F h ve i ce_ :l-85_ F o rm.ula*$ h e$t Csnstant l-ineaf Acceler*tign Equatio4.S; V*vo+at; X=xc+yol + fatz; vt-v3=?a(x-xo), X=Xo+$(v+v,)t Anqular I Liftear VFriqhJg,*; 6=slr; ",=#=v/r;"=# , &radiai =,jr;61s6ssn1i61 =crf eonets nt Anqular Aceelcratign Hngptipf3c I * }at?; n'-*f,*2*{$-{},}: {.rEa.,o*11{, 0=0o+6,'"1 0=$n+ i{"+c,;o}t Retatiqnal lnertiq; | * >:rnjrf (point masses) ; t = 1[r2 l"* * |MR? { solid cylinder), l"m {Parallel Axis Theorem); I = 1", Kinetlc Engj'ovi i4 = drn ;MR' Ang$-[arMomentuu. i?i lcm = MRz (ring / haop) ; K = |1t.",2 (rotation) f =-rtxm?; iili =mvr(sin,,l) ;C=t? Wqrk/Pgwer: 1ry=/rd#; Sp.nstank.*CM # =I? ul F=H= ", C"pn.diti"pn:n-fqt$tgtip- F.qqilibriuru 1 rpm = 0.1047 rad/sec i =rF(sinp) lleuderesd law Fpr&Jatrsni ? = * 3600 = ?n rad (sphere) * Mh? = ,Mv2 (translation) -+ Torsqe: --+ 7=TxF 1 rev (continuous rna$s distributions] IF =0 ; f? =o FXN"M SOLtffIDNS ,o"=. Konn,RD sTF tn,l Phvsics 185 Exam # 3 Fall 2013 Show All Work in order to receive partial credit consideration. Keep your papers covered as much as possible, TURN OFF YOUR CELL PHONE!!! 1. A uniform plankwith a length L = 6.10 m and a weight of 445 N rests on the ground and against a frictionless roller at the top of a wall of height h = 3.05 m. The plank remains in equilibrium for any value of > 70o but slips af 0 < 70o. Find the coefficient of static friction between the plank and the ground. I + ziraQ Nf.hb) I ZF=o x J 0e '= l; lr{ = Nx - rr''', n66)cDts (*)cpso = o + f{= usq*sry RorF( f,= Ncos(9o-ol = NsrvrE UgL srrrb cuso ;],h N. 0+ Z[=" + [ + slsrn (qo-d -ng = o o\ m6- Ncoso \)H \/= s* /,.t= o o0 t (*gL/r^,) srrio coro Fc F" ULdn)pr,- Lsrns.oro] z2- Stnb f'= ffi: o Sin o= -- rnfl- [8tsr,,rB cDSLe Co-tD Sin-tzu/ lsr'ip cr:.ns L(+-s,rrvcosQ cosjs) + ,/it = Q ,3+ f K. srErr/ 2. A spool of wire of mass M and radius R is unwound under a constant force F. Assuming that the spool is a uniform solid cylinder that doesn't slip, find (a) the acceleration of the center of mass, and (b) the magnitude and direction of the frictional force. (c) lf the cylinder starts from rest and rolls without slipping, what is its speed of its center of mass after it has rolled through a distance d? TAKE Tl+E TDRQTTF ftaau.r fu] ttXts G^) -il{FouaH Tl+F forr.rf illAr 15 lrv f,DNrAor WrTH TFF GKoulrvD + p(an) = rpd = (*uf+ HK)d r(an)= €Mf/c( + {= ffi g- siNcF TF|E S'foor '(0U5' t'9|r110fi sttfltNS, Jns a= Ro( :> (b) Wt+€N rr+F Fr:Kcr Fo, ftoKt?oNrpl/ TIIF CYLINDFK \OILI ROTr R)KeftRD AND sD Yl+F l=Rtcr,o.N wru- 6F ,r./ I+r 5i+fl8 DlPFcr/'uV As tr BY NEwroNk e-'d tAuv, (c) VL rftaoA + V--\m= \/-lt@ v- 3M V W K, STEIN 3. A uniform spherical shell ( 1., = 3MR') rotates about a vertical axis on frictionless bearings. A light cord passes around the equator of the shell, over a pulley of radius r and rotational inertia l, and is attached to a small object of mass m that is otherwise free to fall under the influence of gravity. What is the speed of the object after it has fallen a distance h from rest? ,il' fu,n WY CoNSER/AXDN CF ENE46Y V AKt A% =o 0 So [*(A nt)wl + *r*r,'+irnil+ rnflh = vn gh 6)(trn)(#)'r *r (ut )^ = *l3M+ %"+rn) 6Y,(Vl1 (-in6h) r {Yl t? + ernv vl =(aM+ Wr'fitr:) vL o o$ V: (eut 6,rngh 3nn Q I 3r/rr) $v K, SrEtl/ 4. A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. The pulsar in the Crab nebula has a period of rotation of T = 0.033 s that is increasing at the rate of 1.26x l0-s s/y. (a) What is the pulsar's angular acceleration a? (b) lf a is constant, how many years from now will the pulsar stop rotating? (c) The pulsar originated in a supernova explosion seen in the year 1054. Assuming constant a, find the initial T. NorE i | ,trar : dauls d^v 3bS 3te 5d, X d_ da (d Lt)-- + + dq=,dw-4 xEr At ,= 0 V !t = oo G) I Slf (o,o)3) (1)=wo+d+ hr ., (a) trl,r-, " (uDs W ,vr) /cr dA \/ / = 3,l5XlD *( JT\ = -Tz\E/ E.lT +5 Jb;(to dv) l-Jbxr,)*5 lo, ]u,15 x,tr tD s/ } :--,1^ lL{ .T + d= - A,3Xl;q rod/s' + e:ffi;-(r"gxff)t + t= S,eoltjos oK {=(f.aaxtJ'tx 3ol4r 15xtfs (c) Tt+E ftasA( wAs CKEflTED + t= ein Qor3 ^ D5+) \€ars = q51 f EftRs ft6o, t" (qsq.dr) x('-l#rj')= 3,Oa+xlo'o sec HAvr pArrrt srNcF (utsffi WAi CKEATFD.. 3o @,= ru. + dt - (T)+dt = rur= /a0'8 sc (r*t+ (*r,3xr;?(3uor*xrD) + raA/s = T,r,^l eT" "4 Tt"lF ,11 IIDOE -\. - t,u - C,OSA 5e<
© Copyright 2024