Dr. Ali M. Eltamaly King Saud University 1 Dr. Ali M. Eltamaly, King Saud University Chapter 1 Introduction 1.1. Definition of Power Electronics Power electronics refers to control and conversion of electrical power by power semiconductor devices wherein these devices operate as switches Electronic power converter •Rectifier converting an AC voltage to a DC voltage, •Inverter converting a DC voltage to an AC voltage, •Chopper or a switch-mode power supply that converts a DC voltage to another DC voltage, and •Cycloconverter and cycloinverter converting an AC voltage to another AC voltage. Dr. Ali M. Eltamaly, King Saud University 1.2 Rectification uncontrolled and controlled rectifiers DC-To-AC Conversion •Emergency lighting systems, •AC variable speed drives, •Uninterrupted power supplies, and, •Frequency converters. DC-to-DC Conversion •Step-down switch-mode power supply, •Step-up chopper, •Fly-back converter, and , •Resonant converter. typical applications •DC drive, •Battery charger, and, •DC power supply. Dr. Ali M. Eltamaly, King Saud University 1.5 AC-TO-AC Conversion cycloconverter or a Matrix converter converts Adjustable Speed Drives (ASD) Dr. Ali M. Eltamaly, King Saud University Diode Circuits or Uncontrolled Rectifier Rectification: The process of converting the alternating voltages and currents to direct currents Dr. Ali M. Eltamaly, King Saud University The main disadvantages of half wave rectifier are: • High ripple factor, • Low rectification efficiency, • Low transformer utilization factor, and, • DC saturation of transformer secondary winding. Dr. Ali M. Eltamaly, King Saud University Performance Parameters Pdc / Pac Vac 2 Vrms rectification effeciency 2 Vdc FF Vrms /Vdc form factor ripple factor Vac RF Vdc 2 Vrms 2 Vdc Vdc 2 Vrms 2 Vdc 1 FF 2 1 Dr. Ali M. Eltamaly, King Saud University THDi THD v I S2 I S21 2 I S1 VS2 VS21 VS21 I S2 2 I S1 VS2 VS21 1 1 VS I S1 cos 1 I S1 P PF cos 1 VS I S VS I S IS Distortion Factor * Displacement Faactor Dr. Ali M. Eltamaly, King Saud University Single-phase half-wave diode rectifier with resistive load. Dr. Ali M. Eltamaly, King Saud University Vdc Vm 1 Vm sin t dt 2 0 Vrms Vm 1 2 2 Vm sin t dt 2 0 2 the load and diode currents I dc Vdc Vm R R I rms Vrms Vm R 2R IS ID Dr. Ali M. Eltamaly, King Saud University Vm 2R Example 1: The rectifier shown in Fig.2.1 has a pure resistive load of R Determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of diode D1. Vdc V V 1 Vm sin(t ) dt m ( cos cos(0)) m 2 2 I dc 0 Vrms V 1 (Vm sin t ) 2 m 2 2 I rms Vdc Vm R R Vm 2R 0 Vm Pdc V *I dc dc Pac Vrms * I rms Vrms FF Vdc RF Vm R 40.53% Vm Vm * 2 2R * Vm 2 1.57 Vm 2 Vac FF 2 1 1.57 2 1 1.211 Vdc (d) It is clear from Fig2.2 that the PIV is Dr. Ali M. Eltamaly, King Saud University Vm Half Wave Diode Rectifier With R-L Load Fig.2.3 Half Wave Diode Rectifier With R-L Load Dr. Ali M. Eltamaly, King Saud University di L R * i Vm sin (t ), 0 t dt Divide the above equation by L we get: di R V * i m sin (t ), 0 t dt L L i (t ) e R dt L R t i (t ) e L i (t ) e R dt V L * m sin t dt A R t L e Vm R w L 2 2 2 L Vm * sin t dt A L R sin t L cos t R t Ae L Dr. Ali M. Eltamaly, King Saud University Z R j wL R Z cos Z 2 R 2 w2 L2 L Z sin tan V i (t ) m cos sin t sin cos t Z Vm i (t ) sin t Z Z L wL R R t Ae L R R t Ae L R t L Vm i (t ) sin t Ae Z Vm A sin i0 0 Z Vm sin t Ae Z t tan t V i (t ) m sin t sin e tan Z Dr. Ali M. Eltamaly, King Saud University t Vm i (t ) sint sin e tan Z Vm tan i( ) sin sin e 0 Z Vdc Vm Vm * sin t dt * (1 cos ) 2 0 2 Vrms 1 Vm 2 * (Vm sin t ) dwt * 0.5(1 sin( 2 ) 2 0 2 Dr. Ali M. Eltamaly, King Saud University Vdc Vm Vm * sin t dt * (1 cos ) 2 0 2 Vrms 1 Vm 2 * (Vm sin t ) dwt * 0.5(1 sin( 2 ) 2 0 2 Dr. Ali M. Eltamaly, King Saud University Half wave diode rectifier with free wheeling diode Dr. Ali M. Eltamaly, King Saud University t V i (t ) m sin t sin e tan Z L di R* i 0 dt i (t ) B e i ( ) t tan 0 t for t 2 i ( ) B Vm (sin sin e Z tan )B t Vm tan tan i (t ) sin sin e e Z t 2 Dr. Ali M. Eltamaly, King Saud University Example 2 A diode circuit shown in Fig.2.3 with R=10 , L=20mH, and VS=220 2 sin314t. (a) Determine the expression for the current though the load in the period 0 t 2 and determine the conduction angle . (b) If we connect free wheeling diode through the load as shown in Fig.2.5 Determine the expression for the current though the load in the period of 0 t 3 . Solution: (a) For the period of 0 t , the expression of the load current can be obtained from (2.24) as following: 3 1 L 1 314 * 20 *10 tan tan 0.561 rad . and tan 0.628343 R 10 Z R 2 (L) 2 10 2 (314 * 20 *10 3 ) 2 11.8084 t V i (t ) m sin t sin e tan Z 220 2 sin t 0.561 0.532 * e 1.5915 t 11.8084 i (t ) 26.3479 sint 0.561 14.0171* e 1.5915 t Dr. Ali M. Eltamaly, King Saud University The value of can be obtained from the above equation by substituting for i ( ) 0 . Then, 0 26.3479 sin 0.561 14.0171 * e 1.5915 By using the numerical analysis we can get the value of . The simplest method is by using the simple iteration technique by assuming 26.3479 sin 0.561 14.0171 * e 1.5915 and substitute different values for in the region 2 till we get the minimum value of then the corresponding value of is the required value. The narrow intervals mean an accurate values of . The following table shows the relation between and : 1.1 1.12 1.14 1.16 1.18 1.2 6.49518 4.87278 3.23186 1.57885 -0.079808 -1.73761 It is clear from the above table that 1.18 rad. The current in wt 2 will be zero due to the diode will block the negative current to flow. Dr. Ali M. Eltamaly, King Saud University (b) In case of free-wheeling diode as shown in Fig.2.5, we have to divide the operation of this circuit into three parts. The first one when 0 t (D1 “ON”, D2 “OFF”), the second case when t 2 (D1 “OFF” and D2 “ON”) and the last one when 2 t 3 (D1 “ON”, D2 “OFF”). In the first part ( 0 t ) the expression for the load current can be obtained as In case (a). Then: for 0 t i ( wt ) 26.3479 sin t 0.561 14.0171* e 1.5915 wt the current at t is starting value for the current in the next part. Then i ( ) 26.3479 sin 0.561 14.0171 * e 1.5915 14.1124 A In the second part t 2 , the expression for the load current can be obtained from (2.30) as following: t tan i (t ) B e where B i ( ) 14.1124 A Then i (t ) 14.1124 e 1.5915t for ( t 2 ) The current at t 2 is starting value for the current in the next part. Then i (2 ) 0.095103 A In the last part ( 2 t 3 ) the expression for the load current can be obtained from (2.36): i (t ) Vm V sin t 2 i 2 m sin e Z Z t 2 tan i (t ) 26.3479 sin t 6.8442 0.095103 26.3479 * 0.532e 1.5915t 2 i (t ) 26.3479 sin t 6.8442 14.1131e 1.5915t 2 for ( 2 t 3 ) Dr. Ali M. Eltamaly, King Saud University Single-Phase Full-Wave Diode Rectifier Center-Tap Diode Rectifier Dr. Ali M. Eltamaly, King Saud University Vdc 1 Vrms Vm sin t dt 0 1 Vm sin t 2 0 Vm dt 2 PIV of each diode = IS ID 2 Vm I dc 2 Vm R I rms Vm 2 R 2Vm Vm 2R Example 3. The rectifier in Fig.2.8 has a purely resistive load of R Determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) TUF (e) Peak inverse voltage (PIV) of diode D1 and(f) Crest factor of transformer secondary current. Dr. Ali M. Eltamaly, King Saud University 2 Vm 2 Vm * R 81.05% Vm Vm * 2 2R Pdc Vdc * I dc Pac Vrms * I rms Vrms FF Vdc Vm 2 1.11 2 Vm 2 2 Vac 2 2 RF FF 1 1.11 1 0.483 Vdc The PIV is 2Vm Dr. Ali M. Eltamaly, King Saud University Center-Tap Diode Rectifier With R-L Load Dr. Ali M. Eltamaly, King Saud University Dr. Ali M. Eltamaly, King Saud University di L R * i Vm sin(t ) dt t Vm tan i (t ) sin t sin e Z Vm i (t ) sin t Ae Z 0 t t tan i()=i(2)=i(3)=……..=Io Vm tan I o i ( ) sin sin e Z Vm i ( ) I o sin Ae Z Vm A Io sin Z tan Dr. Ali M. Eltamaly, King Saud University i (t ) Vm V sin t I o m sin e Z Z t tan t t V i (t ) m sin t sin e tan I o e tan Z t 2 t 2 V i (t ) m sin wt 2 sin e tan I o e tan Z Dr. Ali M. Eltamaly, King Saud University 2 t 3 Single-Phase Full Bridge Diode Rectifier With Resistive Load Dr. Ali M. Eltamaly, King Saud University Example 4 single-phase diode bridge rectfier has a purely resistive load of R=15 ohms and, VS=300 sin 314 t and unity transformer ratio. Determine (a) The efficiency, (b) Form factor, (c) Ripple factor, (d) The peak inverse voltage, (PIV) of each diode, , and, (e) Input power factor. Vdc 1 Vm sin t dt 2 Vm 0 Vrms 190.956 V I dc 2 Vm 12.7324 A R 1/ 2 1 2 Vm sin t dt 0 Vm 212.132 V 2 Pdc Vdc I dc 81.06 % Pac Vrms I rms Vrms FF 1.11 Vdc 2 2 Vrms Vdc2 Vac Vrms 2 RF 1 FF 1 0.482 2 Vdc Vdc Vdc The PIV=300V VS I S cos Re al Power 1 Input power factor = Apperant Power VS I S Dr. Ali M. Eltamaly, King Saud University bn 2 2 Io cos nt 0 n I o * sin nt dt 0 2 Io 4 Io cos 0 cos n for n 1, 3, 5, .......... ... n n 4 Io 1 1 1 1 i (t ) * (sin t sin 3t sin 5t sin 7t sin 9t .......... ) 3 5 7 9 2 2 2 2 2 2 2 1 1 1 1 1 1 1 THD ( I s (t )) 46% 3 5 7 9 11 13 15 4 Io I S1 2 2 2 IS Io 1 THD ( I s (t )) 1 4 Io I S1 2 2 4 Dr. Ali M. Eltamaly, King Saud University 2 1 48.34% Example 5 solve Example 4 if the load is 30 A pure DC From example 4 Vdc= 190.986 V, Vrms=212.132 V I dc 30 A and I rms = 30 A Pdc Vdc I dc 90 % Pac Vrms I rms Vrms FF 1.11 Vdc 2 2 2 Vrms Vdc Vac Vrms 2 RF 1 FF 1 0.482 2 Vdc Vdc Vdc The PIV=Vm=300V 4 Io 4 * 30 I S1 27.01A 2 2 Re al Power Input Power factor= Apperant Power VS I S1 * cos I S1 * cos 27.01 *1 0.9 Lag VS I S IS 30 Dr. Ali M. Eltamaly, King Saud University Full Bridge Single-phase Diode Rectifier with DC Load Current bn 2 2 Io cos nt 0 n I o * sin nt dt 0 2 Io 4 Io cos 0 cos n for n 1, 3, 5, .......... ... n n 4 Io 1 1 1 1 i (t ) * (sin t sin 3t sin 5t sin 7t sin 9t .......... ) 3 5 7 9 2 2 2 2 2 2 2 1 1 1 1 1 1 1 THD ( I s (t )) 46% 3 5 7 9 11 13 15 4 Io I S1 2 2 2 IS Io 1 THD ( I s (t )) 1 4 Io I S1 2 2 4 2 1 48.34% Example 5 solve Example 4 if the load is 30 A pure DC From example 4 Vdc= 190.986 V, Vrms=212.132 V I dc 30 A and I rms = 30 A Pdc Vdc I dc 90 % Pac Vrms I rms Vrms FF 1.11 Vdc 2 2 2 Vrms Vdc Vac Vrms 2 RF 1 FF 1 0.482 2 Vdc Vdc Vdc The PIV=Vm=300V 4 Io 4 * 30 I S1 27.01A 2 2 Re al Power Input Power factor= Apperant Power VS I S1 * cos I S1 * cos 27.01 *1 0.9 Lag VS I S IS 30 Effect Of LS On Current Commutation Of Single-Phase Diode Bridge Rectifier. diS VS Ls 0 dt Multiply the above equation by dt then, VS dt Ls diS u Io Io Vm sin t dt Ls diS Then; Vm cos cos u 2Ls I o Then; Vm 1 cosu 2Ls I o 2Ls I o Then; cosu 1 Vm 2Ls I o Then; u cos 1 1 Vm t u 2Ls I o cos 11 Vm 1 Dr. Ali M. Eltamaly, King Saud University vrd Ls diS dt u Io Io vrd d t LS diS 2 LS I o u vrd d t is the reduction area in one commutation period t the total reduction per period is: u 2 vrd d t 4 LS I o Vrd 4 LS I o 4 f LS I o 2 Vdc actual Vdc without sourceinduc tan ce Vrd 2Vm 4 fLs I o Dr. Ali M. Eltamaly, King Saud University the rms value of the supply current Is u Io u 2 2 u 2 u 2 2 Io u 2 2 Dr. Ali M. I ¢ Eltamaly, King Saud University s u 2 Is u Io u 2 2 u 2 u 2 2 u/2 u 2 Io I s¢ 2 u u u 2 3 2I o 4 u u 2 I o2 u Is 2 2 2 3u 8 2 2 2 3 u 2 2 2I o I s 2 I[o t dt I o2 dt ] u 0 u/2 2 2 u 2 u u Dr. Ali M.Eltamaly, King Saud 2 University Is u Io u 2 u 2 u 2 Io 2 u 2 2 u 2 I s¢ u 2 2I o u Is 0 2Io u I s¢ 2Io u u 2 Js u 2 u 2 u 2 2 u 2 Dr. Ali M. Eltamaly, King Saud University u 2 0 u 2 0 2I o u 2I o u 0 2Io u u 2 It is an odd function, then ao an 0 Js Is 0 2Io u I s¢ 1 bn n u 2 u 2 0 u 2 0 2I o u 2I o u u 2 0 2Io u m 1m ¢ J cos n t J sin n t s s s s n s 1 s 1 1 1 2Io u u u u bn * sin n sin n sin n sin n n n u 2 2 2 2 8I o nu bn 2 * sin 2 n u 8I o u b1 * sin u 2 8I o u I S1 * sin 2 u 2 Dr. Ali M. Eltamaly, King Saud University 8I o u I S1 * sin 2 u 2 2 I o2 u Is 2 3 8I o u * sin 2 u 2 I S1 u u * cos cos IS 2 2 2 I o2 u 2 3 u u 4 sin cos 2 sin u 2 2 u u u u 2 3 2 3 pf Dr. Ali M. Eltamaly, King Saud University 2Ls I o u cos1 1 Vm Vrd 4 LS I o 4 f LS I o 2 Vdc actual Vdc without sourceinduc tan ce Vrd 2 I o2 u Is 2 3 8I o u I S1 * sin 2 2 u 2Vm pf 4 fLs I o 2 sinu u u 2 3 Example 6 Single phase diode bridge rectifier connected to 11 kV, 50 Hz, source inductance Ls=5mH supply to feed 200 A pure DC load, find: (i) Average DC output voltage, (ii) Power factor. And (iii) Determine the THD of the utility line current. Vm 11000 * 2 15556V Vdc actual 2 *15556 4 * 50 * 0.005 * 200 9703V Dr. Ali M. Eltamaly, King Saud University 2Ls I o u cos1 1 Vm Vrd 4 LS I o 4 f LS I o 2 Vdc actual Vdc without sourceinduc tan ce Vrd 2 I o2 u Is 2 3 8I o u I S1 * sin 2 2 u 2Vm pf 4 fLs I o 2 sinu u u 2 3 Example 6 Single phase diode bridge rectifier connected to 11 kV, 50 Hz, source inductance Ls=5mH supply to feed 200 A pure DC load, find: (i) Average DC output voltage, (ii) Power factor. And (iii) Determine the THD of the utility line current. Vm 11000 * 2 15556V Vdc actual 2 *15556 4 * 50 * 0.005 * 200 9703V 1 u cos 1 2Ls I o 2 * 2 * * 50 * 0.005 * 200 cos1 1 0.285 rad . Vm 15556 I S1 u pf * cos IS 2 IS 2 I o2 u 2 3 2 * sinu u u 2 3 2 * sin0.285 .285 0.285 3 2 0.917 2 * 2002 0.285 193.85 A 3 2 8I o u 8 * 200 0.285 I S1 * sin * sin 179.46 A 2 2 u 2 * 0.285 2 2 2 IS 193.85 THDi 1 1 40.84% 179.46 I S1 Three-Phase Half Wave Rectifier Vdc 3 2 Vrms I rms 5 / 6 Vm sin t dt /6 3 2 3 3 Vm 0.827Vm 2 5 / 6 Vm sin t 2 /6 0.8407 Vm R ThePIV of the diodes is I dc 3 3 Vm 0.827 * Vm 2 * * R R 1 3* 3 dt Vm 0.8407 Vm 2 8 08407 Vm Vm Ir IS 0.4854 R R 3 2 VLL 3 Vm Example 7 The rectifier in Fig.2.21 is operated from 460 V 50 Hz supply at secondary side and the load resistance is R=20. If the source inductance is negligible, determine (a) Rectification efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of each diode. 460 VS 265.58 V , Vm 265.58 * 2 375.59 V 3 Vdc 3 3 Vm 0.827 Vm 2 Vrms 0.8407 Vm 3 3 Vm 0827Vm I dc 2 R R 0.8407 Vm I rms R Pdc Vdc I dc 96.767 % Pac Vrms I rms Vrms FF 101.657 % Vdc 2 2 2 Vrms Vdc Vac Vrms 2 RF 1 FF 1 18.28 % 2 Vdc Vdc Vdc The PIV= 3 Vm=650.54V Three-Phase Half Wave Rectifier With DC Load Current and zero source induct New axis 1 a0 2 an 1 /3 Io I o dt 3 / 3 /3 Io sin nt //33 n I o * cos nt dwt / 3 Io * 3 for n 1,2,7,8,13,14,.... n Io * 3 for n 4,5,10,11,16,17 n 0 for all treplean harmonics I s (t ) IO 3I O 1 1 1 1 1 cos t cos 2t cos 4t cos 5t cos 7t cos 8t ... 3 2 4 5 7 8 2 I THD ( I s (t )) S I S1 2 I / 3 1 o 1 3I O 2 2 * 2 1 1.0924 109.24% 9 Example 8 Solve example 7 if the load current is 100 A pure DC Vdc 3 3 Vm 0.827 Vm 310.613V 2 I dc 100A Vrms 0.8407 Vm 315.759 V Pdc V I 310.613* 100 dc dc 98.37 % Pac Vrms I rms 315.759 *100 Vrms FF 101.657 % Vdc 2 2 2 Vrms Vdc Vac Vrms 2 RF 1 FF 1 18.28 % 2 Vdc Vdc Vdc The PIV= 3 Vm=650.54V Three-Phase Half Wave Rectifier With Source Inductance Dr. Ali M. Eltamaly, King Saud University 2LI o u cos 1 3 Vm 1 2LI o t cos 1 3 Vm u 1 1 3LI o 3 f L Io 2 3 3 Vm 3 f L Io Actual 2 Vrd Vdc Dr. Ali M. Eltamaly, King Saud University Example 9 Three-phase half-wave diode rectifier connected to 66 kV, 50 Hz , 5mH supply to feed a DC load with 500 A DC, fined the average DC output voltage. 66000 Solution: vm * 2 53889V 3 3 f L Io (i) Vdc Actual Vdc without source induc tan ce Vdc Actual 3 3 Vm 3 * 3 * 53889 3 f L Io 3 * 50 * 0.005 * 500 44190V 2 2 Dr. Ali M. Eltamaly, King Saud University Three-Phase Full Wave Rectifier With Resistive Load IL Ip Is 3 1 5 VL a b c 4 6 2 Vdc I dc 3 2 / 3 3 Vm sin t dt /3 3 3 Vm 3 2 VLL 1.654Vm 1.3505VLL 3 3 Vm 1.654Vm 3 2 VLL 1.3505VLL R R R R Vrms 3 I rms 2 / 3 3 Vm sin t /3 2 3 9* 3 dt Vm 1.6554 Vm 1.3516VLL 2 4 1.6554 Vm R 1.6554 Vm Vm Ir 0.9667 R R 3 I S 0.9667 2 Vm R Example 10 The rectifier shown in Fig.2.30 is operated from 460 V 50 Hz supply and the load resistance is R=20ohms. If the source inductance is negligible, determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of each diode . Vdc 3 3 Vm 1.654Vm 621.226 V 3 3 Vm 1.654Vm I dc 31.0613 A R R 3 9* 3 Vrms Vm 1.6554 Vm 621.752 V 2 4 I rms 1.6554 Vm 31.0876 A R Pdc Vdc I dc 99.83 % Pac Vrms I rms Vrms FF 100.08 % Vdc 2 2 2 Vrms Vdc Vac Vrms 2 RF 1 FF 1 4 % 2 Vdc Vdc Vdc The PIV= 3 Vm=650.54V Three-Phase Full Wave Rectifier With DC Load Current bn 2 5 / 6 I o * sin nt dt /6 2 Io 2 Io 2 Io 2 Io ( 3 ), b7 ( 3 ), b11 ( 3 ), b13 ( 3 ),....... 5 7 11 13 bn 0, for n 2,3,4,6,8,9,10,12,14,15,......... .... b1 2 Io 2 Io cos nt 5/ 6/ 6 n I s (t ) 3, b5 2 3I o 1 1 1 1 sin t sin 5 v• t sin 7 t sin 11 t sin 13 t 5 7 11 13 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 THD ( I s (t )) 5 7 11 13 17 19 23 25 2 IS Io 3 2* 3 I S1 2 IS 1 THD ( I s (t )) I S1 Io 2/3 2*3/ 2 1 31.01% I S1 I S1 Power Factor = * cos(0) IS IS 2 31% 1 2 LS I o u cos 1 VLL Vrd 6 LI o 6 fLI o 2 Vdc actual Vdc without sourceinduc tan ce Vrd 1.35VLL 6 fLIo 2 I o2 u IS 3 6 pf I S1 u cos IS 2 I S1 2 6 Io u sin u 2 2 6 Io u sin u 2 3 * sin u u cos 2 2 I o2 u u u 3 6 3 6 Example 11 Three phase diode bridge rectifier connected to tree phase 33kV, 50 Hz supply has 8 mH source inductance to feed 300A pure DC load current Find; Commutation time and commutation angle. DC output voltage. Power factor. Total harmonic distortion of line current. 1 2 LS I o u cos 1 VLL Vdc actual Vdc u 0.2549 rad. 14.61 without sourceinduc tan ce o Vrd 1.35VLL 6 fLI d Vdcactual1.35 * 33000 6 * 50 * .008 * 300 43830V 3 * sinu 3 sin0.2549 pf 0.9644 u u 3 6 0.2549 0.2549 * 6 3 2 I d2 u 2 * 3002 Is 3 6 I S1 0.2549 * 239.929 A 6 3 4 3 Io 4 3 * 300 u 0.2549 sin * 2 3 * sin 233.28 A u 2 * 0.2549 * 2 2 2 I S1 u 233.28 0.2549 pf * cos * cos 0.9644 Is 2 239.929 2 2 2 IS 239.929 THDi 1 1 24.05% 233.28 I S1 For three phase uncontrolled rectifier with pure DC current load without source inductance shown in Fig.1, draw the following: (a) The output voltage waveform in waveform (2) of Fig.2. (b) The currents waveforms of switches 1 to 6 in the waveforms (3) to (8) of Fig.2, (c) Secondary current of phase b in waveform (9) of Fig.2, (d) Primary current of phase B in waveform (10) of Fig.2, Then, (e) Derive an equation of secondary current ib t waveform by using Fourier transforms. (f) Derive an equation of Primary current iB t waveform by using Fourier transforms. (g) Find its input power factor at the supply (primary) terminals . IA 2:1 A IAB IC C IBC Ib n b =I'b D5 30A ICA =I'a B D3 a =I'C IB D1 Ia c D4 Ic D6 D2
© Copyright 2024