Future of Paper as Substrate for Printed Electronics and Sensors Martti Toivakka Laboratory of Paper Coating and Converting Center for Functional Materials Åbo Akademi University Fulton Innovation Martti Toivakka/ ISAB 2012 Paper Electronics = Printed Electronics on Paper Martti Toivakka/ ISAB 2012 Market Prediction for Printed Electronics •IDTechEx, April 19, 2012: › “…printed electronics is expected to reach $45 billion in 2022…” (2011 market size = $2.2 Billion) •electronics.ca, April 11, 2012: › “Global Market for Printed Electronics to Reach $12.6 Billion in 2016” •NanoMarkets report, 2010: › Thin film/printable batteries market to reach $5.6 Billion by 2015 IDTechEx, 2007 › Printed sensors generate $5.4 billion in revenues by 2016 Martti Toivakka/ ISAB 2012 Market Prediction for Printed Electronics …but recently also: Martti Toivakka/ ISAB 2012 Printing Electronics on Paper •Paper & printing not developed for electronics Recyclable paper for printed electronics: •Optical vs. electrical print coatings Mineral pigment and latex barrier Calendered to RMS roughness: <100 nm [Org. Electron. 10 (2009) 1020] Martti Toivakka/ ISAB 2012 Printability of Functional Inks on Paper •Printability determined by compatibility of ink – printing method – substrate •Inks (solution processable functional materials): › Conductive particulate inks, e.g. nanoparticle/micron-size silver, carbon, gold, copper… › Conductive polymer inks, e.g. PEDOT:PSS, PANI… › Semiconducting inks, e.g. P3HT, PQT… › Insulators, e.g. PVP, PMMA… •Printing / coating method: › Inkjet, flexography, rotogravure, screen printing… › Reverse gravure, spray, slot, curtain… •Substrate: Paper or board, i.e. natural fiber-based substrate Martti Toivakka/ ISAB 2012 Making Paper Compatible with Printed Electronics •We need to measure and control surface properties of the substrate: roughness, (surface) porosity, wettability, chemical activity/inertness, barrier properties, mechanical properties, dimensional stability, humidity •Surface treatment methods to improve printability: •Existing: – surface sizing – pigment coating – dispersion coating – extrusion coating – corona treatment •Novel methods: – plasma activation/coating – nanoparticle deposition – sol-gel coating – atomic layer deposition – chemical vapor deposition Martti Toivakka/ ISAB 2012 The Ink Behavior on a Substrate is Controlled by (in Addition to Ink and Printer properties): •Barrier properties (permeability) •Surface roughness Surface Rougness, RMS [nm] 300 Cut-off Length 100 µm 250 50 µm 25 µm 200 12.5 µm 150 100 50 0 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Coat Weight Top Layer •Surface energy •(Surface) porosity and pore volume Martti Toivakka/ ISAB 2012 Example Substrate Concept For Paper Electronics Topcoating (Kaolin) 0.5 - 5 µm Barrier layer (Latex) 1 - 25 µm Smoothing layer (Kaolin) Precoating (GCC) Basepaper Bollström, R., A. Määttänen, D. Tobjörk, P. Ihalainen, N. Kaihovirta, R. Österbacka, J. Peltonen, and M. Toivakka. "A multilayer coated fiber-based substrate suitable for printed functionality." Organic Electronics 10, no. 5 (2009): 1020–1023. Martti Toivakka/ ISAB 2012 Multilayer Coated Paper with Varying Topcoat Thickness K05 K1 K3 K5 Topcoat: Topcoat: Topcoat: Topcoat: Kaolin + 4 SB latex Kaolin + 4 SB latex Kaolin + 4 SB latex Kaolin + 4 SB latex 0.5 g/m2 1.0 g/m2 3.0 g/m2 5.0 g/m2 Martti Toivakka/ ISAB 2012 Measurement of Surface Porosity - Print Penetration Test Low Surface Porosity High Surface Porosity Martti Toivakka/ ISAB 2012 Print Penetration Test 15 Higher Surface Pore Volume Stain Length [cm] 14 13 12 11 10 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Coat Weight Top Layer Martti Toivakka/ ISAB 2012 Surface Pore Volume by Hg-porosimetry Surface Pore Volume [pl/cm2] 140000 120000 100000 80000 60000 40000 20000 0 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Coat Weight Top Layer Porosity x [Coat Weight] Martti Toivakka/ ISAB 2012 Print Penetration vs. Hg-porosimetry Surface Pore Volume [pl/cm2] 140000 120000 100000 80000 60000 R² = 0.9733 40000 20000 0 11 12 13 14 Stain Length [cm] Martti Toivakka/ ISAB 2012 600 30 500 25 400 20 300 15 200 10 100 5 0 0 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Resistivity [Ω/sq] Line width [µm] Flexography & Silver Ink Coat Weight Top Layer •Increasing surface smoothness •Increasing apparent surface energy •Increasing surface pore volume Martti Toivakka/ ISAB 2012 Surface Porosity Minimizes Characteristic “Squeeze” in Flexography Low surface porosity High surface porosity Martti Toivakka/ ISAB 2012 Flexography & Carbon Ink 200 Line width [µm] 480 150 460 440 100 420 50 400 380 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Resistivity [Ω/sq] 500 0 Coat Weight Top Layer •Increasing surface smoothness •Increasing apparent surface energy •Increasing surface pore volume Martti Toivakka/ ISAB 2012 Inkjet – Nanoparticle Silver Ink 90 93.6 80 Drop spacing = 20 µm Drop volume = 10 pl > 10 MΩ/sq 150 89 Ω/sq 88.4 89.5 90 80.7 70 60 50 120 60 1.3 Ω/sq 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 30 Resistivity [Ω/sq] Line width [µm] 100 > 10 MΩ/sq 0 Coat Weight Top Layer •Increasing surface smoothness? •Increasing apparent surface energy •Increasing surface pore volume Inkjet Printed PH3T in DCB Resistivity [GΩ/sq] 120 Martti Toivakka/ ISAB 2012 Doped in air 100 2 printed layers 80 60 1 printed layer 40 20 0 0.5 g/m2 1 g/m2 3 g/m2 5 g/m2 Coat Weight Top Layer •Increasing surface smoothness •Increasing apparent surface energy •Increasing surface pore volume Martti Toivakka/ ISAB 2012 Surface Pore Volume vs. Semiconductor Performance 4.0 Total printed volume 800 nl/cm² at 0.25% à 3.0 TΩ/sq P3HT volume on paper = 2 nl/cm² R² = 0.9348 3.5 2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 Pore volume [nl/cm²] à A thinner and less porous topcoat preferable R. Bollström, D. Tobjörk, P. Dolietis, P. Salminen, J. Preston, R. Österbacka and M. Toivakka, Printability of functional inks on multilayer curtain coated paper, Chemical Engineering and Processing (Submitted) Martti Toivakka/ ISAB 2012 Influence of Surface Pore Volume on Printability of Functional Inks •Printability of particulate inks improves on porous surfaces (if particles > pore size): › Less squeeze in flexography › Less spreading in inkjet › Coffee stain effect minimized •Printability of dissolved functional inks improves on low porosity surfaces: › Functionality is reduced due to penetration into the porous surface Compromise or new concepts (use other parameters) Martti Toivakka/ ISAB 2012 Roll-to-roll Production – FunPrinter à Roger Bollström: High volume printing of devices and sensors on paper Martti Toivakka/ ISAB 2012 Barr et al., Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper, Adv. Mat. 2011 Martti Toivakka/ ISAB 2012 Future of Paper Electronics •Paper as substrate for printed electronics is “different” from plastics – in “good” and “bad” •FunMat has demonstrated printed transistors and other devices on paper •Main challenges are non-existence of suitable hybrid printers, niche market position and market ”resistance” •First products will be simple sensors for biological, biomedical and chemical applications Martti Toivakka/ ISAB 2012 Recent Publications • Bollström, R., M. Tuominen, A. Määttänen, J. Peltonen, and M. Toivakka. "Top layer coatability on barrier coatings." Progress in Organic Coatings 73, no. 1 (2012): 26–32. • Bollström, R., J. J. Saarinen, J. Räty, and M. Toivakka. "Measuring solvent barrier properties of paper." Measurement Science and Technology 23 (2012): 015601. • Tobjörk, D., H. Aarnio, P. Pulkkinen, R. Bollström, A. Määttänen, P. Ihalainen, T. Mäkelä, J. Peltonen, M. Toivakka, H. Tenhu et al. "IR-sintering of ink-jet printed metal-nanoparticles on paper." Thin Solid Films 520, no. 7 (2012): 2949– 2955. • Ihalainen, P., A. Määttänen, U. Mattinen, M. Stepien, R. Bollström, M. Toivakka, J. Bobacka, and J. Peltonen. "Electrodeposition of PEDOT-Cl film on a fully printed Ag/polyaniline electrode." Thin Solid Films 519 (2011): 2172– 2175. • Saarinen, J. J., P. Ihalainen, A. Määttänen, R. Bollström, and J. Peltonen. "Printed sensor and electric field assisted wetting on a natural fibre based substrate." Nordic Pulp and Paper Research Journal 26, no. 1 (2011). • Määttänen, A., D. Fors, S. Wang, D. Valtakari, P. Ihalainen, and J. Peltonen. "Paper-based planar reaction arrays for printed diagnostics." Sensors and Actuators B: Chemical 160, no. 1 (2011): 1404–1412. • Määttänen, A., P. Ihalainen, R. Bollström, M. Toivakka, and J. Peltonen. "Wetting and print quality study of an inkjetprinted poly(3-hexylthiophene) on pigment coated papers." Colloids and Surfaces A: Physicochemical and Engineering Aspects 367, no. 1-3 (2010): 76–84. • Määttänen, A., P. Ihalainen, R. Bollström, S. Wang, M. Toivakka, and J. Peltonen. "Enhanced Surface Wetting of Pigment Coated Paper by UVC Irradiation." Industrial & Engineering Chemistry Research 49, no. 22 (2010): 11351–11356. • Pykönen, M., K. Johansson, R. Bollström, P. Fardim, and M. Toivakka. "Influence of Surface Chemical Composition on UV-Varnish Absorption into Permeable Pigment-Coated Paper." Industrial & Engineering Chemistry Research 49, no. 5 (2010): 2169–2175. • Bollström, R., A. Määttänen, D. Tobjörk, P. Ihalainen, N. Kaihovirta, R. Österbacka, J. Peltonen, and M. Toivakka. "A multilayer coated fiber-based substrate suitable for printed functionality." Organic Electronics 10, no. 5 (2009): 1020– 1023. http://www.funmat.fi/ Martti Toivakka/ ISAB 2012
© Copyright 2024