ENERGIAN VARASTOINTI Jukka Lassila, LUT Roadmap 2025 -hankkeen Teknologia-työpaja 11.6.2015 Energy Storages Generation vs. demand MW Wind and solar (PV) in northern Germany in 12/2012 http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages The future role and challenges of Energy Storage EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR ENERGY Energy storage will play a key role in enabling the EU to develop a lowcarbon electricity system. Energy storage can supply more flexibility and balancing to the grid, providing a back-up to intermittent renewable energy. Locally, it can improve the management of distribution networks, reducing costs and improving efficiency. In this way, it can ease the market introduction of renewables, accelerate the decarbonisation of the electricity grid, improve the security and efficiency of electricity transmission and distribution (reduce unplanned loop flows, grid congestion, voltage and frequency variations), stabilise market prices for electricity, while also ensuring a higher security of energy supply. Currently, there is limited storage in the EU energy system (around 5% of total installed capacity) almost exclusively from pumped hydro-storage, mainly in mountainous areas (Alps, Pyrenees, Scottish Highlands, Ardennes, Carpathians). Other forms of storage – batteries, electric cars, flywheels, hydrogen, chemical storage - are either minimal, or at a very early stage of development. http://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf Energy Storages The future role and challenges of Energy Storage EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR ENERGY 1. 2. 3. 4. 5. 6. 7. What is the role of energy storage in today's and tomorrow's energy system? Why is storage becoming more important for energy policy? At which level of electricity networks should storage be integrated? What is the state of play for main storage technologies? What are the barriers to further development and deployment? Why is this an important issue for the EU? How could the regulatory framework be adjusted to integrate storage better in the supply chain? 8. What can the EU do to enable the short and medium term development and deployment of storage at all levels? http://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf Energy Storages The future role of Energy Storage Energy storage technologies can help to better integrate our electricity and heat systems and can play a crucial role in energy system decarbonisation by: − improving energy system resource use efficiency − helping to integrate higher levels of variable renewable resources and end-use sector electrification − supporting greater production of energy where it is consumed − increasing energy access − improving electricity grid stability, flexibility, reliability and resilience. Source: IEA Technology Roadmap, Energy storage, 2014 Energy Storages IEA, Energy Storage Key findings − Energy storage technologies include a large set of centralised and distributed designs that are capable of supplying an array of services to the energy system. Storage is one of a number of key technologies that can support decarbonisation. − Energy storage technologies are valuable in most energy systems, with or without high levels of variable renewable generation − Individual storage technologies often have the ability to supply multiple energy and power services − To support electricity sector decarbonisation, an estimated 310 GW of additional grid-connected electricity storage capacity would be needed in the United States, Europe, China and India. − Market design is key to accelerating deployment − Public investment in energy storage research and development has led to significant cost reductions − Thermal energy storage systems appear well-positioned to reduce the amount of heat that is currently wasted in the energy system Source: IEA Technology Roadmap, Energy storage, 2014 Energy Storages IEA, Energy Storage Key actions for the next ten years − Determine cost effective niche markets and support deployment Incentivise the retrofit of existing storage facilities to improve efficiency and flexibility. − Develop marketplaces and regulatory environments − Support targeted demonstration projects for more mature, but not yet widely deployed, energy storage technologies to document system performance and safety ratings − Support investments in research and development for early stage energy storage technologies − Establish a comprehensive set of international standards in a manner that allows for incremental revisions as energy storage technologies mature − Evaluate and broadly disseminate the learning and experience from established installations − Establish international and national data co-operation to foster research, monitor progress and assess the research and development (R&D) bottlenecks Source: IEA Technology Roadmap, Energy storage, 2014 Energy Storages IEA, Energy Storage Key actions for the next years Distributed battery storage for renewables integration, frequency regulation Source: IEA Technology Roadmap, Energy storage, 2014 Energy Storages Energiavarastot ja niiden hyödyntäminen − Millä aikavälillä on tulossa? Minkälaiset ominaisuudet? − Liiketoimintamalli, mahdollisuudet mm. − Huipputehon leikkauksessa (verkkoyhtiö, asiakas) − Keskeytysten hallinnassa (verkkoyhtiö, asiakas) − Uusiutuvan energian tuotannon tasapainottamisessa sekä järjestelmä- että loppukäyttäjätasolla (asiakas, sähköntuottaja) − Taajuussäädössä − Tasehallinnassa (myyjä) − Nykyisellään energiavaraston omistaminen verkkoyhtiön toimesta kiellettyä − Tarve muutokselle mahdollisuus omistamiseen ja operointiin − Haasteena tasehallinta; Kenen energiaa siirretään missäkin vaiheessa − Verkkoyhtiön tekemät ohjaukset aiheuttavat tasevirhettä myyjän taseeseen Energy Storages Energiavarastojen rooli, toimenpide-ehdotus; sähköverkkoyhtiöt Verkkoyhtiöillä on oltava mahdollisuus käyttää energiavarastoja osana verkkotoimintaa ja energiavarastot hyväksytään verkkotoimintaan sitoutuneeksi pääomaksi, koska varastolla voidaan edistää sekä toimitusvarmuutta että verkon kapasiteetin tehokasta käyttöä. Siten verkkotoiminnassa käytettävä energiavarasto on rinnastettava verkostokomponenttiin, ei tuotantolaitokseen. Verkkoyhtiön varaston käyttö tulee kuitenkin rajoittaa ainoastaan verkkotoimintaan liittyviin tarpeisiin, kuten huipputehon leikkaus, häviöiden optimointi ja toimitusvarmuuden parantaminen. Verkkoyhtiö ei saa käyttää varastoja sähkökauppaan. Vastuutahona tässä toimenpiteessä ovat TEM sekä Energiavirasto. Toimenpide voidaan toteuttaa lähes välittömästi. Raporttiluonnos: Selvitys sähkö- ja kaasuninfrastruktuurin energiatehokkuuden parantamismahdollisuuksista, LUT, 2015 Energy Storages Energy Storage economics http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Akkujen hintakehitysarvio, oppimiskäyrä; -20 % per kapasiteetin tuplaus 1 000 000 MWh on 500 milj. 20 kWh akkua a’ 2000 € Prices of Li-Ion H1 2014 - $270 kWh H1 2014 - $270 kWh: LEAF battery pack Energy Storages Prices of Li-Ion Energy Storages Li-ion, prices… http://www.autoblog.com/2013/11/08/li-ion-battery-prices-headed--down-180-kwh/ 10 kWh Backup Power is for High Power/Energy application and cells are similar to the ones used in car (Nickel Cobalt Aluninum) : 60-70 cycles / year for 1000-1500 cycles 7 kWh Daily Cycling: Nickel Manganese Cobalt : 255 cycles / year for 15 years / 5000 cycles " http://www.myelifenow.com/2015/05/elon-musk-jb-straubel-give-more-details.html Energy Storages Main electricity storage technologies http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Electricity storage technology maturity http://www.sbc.slb.com/SBCInstitute/ Publications/ElectricityStorage.aspx Source: IEA Roadmap targets Energy Storages Electricity storage operational applications http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Storage applications; duration and location http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Electricity storage application and technology Discharge time vs. power requirements/ratings http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Power requirement versus discharge duration for some applications in today’s energy system Source: IEA Technology Roadmap, Energy storage, 2014 Energy Storages Current global installed grid-connected electricity storage capacity (MW) Pumped Storage Hydropower (PSH) Energy Storages Worldwide storage capacity http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Global Energy Storage Database http://www.energystorageexchange.org/projects Energy Storages Main actors of electricity storage http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Main technical features http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies pros and cons http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Global Energy Storage Database http://www.energystorageexchange.org/projects 1236 Projects, 184 529 Megawatts Energy Storages Global Energy Storage Database Global statistics http://www.energystorageexchange.org/projects Energy Storages Global Energy Storage Database http://www.energystorageexchange.org/projects Energy Storages Technologies: Pumped hydro http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Compressed air (CAES) Huntorf, Germany: power output of 290 MW, two caverns of 150,000 m3 for production over 4 hours. The power rating of the charging rate is 60 MW (i.e. it takes 12 hours to charge). http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Flywheels Stephentown, New York US: 20 MW plant with 200 flywheels providing frequency regulation with 4 second response time, storing 5 MWh over 15 minutes with a 85% round-trip efficiency. http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Batteries http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Batteries http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Sodium-sulfur batteries (NaS) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Lithium-ion batteries (Li-ion) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Vanadium redox flow (VRB) batteries http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Supercapasitors http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Superconducting magnetic energy storage (SMES) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Molten salts energy storage (MSES) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Hydrogen energy storage http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Hydrogen energy storage http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Synthetic natural gas (SNG) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Energy Storages Technologies: Synthetic natural gas (SNG) http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx Jukka Lassila Lappeenranta University of Technology [email protected] +358 50 537 3636 Lappeenranta University of Technology (LUT)
© Copyright 2024