Greener Pathways to Organics and Nanomaterials: Sustainable Applications of Magnetic Nano-Catalysts

Greener Pathways to Organics and Nanomaterials:
Sustainable Applications of Magnetic Nano-Catalysts
Rajender S. Varma
Cincinnati, Ohio, USA; E-mail: [email protected]
Sustainable synthetic activity involving alternate energy input, and greener reaction medium in
aqueous or solvent-free conditions will be summarized for heterocyclic compounds, cross coupling
1
reactions, and a variety of named organic reactions; these reactions are catalyzed by basic water or
2
recyclable and reusable magnetic nano-catalysts in aqueous media using microwave (MW) irradiation.
Vitamins B1, B2, C, and tea or coffee, beet juice and wine polyphenols which function both as
reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk
3
quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via MW3b
assisted spontaneous reduction of noble metal salts using sugars will be presented. MW cross-linking
3c
reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems, and SWNT, MWNT, and
3d
C-60 and the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble
3e,f
nanometals; and the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol)
3g
4
will be described. MW hydrothermal process delivers magnetic nanoferrites and micro-pine structured
5
catalysts are obtainable in water from readily available metal salts. Sustainable route to nanoparticles
6a
6b,c
using polyphenols from winery waste, or biodiesel byproduct, glycerol
and their applications in
7,8
9
10
catalysis, toxicity and environmental remediation will be highlighted.The approach attempts to fulfill
most of the Green Chemistry Principles in a comprehensive manner and aims to create sustainable
functional chemicals that may find diverse applications with extreme level of waste minimization.
References:
1. Varma, R.S. Green Chem. 2014, 16, 2027-2041; Gawande, M.; Bonifacio, V. D.; Branco, P.; Luque, R.; Varma, R. S.
ChemSusChem, 2014, 7, 24-44; Nasir Baig, R. B.; Varma, R. S. Chem. Soc. Rev. 2012, 41, 1559; Polshettiwar, V.; Varma, R. S.
Acc. Chem. Res. 2008, 41, 629; Polshettiwar, V.; Varma, R. S. Chem. Soc. Rev. 2008, 37, 1546; Varma, R. S. Tetrahedron
2002, 58, 1235; Varma, R. S. Green Chem. 1999, 1, 43.
2. Nasir Baig, R. B.; Varma, R. S. Chem Commun. 2012, 48, 2582; Polshettiwar, V.; Varma, R. S. J. Org. Chem. 2007, 72, 7420;
Ju, Y.; R. S. Varma, J. Org. Chem. 2006, 71, 135; Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Acc. Chem. Res.
2014, 47, 1338.
3. (a) Nadagouda, M. N.; Varma, R. S. Green Chem. 2008, 10, 859; (b) Nadagouda, M. N.; Varma, R. S. Cryst. Growth Des. 2007,
7, 686; (c) Nadagouda, M. N.; Varma, R. S. Macro. Rapid Commun. 2007, 28, 465; (d) Nadagouda, M. N.; Varma, R. S. Macro.
Rapid Commun. 2007, 28, 842; (e) Biomacromolecules 2007, 8, 2762; (f) Macro. Rapid Commun. 2008, 29, 155; (g) Cryst.
Growth Des. 2008, 8, 291; Nadagouda, M. N.; Speth, T.; Varma, R. S. Acc. Chem. Res. 2011, 44, 469; (h) Hebbalalu, D.; Lalley,
J.; Nadagouda, M. N.; Varma, R. S. ACS Sustain. Chem. Eng., 2013, 1, 703; (i) Nadagouda, M. N.; Iyanna, N.; Lalley, J.; Han,
C.; Dionysiou, D.; Varma, R. S. ACS Sustain. Chem. Eng., 2014, 2, 1717.
4. Baruwati, B.; Nadagouda, M. N.; Varma, R. S. J. Phys. Chem. C. 2008, 112, 18399.
5. Polshettiwar, V.; Nadagouda, M. N.; Varma, R. S. Chem. Commun. 2008, 6318; Polshettiwar, V.; Baruwati, B.; Varma, R. S.
ACS Nano 2009, 3, 728.
6. (a) Baruwati, B.; Varma, R. S. ChemSusChem 2006, 2, 1041; (b) Kou, J.; Varma, R. S. Chem. Commun. 2013, 49, 692; (c) Kou,
J.; Varma, R. S. ACS Sustain. Chem. Eng., 2013, 1, 810.
7. Polshettiwar, V.; Varma, R. S. Chem.: Europ. J. 2009, 15, 1582; Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 1540.
8. Polshettiwar, V.; Baruwati, B.; Varma, R. S. Green Chem. 2009, 11, 127; Chem. Commun. 2009, 1837; Polshettiwar, V.; Varma,
R. S. Tetrahedron 2010, 66, 1091; Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743; Smuleac, V.; Varma, R. S.;
Baruwati, B.; Sikdar, S.; Bhattacharyya, D. ChemSusChem 2011, 4, 1773; Saha, A.; Leazer, J.; Varma, R. S. Green Chem.
2012, 14, 67; Nasir Baig, R. B.; Varma, R. S. Green Chem. 2012, 14, 625; Chem. Commun. 2012, 48, 2582; Chem. Commun.
2012, 48, 6220; Vaddula, B.R.; Saha, A.; Leazer, J.; Varma, R. S. Green Chem. 2012, 14, 2133; Nasir Baig, R. B.; Varma, R. S.
Chem. Commun. 2013, 49, 692; Gawande,M.; Branco, P.; Varma, R.S. Chem. Soc. Rev. 2013, 42, 3317; Nasir Baig, R. B.;
Varma, R. S. ACS Sustain. Chem. Eng., 2014, 2, 2155; Nasir Baig, R. B.; Nadagouda, M. N; Varma, R. S. Green Chem. 2014,
16, 4333; Hudson, R.; Feng, Y.; Varma, R. S.; Moores, A. Green Chem., 16, 4493 (2014).
9. Nadagouda, M. N.; Castle, A.; Murdock, R.; Hussain, S. M.; Varma, R. S. Green Chem. 2010, 12, 114; Moulton, M.; BraydichStolle, L.; Nadagouda, M. N.; Kunzelman, S.; Hussain, S. M.; Varma, R. S. Nanoscale 2010, 2, 763; Markova, Z.; Novak, P.;
Kaslik, J.; Plachtova, P.; Brazdova, M.; Jancula, D.; Siskova, K.M.; Machala, L.; Marsalek, B.; Zboril, R.; Varma, R.S. ACS
Sustain. Chem. & Eng., 2014, 2, 1674.
10. Hoag, G. E.; Collins, J. B.; Holcomb, J.; Hoag, J.; Nadagouda, M. N.; Varma, R. S. J. Mater. Chem. 2009, 19, 8671; Virkutyte, J.;
Baruwati, B.; Varma, R. S. Nanoscale 2010, 2, 1109; Virkutyte, J.; Varma, R. S. RSC Adv. 2012, 2, 1533; Virkutyte, J.; Varma,
R. S. RSC Adv. 2012, 2, 2399; Virkutyte, J.; Varma, R. S. RSC Adv. 2012, 2, 3416; Virkutyte, J.; Jegatheesan, V.; Varma, R. S.
Bioresource Tech. 2012, 113, 288; Pelaez, M.; Baruwati, B.; Varma, R. S.; Luque, R.; Dionysiou, D.D. Chem. Commun., 2013,
49, 10118; Virkutyte, J; Varma, R.S.: ACS Sustain. Chem. & Eng., 2014, 2, 1545.
About DR. RAJENDER (RAJ) S. VARMA
H-Index: 78
Senior Scientist, Sustainable Technology Division, National Risk Management
Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther
King Drive, MS 443, Cincinnati, OH 45268, USA;
E-mail: [email protected]
URL’s: http://www.epa.gov/nrmrl/std/organic_reactions.html
http://www.epa.gov/nrmrl/std/green_chem_nano.html
Formerly: Chemistry Research Professor, Sam Houston State University, Texas, USA
–Project Manager, Texas Research Institute for Environmental Studies (TRIES), Texas
–Senior Scientist, Houston Advanced Research Center, The Woodlands, Texas, USA
EDUCATION: -B.Sc., 1970, Panjab University, India.
-M.Sc., 1972, Kurukshetra University, India.
-Ph.D., 1976, Delhi University, India, Natural Products Chemistry;
Diploma, Pulp & Paper Technology, 1977, Norwegian Institute Technology, Norway.
Postdoctoral Fellow-Robert Robinson Laboratories, University of Liverpool, England.
PATENTS AND PUBLICATIONS: -14 US Patents awarded some others pending.
~400 peer-reviewed papers, 6 books, 26 book chapters & 2 encyclopedia contributions.
AREAS OF EXPERTISE: Development of Environmentally Benign Synthetic Methods
and Chemical Protocols, Greener Synthesis of Nanomaterials and Nanocomposites and
their Applications in Nano-catalysis (magnetically retrievable nano-catalysts) and
Sustainable Remediation of Hazardous Pollutants [e.g. contaminated sites and streams
using nanoscale iron, mercury capture from coal-fired power plants, removal of sulfur
(deep desulfurization) from diesel oil etc.], Natural Products; Synthetic Organic
Chemistry, Methods for Immobilization of Biomolecules on Support Surfaces; Design &
Synthesis of Chemopreventive anti-cancer Agents.
ABOUT RESEARCH: Over 40 years of research experience in management of multidisciplinary technical programs. Extensively involved in broader aspects of chemistry
that includes development of eco-friendly synthetic methods using alternate energy
input (microwave, ultrasound & mechanochemical). Long term goals are to contribute
broad expertise in chemistry to evaluate novel and safer environmental protocols in
industrial chemistry and its impact in human health and environmental sciences. Mentor
for high school, college and university students.