public databases In silico design and data analysis • Genomics • Transcriptomics • Proteomics • Metabolomics • Fluxomics • Glycomics Genome engineering Systems-level analysis Screening and physiology • Fermetation physiology • Growth curves • High throughput screening data 1 9 • Host genotype • Pathway components: Genes, promoters, terminators etc • Oligos • Vectors Equipment needs for the iLoop In silico design and data analysis Equipment • Sequencers •Mass spectometers (proteomics, metabolomics, glycomics,fluxomics) Data • Genomics • Transcriptomics • Proteomics • Metabolomics • Fluxomics • Glycomics 2 0 Equipment • MAGE robotics • Cloning robotics • Synthetic gene/ pathway construction Genome engineering Systems-level analysis Screening and physiology Equipment • FACS and other single cell assays • Targeted analytical chemistry • Cultivation robotics • ALE robotics • Plate readers • Small/medium-scale fermentation Data • Fermetation physiology • Growth curves • HT screening data Data • Host genotype • Pathway components: Genes, promoters, terminators etc • Oligos • Vectors Some technologies being developed for the iLOOP Adaptive Laboratory Evolution (ALE) Adam Feist ALE Command Center • Online Monitoring System – Accelerating Decision Making and Troubleshooting – Webcam – Action Queue – Status and Supplies – Real time Data 3 0 Selecting for improved production traits Morten Sommer Selecting for optimized cell factories 3 2 Bioinformatics & Modeling Markus Herrgard Genome-scale strain design workflows 3 9 BioProcess and Strain Development 3HP Production Irina Borodina Metabolic Engineering of Yeast EasyClone – method for iterative chromosomal integration of mutiple genes in S. cerevisiae 5 5 3-hydroxy propionic acid production in yeast Growth of SFA1 allele replacement strains on 3HP 0.5 µmax (h-1) 0.4 no 3HP 0.3 10 g/L 3HP 25 g/L 3HP 0.2 40 g/L 3HP 50 g/L 3HP 0.1 0 SFA1-wt Titer 13,68±0,33 g/L Rate 0,24±0,01 g/L/h (FB) Yield 14±0% C-mol/C-mol gluc 5 6 SFA1-evo1 SFA1-evo2 Jensen et al (2013). ”Microbial Production of 3Hydroxypropionic Acid”. EPO patent application Borodina et al (2012). ”Genetically Engineered Yeast”. EPO patent application Kildegaard et al (2013). ”3HP tolerance”. EPO patent application Serine production Alex Toftgaard Nielsen Serine Production in E. coli Pyruvate SerA SerB SerC Glycine Cysteine Feed back inhibition • Degradation pathways eliminated • Resistance towards serine evolved • Production demonstrated during fed batch fermentation 5 8 Hemanshu Mundhada Melatonin production Jiangfeng Zhu Melatonin Pathway (From Mammalian cells) Optimization of TPH expression with a biosensor 5HTP production in E. coli Identifying 5HTP degradation pathways in E. coli 5HTP DTU Biosustain, Technical University of Denmark N-acetylserotonin and melatonin production in S. cerevisiae Flavonoid production Jérôme Maury specific fluorescence (a.u.) Biosensors for flavonoid detection 50000 Single cells can be isolated 40000 30000 20000 10000 0 Empty + sensor 62 DTU Biosustain, Technical University of Denmark FLS + sensor Electrosynthesis Karsten Zengler Efficiency 8% Efficiency 90% Store electrical- into chemical-energy Truly a bio-sustainable technology Transformative DTU Biosustain, Technical University of Denmark Improved Production DTU Biosustain, Technical University of Denmark Summary • The CFB has been built over the past 2.5 years and should be in its full constellation by the end of 2013 • There will be about 200 FTEs associated with it • The CFB is focused on genome-scale approach to cell factories design • The CFB wants to build new strain design procedure based on an iterative model-guided procedure • The CFB is developing a suite of innovative experimental and computational technologies • The CFB has picked a few model molecules to work on, but will reexamine this selection with its new econometric unit 71 DTU Biosustain, Technical University of Denmark Acknowledgement The Novo Nordisk Foundation 72 DTU Biosustain, Technical University of Denmark
© Copyright 2024