Energy Storages

ENERGIAN VARASTOINTI
Jukka Lassila, LUT
Roadmap 2025 -hankkeen Teknologia-työpaja 11.6.2015
Energy Storages
Generation vs. demand
MW
Wind and solar (PV) in northern Germany in 12/2012
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
The future role and challenges
of Energy Storage
EUROPEAN COMMISSION
DIRECTORATE-GENERAL FOR ENERGY
Energy storage will play a key role in enabling the EU to develop a lowcarbon electricity system. Energy storage can supply more flexibility and
balancing to the grid, providing a back-up to intermittent renewable energy.
Locally, it can improve the management of distribution networks, reducing
costs and improving efficiency. In this way, it can ease the market
introduction of renewables, accelerate the decarbonisation of the electricity
grid, improve the security and efficiency of electricity transmission and
distribution (reduce unplanned loop flows, grid congestion, voltage and frequency
variations), stabilise market prices for electricity, while also ensuring a higher
security of energy supply.
Currently, there is limited storage in the EU energy system (around 5% of total installed
capacity) almost exclusively from pumped hydro-storage, mainly in mountainous areas (Alps,
Pyrenees, Scottish Highlands, Ardennes, Carpathians). Other forms of storage – batteries,
electric cars, flywheels, hydrogen, chemical storage - are either minimal, or at a very early
stage of development.
http://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf
Energy Storages
The future role and challenges
of Energy Storage
EUROPEAN COMMISSION
DIRECTORATE-GENERAL FOR ENERGY
1.
2.
3.
4.
5.
6.
7.
What is the role of energy storage in today's and tomorrow's energy system?
Why is storage becoming more important for energy policy?
At which level of electricity networks should storage be integrated?
What is the state of play for main storage technologies?
What are the barriers to further development and deployment?
Why is this an important issue for the EU?
How could the regulatory framework be adjusted to integrate storage better
in the supply chain?
8. What can the EU do to enable the short and medium term development and
deployment of storage at all levels?
http://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf
Energy Storages
The future role of Energy Storage
Energy storage technologies can help to better integrate our electricity and heat
systems and can play a crucial role in energy system decarbonisation by:
− improving energy system resource use efficiency
− helping to integrate higher levels of variable renewable resources and
end-use sector electrification
− supporting greater production of energy where it is consumed
− increasing energy access
− improving electricity grid stability, flexibility, reliability and resilience.
Source: IEA Technology Roadmap, Energy storage, 2014
Energy Storages
IEA, Energy Storage
Key findings
− Energy storage technologies include a large set of centralised and
distributed designs that are capable of supplying an array of services to
the energy system. Storage is one of a number of key technologies that
can support decarbonisation.
− Energy storage technologies are valuable in most energy systems, with
or without high levels of variable renewable generation
− Individual storage technologies often have the ability to supply multiple
energy and power services
− To support electricity sector decarbonisation, an estimated 310 GW of
additional grid-connected electricity storage capacity would be
needed in the United States, Europe, China and India.
− Market design is key to accelerating deployment
− Public investment in energy storage research and development has led to
significant cost reductions
− Thermal energy storage systems appear well-positioned to reduce the
amount of heat that is currently wasted in the energy system
Source: IEA Technology Roadmap, Energy storage, 2014
Energy Storages
IEA, Energy Storage
Key actions for the next ten years
− Determine cost effective niche markets and support deployment
Incentivise the retrofit of existing storage facilities to improve efficiency
and flexibility.
− Develop marketplaces and regulatory environments
− Support targeted demonstration projects for more mature, but not yet
widely deployed, energy storage technologies to document system
performance and safety ratings
− Support investments in research and development for early stage
energy storage technologies
− Establish a comprehensive set of international standards in a manner
that allows for incremental revisions as energy storage technologies mature
− Evaluate and broadly disseminate the learning and experience from
established installations
− Establish international and national data co-operation to foster research,
monitor progress and assess the research and development (R&D)
bottlenecks
Source: IEA Technology Roadmap, Energy storage, 2014
Energy Storages
IEA, Energy Storage
Key actions for the next years
Distributed battery storage for renewables integration, frequency regulation
Source: IEA Technology Roadmap, Energy storage, 2014
Energy Storages
Energiavarastot ja niiden
hyödyntäminen
− Millä aikavälillä on tulossa? Minkälaiset ominaisuudet?
− Liiketoimintamalli, mahdollisuudet mm.
− Huipputehon leikkauksessa (verkkoyhtiö, asiakas)
− Keskeytysten hallinnassa (verkkoyhtiö, asiakas)
− Uusiutuvan energian tuotannon tasapainottamisessa sekä järjestelmä- että
loppukäyttäjätasolla (asiakas, sähköntuottaja)
− Taajuussäädössä
− Tasehallinnassa (myyjä)
− Nykyisellään energiavaraston omistaminen verkkoyhtiön toimesta kiellettyä
− Tarve muutokselle  mahdollisuus omistamiseen ja operointiin
− Haasteena tasehallinta; Kenen energiaa siirretään missäkin vaiheessa
− Verkkoyhtiön tekemät ohjaukset aiheuttavat tasevirhettä myyjän taseeseen
Energy Storages
Energiavarastojen rooli, toimenpide-ehdotus;
sähköverkkoyhtiöt
Verkkoyhtiöillä on oltava mahdollisuus käyttää energiavarastoja
osana verkkotoimintaa ja energiavarastot hyväksytään
verkkotoimintaan sitoutuneeksi pääomaksi, koska varastolla voidaan
edistää sekä toimitusvarmuutta että verkon kapasiteetin tehokasta
käyttöä. Siten verkkotoiminnassa käytettävä energiavarasto on
rinnastettava verkostokomponenttiin, ei tuotantolaitokseen.
Verkkoyhtiön varaston käyttö tulee kuitenkin rajoittaa ainoastaan
verkkotoimintaan liittyviin tarpeisiin, kuten huipputehon leikkaus,
häviöiden optimointi ja toimitusvarmuuden parantaminen.
Verkkoyhtiö ei saa käyttää varastoja sähkökauppaan. Vastuutahona
tässä toimenpiteessä ovat TEM sekä Energiavirasto. Toimenpide
voidaan toteuttaa lähes välittömästi.
Raporttiluonnos: Selvitys sähkö- ja kaasuninfrastruktuurin energiatehokkuuden parantamismahdollisuuksista, LUT, 2015
Energy Storages
Energy Storage economics
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Akkujen hintakehitysarvio, oppimiskäyrä;
-20 % per kapasiteetin tuplaus
1 000 000 MWh on 500 milj. 20 kWh akkua a’ 2000 €
Prices of Li-Ion
H1 2014 - $270 kWh
H1 2014 - $270 kWh: LEAF battery pack
Energy Storages
Prices of Li-Ion
Energy Storages
Li-ion, prices…
http://www.autoblog.com/2013/11/08/li-ion-battery-prices-headed--down-180-kwh/
10 kWh Backup Power is for High Power/Energy application and cells are similar to the ones
used in car (Nickel Cobalt Aluninum) : 60-70 cycles / year for 1000-1500 cycles
7 kWh Daily Cycling: Nickel Manganese Cobalt : 255 cycles / year for 15 years / 5000 cycles "
http://www.myelifenow.com/2015/05/elon-musk-jb-straubel-give-more-details.html
Energy Storages
Main electricity storage technologies
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Electricity storage technology maturity
http://www.sbc.slb.com/SBCInstitute/
Publications/ElectricityStorage.aspx
Source: IEA Roadmap targets
Energy Storages
Electricity storage operational applications
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Storage applications; duration and location
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Electricity storage application and technology
Discharge time vs. power requirements/ratings
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Power requirement versus discharge duration
for some applications in today’s energy system
Source: IEA Technology Roadmap, Energy storage, 2014
Energy Storages
Current global installed grid-connected electricity
storage capacity (MW)
Pumped Storage Hydropower (PSH)
Energy Storages
Worldwide storage capacity
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Global Energy Storage Database
http://www.energystorageexchange.org/projects
Energy Storages
Main actors of electricity storage
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Main technical features
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies pros and cons
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Global Energy Storage Database
http://www.energystorageexchange.org/projects
1236 Projects, 184 529 Megawatts
Energy Storages
Global Energy Storage Database
Global statistics
http://www.energystorageexchange.org/projects
Energy Storages
Global Energy Storage Database
http://www.energystorageexchange.org/projects
Energy Storages
Technologies: Pumped hydro
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Compressed air (CAES)
Huntorf, Germany: power output of 290 MW, two
caverns of 150,000 m3 for production over 4 hours.
The power rating of the charging rate is 60 MW (i.e. it
takes 12 hours to charge).
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Flywheels
Stephentown, New York US: 20 MW plant with 200 flywheels
providing frequency regulation with 4 second response time, storing
5 MWh over 15 minutes with a 85% round-trip efficiency.
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Batteries
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Batteries
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Sodium-sulfur batteries (NaS)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Lithium-ion batteries (Li-ion)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Vanadium redox flow (VRB) batteries
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Supercapasitors
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Superconducting
magnetic energy storage (SMES)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Molten salts
energy storage (MSES)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Hydrogen energy storage
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Hydrogen energy storage
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Synthetic natural gas (SNG)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Energy Storages
Technologies: Synthetic natural gas (SNG)
http://www.sbc.slb.com/SBCInstitute/Publications/ElectricityStorage.aspx
Jukka Lassila
Lappeenranta University of Technology
[email protected]
+358 50 537 3636
Lappeenranta University of Technology (LUT)