SE`s approach to Smart Grid

DANSK BIOTEK medlemsmøde
3. oktober 2013
”Industriel bioteknologi i Danmark”
Novo Nordisk Foundation Center for Biosustainability, Kogle Allé 6, 2970 Hørsholm
Program:
15.00 Registrering og networking
15.30 Velkomst ved Martin Bonde, Formand for DANSK BIOTEK
15.40 Future Cell factories ved Bernhard Palsson, CEO, Novo Nordisk Foundation Center for
Biosustainability
16.00 Dansk biomasse til industriel anvendelse, potentiale og barrierer ved Claus Felby KU Life
16.20 Maabjerg Energy Concept – verdens mest avancerede bioraffinaderi? ved Jørgen Udby,
bestyrelsesformand for Maabjerg Energy Concept I/S
16.40 Etablering af EU baseret Offentligt-Privat-Partnerskab for industriel bioteknologi ved Lars
Christian Hansen, Novozymes
17.00 Afslutning ved Martin Bonde
DANSK BIOTEK og Novo Nordisk Foundation Center for Biosustainability byder på en lille forfriskning
Velkommen til
DANSK BIOTEKS medlemsmøde
om Industriel Bioteknologi
07-10-2013
Program
15.00 Registrering og networking
15.30 Velkomst ved Martin Bonde, Formand for DANSK BIOTEK
15.40 Future Cell factories - Bernhard Palsson, CEO, Novo Nordisk Foundation Center
for Biosustainability
16.00 Dansk biomasse til industriel anvendelse, potentiale og barrierer ved Claus
Felby KU Life
16.20 Maabjerg Energy Concept – verdens mest avancerede bioraffinaderi? ved
Jørgen Udby, bestyrelsesformand for Maabjerg Energy Concept I/S
16.40 Etablering af EU baseret Offentligt-Privat-Partnerskab for industriel
bioteknologi ved Lars Christian Hansen, Novozymes
17.00 Afslutning ved Martin Bonde
DANSK BIOTEK og Novo Nordisk Foundation Center for Biosustainability byder på en
lille forfriskning
07-10-2013
TAK til
Novo Nordisk Foundation
Center for
Biosustainability
07-10-2013
Vil tøbrud i USA –smitte af på Danmark?
USA Oktober 2013
• 11 biotekvirksomheder børsnoteret i 2012
• 33 biotekvirksomheder har i 2013 rejst omkring 2,2
milliarder USD
• 10 virksomheder mere på vej til notering
Danmark oktober 2013
• Biogen Idec i gang med at producere sklerosemidlet Tysabri
• Nyheder fra Genmab, Zealand og Santaris om
milepælsbetalinger og nye eller udvidede samarbejder
• REBBLS etableret,’Rising Entrepreneurs in BioBusiness and
Life Science’
07-10-2013
Dårligt signal i Finanslov for 2014
• 21. mia. afsat til forskning sidste år beskæres i det
til 20,8 mia. kr.
• Højteknologifonden mister 45 mio. kr.
sammenlignet med sidste år
• Faldende bevillinger på flere områder inden for
forskning og innovation
• Den offentlige forsknings andel af BNP falder fra
1,12 til 1,09% i 2014 for at komme helt ned på
1.0% i 2017
07-10-2013
Integrated large-scale
biomass supply:
The Danish + 10 mio tonnes study
Dansk biomasse til industriel anvendelse, potentiale
og barrierer
Uffe Jørgensen, University of Aarhus
Niclas Scott Bentsen, Vivian Kvist Johansen,
Morten Gylling and Claus Felby
University of Copenhagen
We can make anything from plants
• Food, feed, fuels, chemicals, materials
and CCS
• Biomass is seen as one of the
elements of a future sustainable
economy
• Building a bio-based low carbon
economy requires GIGA TONS of
biomass
• This presentation is about how we
may approach a sustainable biomass
supply using the biology, technology
and infrastructure already available
…in the state of Denmark
• Renewables accounts for 27% of
the energy supply. 66% is from
biomass)
• Current use of biomass 8 mill
tons/year (3 mill tons inported)
• Biomass is planned to take up
20-30% of the total energy
supply
• This will require approx. +10 mio
tons of biomass
• How much of that biomass can we
produce ourselves?
Waste
Straw
Wood
Biogas
Skov & Landskab
2G biofuels and biorefineries may
avoid the food/fuel conflict
• But if we start replacing food and feed crops with
energy crops it will basically be the same problem
• It is a question of land use, as land is the ultimate
limiting factor, not XX tons of biomass
So….
• If we put land as the limiting parameter, how should
we approach the supply of biomass?
• Expansion or intensification?
Expansion: Feeding 9 bilion people
+++Meat
Today we grow crops
on an area the size of
South America
+Meat
++Meat
++++Meat
+++++Meat
Intensification:
Increased biomass ressource from the same area?
•For more than 10,000 years we have
optimised our crops for food and feed
Intensification but under constraints
• Existing agriculture and forestry
• Crops, trees and farming/forestry
practice
• Already established established
infrastructure
• Could danish agriculture and forestry
deliver 10 mill tons extra biomass by
2020 under the assumptions of:
• No reduction in food production
• No extra land use
• Reduced environmental impact
• Sustainable intensification is it a
possibility or a pie in the sky?
Danish agriculture and forestry
• No idle land -60% of the area is
farm land
• Current harvest ca. 18 mill t
• Mainly agriculture
• 80% is used for animal feed
• 17 mill tons surplus of manuer
• Surplus of straw
• Large import of wood
Three scenarios for 2020
Business as usual BAU
• No change in crops or technology
• Annual yield increment approx. 1%
• More collection and use of existing biomass/residues
• High use of manure
Biomass optimized
• High straw yield cultivars
• Increased collection of straw and wood
• Less share of oil crops –higher share of energy crops
• Fertilization of grass in wetlands areas
• Verges, weeds, secondary crops etc.
• High use of manure
Environmentally optimized
• No removal of straw in low soil carbon areas
• Maximum use of secondary and energy crops
• No cereals in areas with high nitrate leaching
• Increased forestation
• High use of manure
Data for calculations and
scenarios
Productivity:
•
•
•
•
The general agricultural register (GLR),
the central livestock register (CHR),
StatBank Denmark
National Forest Inventory
Geographical data:
• DJF geodata,
• Fertiliser accounts,
• GIS maps of roads, watercourses, urban
and wooded areas,
• Digital field maps,
• Nitrogen leaching maps
• Soil carbon maps
Better solar energy capture: Potential yield
increments
•Current yield of wheat 9 t/ha
• Current yield of corn 12 t t/ha
• Potential yield of corn + winter
rye 18 t/ha
•Potential yield of beet 26 t/ha
• Potential yield of Miscanthus : 20 t/ha
Make use of the whole growth season
C4 Photosynthesis
+ 10 mio tonnes is possible!
BAU can deliver +4 mio tonnes
• Achieved by:
• Existing technology and existing
crops and trees
• Use of the full growth season
• Intermediate crops
• High biomass yield varities
• Higher share of perennial crops
• Can we mantain food production?
• Environmental impact?
Can food/feed production be mantained?
• Loss of area for food crops
approximately 200,000 ha (7%)
• Yield increment and more
efficient production can not make
up for the full loss
• High feed value carbohydrates
and proteins are present in the
biomass
• Biorefinery feed products are
important
• Development of separation
technologies are important
• Always conserve protein!
Environment: Areas with low nitrate retention
change to perennial crops
-23000 tons N
Copenhagen Plant Science Centre
Building investments:
Approx 400 mio DKK
Visions
•
Create new knowledge on complex functions of plants - as individual
organisms and in crop populations
•
Use synthetic biology to exploit plant systems diversity and identify,
characterize and reassembly
•
Gain fundamental knowledge that can be exploited in molecular breeding to
develop crops with stable or increased yields under adverse growth conditions
•
Increase the yield and sustainability of plant production by optimizing resource
use efficiency and population performance.
•
CPSC director Dr. Dario Leister
Technology backend
• Biomass from many sources.
Technology must handle:
•
•
•
•
Low
Low
Low
Non
to high salt levels
to high protein content
to high moisture content
carbohydrates (lignin)
• We need technology for
processing of lignin
• Need for separation technologies
• Processes for upgrading and
separation of protein has a high
impact on land use efficiency
Technology development
Metabolic yield vs. process yield
• Megaton-scale
• Hydrolysis and anaerobic
fermentation are
thermodynamically dowhill
• The lower the energy quality
we can use as process
energy, the more we can
reduce entropy i.e. loss of
work
• By combined biochemical
and thermal processing we
may optimize the level of
services (work) from the
biomass
Biomass
Biochemical
processing and separation
Sugars, lignin, protein
Fermentation
Thermal
reforming
Conclusions and perspective
•
We have only presented scearios!
•
It is possible to boost biomass production in intensive
modern agricilture –sustainable intensification
•
Environmental benefits from perennial crops
•
Economy –some of the biomass will be to expensive if
environemntal benefits are not priced.
•
Job creation. Direct employment 20000-25000 jobs
•
A biorefinery sector is important for converting different
biomasses and for recovery of protein
•
Looking ahead; using land as the limiting factor and
minimising land use will improve sustainability and avoid
technology pitfalls
•
We need to focus more on ressource efficiency, optimize use
of all biomass components
•
We can make it with existing agriculture and forestry
–not one extra m2 of land. Bye, bye ILUC 
+10 mio tonnes study can be downloaded from
www.foi.life.ku.dk/publikationer/
Thank you for your attention
Maabjerg Energy Concept
1. Præsentation af MEC konsortiet
2. Grundlæggende om konceptet
3. Råvarer
4. Økonomi
5. Realiseringstidsplan
6. Perspektivering
7. Spørgsmål
Ved Bestyrelsesformand Jørgen Udby, MEC I/S
Konsortiet Maabjerg Energy Concept I/S
Formål:
Konsortiets mål er at tilvejebringe et samlet teknisk, juridisk og økonomisk
grundlag, for en realiseringsbeslutning.
Ejere:
 Lokalkonsortiet I/S – 50 % - Vestforsyning A/S, Struer Forsyning A/S, Nomi I/S
 Dong Energy A/S og Novozymes A/S – 50%
Kapital: 55,5 mio. kr. - EUDP har støtte projektet med 10 mio. kr. -Den ”grønne omstillingsfond ”
har støttet projektet med 5.5 mio. kr.
Bestyrelsen: Repræsentanter fra ejerne.
Projektorganisation: Egne ressourcer, en række rådgivningsvirksomheder og vidensinstitutioner - tilpasses løbende til opgaverne.
IDÉ - Et bioraffinaderi med fokus på energi output
Udnyttelse af synergi i ressourceomsætning og procesanlæg
Transportbrændstof
34 % (Energi)
Biogas
Biomasse
2. Generation
Bioethanol
Maabjerg BioEnergy
Biomasse
Kraftvarme
El & varme
53 % (Energi)
VE - gas
13 % (Energi)
Maabjergværket
Næringsstoffer
Teknologiskiftet - Råvarer og deres omsætning
 520.000 t husdyrgødning
 160.000 t biomasseaffald
 50 mio. m3 biogas
Biogas
 Næringsstoffer
 120.000 t spildevandsslam
90.000 t vinasse
 300.000 t halm
2. G
Bioethanol
• N : 4.400 tons / år
• P : 1.400 tons / år
• K : 4.500 ton / år
 80 mio. liter bioethanol
57.000 t lignin
 36.000 t biobrændsel
 100.000 t affald
Kraftvarme
 Varme og el til ca. 25.000
husstande
Ressourcestrømme - optimering
Opgraderingsanlæg
Vindmøllestrøm
Brintproduktion
El
Husholdning/Erhverv
Dagrenovation
VE- gas
Affaldsbehandling
Biovæske
Genbrug
Faststof (RDF)
Slam
Spildevand
Brint
Damp
Biogas
Biogas
Fødevareindustri
Restbiomasse
Biogas
Fiber
Gylle mv.
Lignin
Gødning
Biomasse
Kraftvarme
Kraftvarme
Varme
Varme
El
Landbrug
Vinasse
Halm
2.
Generation
Bioethanol
Kølevarme
Næringsstoffer
Damp
Ethanol
Transportbrændstof
Råvarer – Tilstedeværelse af hvede og byghalm
Geografi
Mio. tons
Ikke bjærget
I alt
Hvede
Byg
Jylland (inkl. besluttet udfaset)
1.3
0.2
1.5
Øvrig DK
0.4
0.1
0.5
Danmark
1.7
0.3
2.0
Selskabsøkonomiske nøgletal – basisberegning
Emne
Mia. kr.
Samlet investeringssum (ny investeringer)
2,2
o Bioethanol
1,8
o kraftvarme
0,3
o Biogas og opgradering
0,1
Finansiering
o Egenfinansiering
0,8
o Belåning
1,4
Årlig omsætning (fuld produktion)
1,0
Akkumuleret overskud (efter skat)
2,3
Intern Rente (IRR efter skat)
8,8%
Samfundsøkonomiske nøgletal
Emne
Resultat
Beskæftigelseseffekt*
o Byggeperiode (fuldtidsjob pr. år i 2 år)
1.250-1.550
o Varigt (fuldtidsjob pr. år)
1.000-1.700
Brutto nationalproduktet (BNP - ADAM grundforløb)
o Investeringsperioden (mio. kr.)
1.850
o Varigt (mio. kr.)
1.000
Klimaeffekt
o CO2 besparelse (tons / år)
 Heraf i transportsektoren
*Lave tal er beregnet efter ADAM grundforløb
264.000
120.000
Beskæftigelsens sammensætning
MEC koncernen i realiseringsfasen
DONG A/S
Novozymes A/S
Evt. øvrige
49
Struer Forsyning
Varme A/S
Vestforsyning
Varme A/S
33
67
100
Maabjerg Energy Concept
MEC Holding A/S
51
BioEthanol A/S
94
Nøgletal:
Aktiver
3.1 mia. kr.
Egenkapital 0.6 mia. kr.
Omsætning 1.0 mia. kr.
100
BioGas A/S
BioEnergy A/S
(Maabjerg BioEnergy)
(Måbjergværket)
Rammevilkår
MEC`s behov for politiske vilkår:
• Bæredygtighedskriterier og iblandingskrav
MEC`s behov for økonomiske vilkår:
• Prissikring : 1 kr. liter i 7 år efter NER (2022 – 2029)
• Anlægsstøtte : 330 mio. kr.
Ansøgt NER støtte på 1 kr. liter i 5 år.
Svarer til niveauet i EU`s nye PPP ordning.
Forsikringsordning)
Projektrealisering
Igangsætning
27. aug. 2011
Konceptvurdering
april 2012
Valg af
Teknologi & design
juli 2013
Realiseringsbeslutning
sommer 2014
Investeringsbeslutning
sommer 2015
Idriftsættelse
sommer 2017
Mobiliserings
fase 1.2
Analyse
fase
Mobiliserings-
Teknologitilpasning
Mobiliserings-
Anlægs-
Drift-
fase 1.1
Ressourceoptimering
fase 2
fase
fase
Sekundære
ressourcestrømme
Lignin- og
sukkerplatform
Rammevilkår
Perspektivering – Dansk vækstpotentiale
Politiske rammevilkår
Bæredygtighed
Iblandingskrav
Prissikring / Støtte
F&U midler
Forskning &
udvikling
Uddannelse
Forskning
Test
Demonstration
Vidensforankring
Mere biomasse
”10 mio. tons
planen”
Logistikoptimering
”Markedsplads”
Videreudvikle
bioteknologier
Nye produkter og
markeder
Biogas, Forgasning
Lignin- sukkerplatform
Anvendelsesteknologi
Afsætningsoptimering
Erstatte fossile produkter
Danmark som nettoeksportør
Produkter, systemer, viden
MEC`s bioraffinaderi
Maabjerg Bioethanol
Maabjerg BioEnergy
Måbjergværket
BRIDGE – Biobased and Renewable Industries for Development and Growth in Europe
Realising the biobased economy potential
in Europe
3 October 2013
A PUBLIC-PRIVATE PARTNERSHIP ON BIOBASED INDUSTRIES
Lars Hansen, Vice President Novozymes
Biobased Economy concept
What’s in it for Europe?
Growth
•
A global biobased market estimated at €200 billion by 2020*
Jobs
•
Create over 1 million jobs between 2010 and 2030 mainly in
rural areas**
•
Reduce dependence on imports with locally sourced and
produced goods and products***
•
BRIDGE derived biobased products can achieve an average
GHG emissions reduction potential of least 50% compared
to fossil alternatives****
Energy
and Products
Energy
security
Climate
Sources:
* McKinsey / World Economic Forum
** Bloomberg New Energy Finance
*** European Commission
**** BRIDGE 2020 Strategic Innovation and Research Agenda (SIRA)
3
Competing in the global race
US
• About $50 billion invested over
the last decade on biofuels
and biochemicals.
• In 2012, President Obama
committed to further invest
and support the development
of the bioeconomy as
“a major engine for American
innovation and economic
growth”
CHINA
• $308,5 billion investment on
science & technology with
biotechnology as a major
priority over 2011-2015
• Substitute 20% of crude oil
imports by 2020
BRAZIL
• Aims to be N°1 Global Bioeconomy
• R$ 3,3 billion support for 2nd
generation bioethanol, biochemicals
and biomass gasification
technologies
Policies can make the wheels turn
DEMAND
 Incentives for biobased products
 Public procurement
schemes
 Standards
DEMAND
SUPPLY
• Support biomass
development and
collection
SUPPLY
INVESTMENTS
INVESTMENT
 Loans / guarantees
 First-of-its-kind
commercial plants
About BRIDGE
Biobased and Renewables Industries for
Development and Growth in Europe
•
A Public-Private Partnership (PPP) between the Biobased
Industries and the EU
•
A joint commitment of €3.8 billion over 2014-2020
o €1 billion (EU)
o €2.8 billion (Biobased Industries)
•
Multi-annual funding programmes for biobased projects
•
Enabling rural development and re-industrialisation in Europe
Focus
Feedstock
• Fostering a sustainable biomass supply and building
new value chains
Biorefineries
• Optimising efficient processing through R&D and upscaling in large-scale demo/flagship biorefineries
Markets,
products and
policies
• Developing markets for biobased products and
optimising policy frameworks
Lacking EU support for demonstration
International benchmark on the share of basic, applied and development activities
100%
6%
2%
90%
80%
70%
58%
48%
60%
FP7
50%
92%
40%
30%
32%
24%
11%
0%
China
US
Applied research
Basic research/FP7
28%
20%
10%
Demonstration
EU
Source: Key Science and Engineering Indicators, National Scientific Board, 2010 Digest, NSF,
http://cordis.europa.eur/erawatch, OECD “Research & Development Statistics”
Novozymes is active across the value
chain
Biobased product value chain
Biomass
production
 Enzymatic pesticides
 Microbial yield
enhancers
 Fertility enhancers
Biomass
conversion
 Conversion of biomass
to sugars
Product
formulation
 Microbiological
conversion of sugars to
biobased products such
as bioethanol, acrylic acid
etc.
The biobased society and Denmark – a
perfect match
• One of the World’s strongest food clusters
• World leading industrial players
• Strong links to academia
• Substantial amounts of biomass available
Denmark at the forefront in the transformation to
a biobased society
Investing in new and sustainable
ways to organise our economy
Cell Factories of Tomorrow
The CFB Team
The CFB
• Vision:
– The Center will facilitate the emergence of the next generation of cell
factories. Cell factories will transform the production and manufacture
of chemical structures. The Center will lead this transformative
development
• Mission:
– To determine the range of molecules that can be produced
biologically – Basic research
– Shorten the strain design and development process – Translational
research
– Innovation through development of new technologies and transfer of
knowledge to industry for the benefit of society.
– Development of talent – the future driving force of bio-based
sustainability
3
DTU Biosustain, Technical University of Denmark
Current organisms
Escherichia coli
Fine chemicals, bulk biochemicals, drugs,
food ingredients and consumer products
Bakers yeast
In-silico
genome scale
evaluation
and design
Chinese Hamster Ovary cells
Therapeutic proteins
4
DTU Biosustain, Technical University of Denmark
Pathway
exploration
and design
Omics data
generation
Genetic
manipulation
Phenotyping
Staff prognosis for CFB
300
250
FTE's
200
Satellites
150
External funding
Adm & BD
100
DTU Sections
50
Core
0
2013 2014 2015 2016 2017
Year
9
DTU Biosustain, Technical University of Denmark
iLOOP
The organizing paradigm of the CFB
Cell factory development loop: concept
mics
cs
• Model predictions
Host
• Literature mining
• Public databases
Product
In silico design
and data analysis
Genome
engineering
Systems-level
analysis
Screening and
physiology
1
8
• Fermetation physiology
• Growth curves
• High throughput
screening data
• Host genotype
• Pathway
Adaptive Laboratory
components:
Evolution
Genes, promoters,
terminators etc
• Oligos
• Vectors
Data generated in the iLoop
• Model predictions
• Literature mining
• Public databases
In silico design
and data analysis
• Genomics
• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics
• Glycomics
Genome
engineering
Systems-level
analysis
Screening and
physiology
• Fermetation physiology
• Growth curves
• High throughput
screening data
1
9
• Host genotype
• Pathway
components:
Genes, promoters,
terminators etc
• Oligos
• Vectors
Equipment needs for the iLoop
In silico design
and data analysis
Equipment
• Sequencers
•Mass spectometers
(proteomics,
metabolomics,
glycomics,fluxomics)
Data
• Genomics
• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics
• Glycomics
2
0
Equipment
• MAGE robotics
• Cloning robotics
• Synthetic gene/
pathway
construction
Genome
engineering
Systems-level
analysis
Screening and
physiology
Equipment
• FACS and other single
cell assays
• Targeted analytical
chemistry
• Cultivation robotics
• ALE robotics
• Plate readers
• Small/medium-scale
fermentation
Data
• Fermetation physiology
• Growth curves
• HT screening data
Data
• Host genotype
• Pathway
components:
Genes, promoters,
terminators etc
• Oligos
• Vectors
Some technologies being developed
for the iLOOP
Adaptive Laboratory Evolution
(ALE)
Adam Feist
ALE Command Center
• Online Monitoring System – Accelerating
Decision Making and Troubleshooting
– Webcam
– Action Queue
– Status and Supplies
– Real time Data
3
0
Selecting for improved
production traits
Morten Sommer
Selecting for optimized cell factories
3
2
Bioinformatics & Modeling
Markus Herrgard
Genome-scale strain design workflows
3
9
BioProcess and Strain Development
3HP Production
Irina Borodina
Metabolic Engineering of Yeast
EasyClone – method for iterative chromosomal integration of mutiple genes in S. cerevisiae
5
5
3-hydroxy propionic acid production in yeast
Growth of SFA1 allele replacement strains on 3HP
0.5
µmax (h-1)
0.4
no 3HP
0.3
10 g/L 3HP
25 g/L 3HP
0.2
40 g/L 3HP
50 g/L 3HP
0.1
0
SFA1-wt
Titer
13,68±0,33 g/L
Rate
0,24±0,01 g/L/h (FB)
Yield
14±0% C-mol/C-mol gluc
5
6
SFA1-evo1
SFA1-evo2
Jensen et al (2013). ”Microbial Production of 3Hydroxypropionic Acid”. EPO patent application
Borodina et al (2012). ”Genetically Engineered Yeast”. EPO
patent application
Kildegaard et al (2013). ”3HP tolerance”. EPO patent
application
Serine production
Alex Toftgaard Nielsen
Serine Production in E. coli
Pyruvate
SerA
SerB
SerC
Glycine
Cysteine
Feed back inhibition
•
Degradation pathways eliminated
•
Resistance towards serine evolved
•
Production demonstrated during fed
batch fermentation
5
8
Hemanshu Mundhada
Melatonin production
Jiangfeng Zhu
Melatonin Pathway (From Mammalian cells)
Optimization of TPH expression with
a biosensor
5HTP production in E. coli
Identifying 5HTP degradation
pathways in E. coli
5HTP
DTU Biosustain, Technical University of Denmark
N-acetylserotonin and melatonin
production in S. cerevisiae
Flavonoid production
Jérôme Maury
specific fluorescence (a.u.)
Biosensors for flavonoid detection
50000
Single cells can
be isolated
40000
30000
20000
10000
0
Empty + sensor
62 DTU Biosustain, Technical University of Denmark
FLS + sensor
Electrosynthesis
Karsten Zengler
Efficiency 8%
Efficiency 90%
Store electrical- into chemical-energy
Truly a bio-sustainable technology
Transformative
DTU Biosustain, Technical University of Denmark
Improved Production
DTU Biosustain, Technical University of Denmark
Summary
• The CFB has been built over the past 2.5 years and should be in its full
constellation by the end of 2013
• There will be about 200 FTEs associated with it
• The CFB is focused on genome-scale approach to cell factories design
• The CFB wants to build new strain design procedure based on an iterative
model-guided procedure
• The CFB is developing a suite of innovative experimental and
computational technologies
• The CFB has picked a few model molecules to work on, but will
reexamine this selection with its new econometric unit
71
DTU Biosustain, Technical University of Denmark
Acknowledgement
The Novo Nordisk Foundation
72
DTU Biosustain, Technical University of Denmark