Danmark som registerland Alma B. Pedersen, Afdelingslæge, ph.d., klinisk lektor Klinisk Epidemiologisk Afdeling Aarhus Universitetshospital Agenda • • • • Præsentation af danske register data Adgang til data Fordele og ulemper ved register forskning Eksempler på register forskning Secondary data - a historical view 1645 Church files 1769 The First Census 1856 The First Disease Registry -The Leprosy Registry in Norway 1924 National Population Registry 1925 The Registry of Cerebral Paresis 1937 The Registry of Tuberculosis 1943 The Cancer Registry 1943 The Registry of Causes of Death 1953 The Central Psychiatric Registry 1968 The Civil Registration System 1973 The Medical Birth Registry 1977 The National Registry of Patients 1989/90 Regional Prescription Database 1995 The National Prescription Registry The Civil Registration System • Period: 1 April 1968 (Greenland 1972) • All persons who are born in DK or live or work in DK • Main variables: • Civil Registration Number (CPR) • Civil status • Civil Registration Number of father/mother/children • Immigration / Emigration • Current and historical addresses • Current and historical marriages • Updated daily • The civil registration number is used in all Danish registries Data, Data everywhere But not much of it linked PROM Laboratory Social Services GP Hospital Data Pharmacy Clinical databases Purpose Built Other Record-Linked Data Completing the Jigsaw Purpose Built Pharmacy Laboratory PROM GP Social Services Other Hospital Clinical databases Type af registre • Sundhedsregistre (administrative) • Kliniske kvalitetsdatabaser • Regionale databaser SSI • Statens Serum Institut er ansvarlig for en række sundhedsregistre som anvendes til centrale og lokale myndighedsopgaver og forskning. • http://www.ssi.dk/Sundhedsdataogit/Registre.aspx • De mest efterspurgte registre: – Landspatientregisteret – Dødsårsagsregisteret – Det Psykiatriske Centralregister – Cancerregisteret – Fødselsregisteret – Sygesikringsregisteret The Danish National Registry of Patients (DNRP) Period 1 January 1977 – Population All persons hospitalized in Denmark Outpatients since 1994 Emergency room visit since 1994 CPR Number Hospital department Admission and discharge data Some tests and treatments ICD 8 1977 – 1993 ICD 10 1994 – Surgical procedures NOMESCO classification Variables Diagnoses Dokumentation af Landspatientregisteret (Excel), opdateret data The Danish Cancer Registry Period: 1 January 1943 – Population: All incident cases of cancer Main Variables: CPR Number Diagnosis (ICD-7:1943-1977, ICD-10: since 1978) Extend of spread of the tumor (TNM) Treatment: Surgery, Chemo-, Anti-hormone therapy Topography and histology codes (ICD-0-1:19782003, ICD-0-3 since 2004 Vital status Registration electronically since 2004 Dokumentation af Cancerregisteret (Excel), forsinket data The Danish Registry of Causes of Death Established: 1 January 1943, Registration in the present form since 1970 in DK (Greenland and Faroe Islands since 1983) Population: All deaths, death certificate must be filled for every Danish decedent Main variables: CPR number Place of death Causes of death (one underlying cause and up to three additional immediate causes) Autopsy (yes/no) Registration electronically since 2007 Dokumentation af Dødsårsagsregisteret 1970-2001, 2002-2011 Health Insurance Register (Sygesikringsregister) • Period • Contains information about the settlement of health insurance benefits between regions and providers in health insurance, i.e. general practitioners, specialists, dentists, physiotherapists, psychologists and others • Dokumentation af Sygesikringsregisteret since 1990 Principper for udlevering af data fra SSI • Du skal altid søge via det elektroniske ansøgningsskema på Sundhedsstyrelsens hjemmeside (forskerservice) • Til det elektroniske ansøgningsskema skal du vedhæfte følgende: – Tilladelse fra Datatilsynet om at lave projekt – Projektbeskrivelse (PDF) – Udtræksbeskrivelse (PDF) (the need to know princippet) – Betaling- JA Danmark Statistik (DST) Eksempler på registre i DST • Integrated Database for Labour Market Research – Contains information on each Danish citizen’s socioeconomic status including data on gross income, education, employment status and marital status since 1980 – Update once a year • Lægemiddelstatistikregister – Outpatient drug prescriptions since 1995, nationwide – information on cpr number, on the dispensed drug (ATC-code, name, package size, formulation and quantity), date of transaction, price, code identifying the prescribing physician – Update once a year from the SSI Principles for use of data in DST 1. Analysis must be done in Statistics Denmark 2. Statistics Denmark links the registries and deletes the civil registration number 3. No access to the civil registration number and paper records an thus no possibilities for validation 4. The procedure for getting access to the data might take up to six months Acces to the data in DST • • • • • Projektansøgning til Danmarks Statistiks Forskerserviceenhed (www.dst.dk/forskning) Projektbeskrivelse Godkendelse fra Lægemiddelstyrelsen (ved brug af Lægemiddeldatabase) Godkendelse fra Datatilsynet for at lave projekt Betaling- JA The Danish National Database of Reimbursed Prescriptions • Established by Danish Regions and Aarhus University in 2004 • a prescription at a community pharmacy or a hospital-based outpatient pharmacy • Cpr number, the prescriber, ATC code, item number, date of redemption, quantity of the item, strength, pack size, 24 hour dose, unit (related to strength), name on the packaging, form of dosis, manufacturer, drug ID and unit (related to pack size) • Access available after application http://www.kea.au.dk/da/forskning/dansk-receptdatabase2.html The North Denmark Regional Microbiological Bacteremia Research Database • • • • All hospitalized patients with bacteremia in the former North Jutland County Since 1981 Main variables: – cpr number – Date and department of admission – Focus of infection – Blood cultures – Microbiological species – Differnetiation between community- from hospital-acquired episodes Maintained by the Department of Clnical Microbiology at Aalborg Hospital The Laboratory Information System (LABKA) • • • • • records test results from every blood sample taken in any public or private hospital or by any general practitioner submitted to any clinical chemistry department located in the Central or North Denmark Region, starting in early 1990 Main variables: – CPR number, measurement units, dates of ordering and carrying out the analysis, and a unique ID identifier of hospital department or general practitioner who ordered the test Data are recorded according to Nomenclature for Properties and Units (NPU) codes Introduktion til Kliniske kvalitetsdatabaser Hvad er en klinisk kvalitetsdatabase? Et register, der indeholder udvalgte kvantificerbare indikatorer, som kan belyse dele af eller den samlede kvalitet af sundhedsvæsnets indsats og resultater for en afgrænset patientgruppe med udgangspunkt i det enkelte patientforløb. Kort sagt: Et offentligt register, der etableres som led i kvalitetsudvikling. Kvalitetsudvikling i Sundhedsvæsnet, Kjærgaard m.fl., 2001 Formelle krav til kvalitetsdatabaser Basiskrav for Kliniske kvalitetsdatabaser, 2007. Bekendtgørelse nr. 459 om godkendelse af landsdækkende og regionale kliniske kvalitetsdatabaser, 2006. Anmeldt jf. Persondataloven til Datatilsynet Godkendes af Sundhedsstyrelsen Basiskrav for Kliniske kvalitetsdatabaser • • • • • Organisatoriske Sundhedsfaglige Informatiske Basiskrav vedr. afrapportering og offentliggørelse Basiskrav til nationale kompetencecentre Organisatoriske krav • • • Målsætning, >90% dækningsgrad i sekundær sektoren Målsætning, >90% komplethedsgrad af patient registrering Dette sikrer validiteten af de data, der indsamles, og dermed validiteten af de konklusioner og anbefalinger Kvalitetsindikatorer Defineres som målbare variabler, der anvendes til at overvåge og evaluere behandlingskvaliteten • Alment accepteret og evidensbaserede • Veldefineret • Indikatorspecifikationer og Indikatoralgoritmer • 5-10 veldefinerede kvalitetsindikatorer Kategoriseres som • struktur-, proces- og resultatindikatorer Indikatorer - Hoftenær Indikatorområde lårbensbrud Type Standard Hurtig udredning og behandling af patienter med symptomer på Hoftenær lårbensbrud Præoperativ optimering 1 Andelen at patienter der er set og vurderet af speciallæge eller af læge i hoveduddannelses forløbets sidste år mhp. at få lagt en præoperativ optimeringsplan senest 4 timer efter ankomst til sygehuset. Proces Mindst 80 % Behandling af patienter med Hoftenær lårbensbrud Operationsdelay Tidlig mobilisering 2 Andel af patienter der opereres senest 24 timer efter ankomst til sygehuset Proces Mindst 75 % 2a Andel af patienter der opereres senest 36 timer efter ankomst til sygehuset Proces Mindst 90 % 3 Andelen af patienter, der efter operationen mobiliseres inden for 24 timer Proces Mindst 90% 4a Andelen af patienter, der får vurderet og indberettet score for basismobilitet med Cumulated Ambulation Score (CAS) forud for aktuelle fraktur Proces Mindst 90% 4b Andelen af patienter, der får vurderet og indberettet score for basismobilitet med CAS ved udskrivelsen Proces Mindst 90% Proces Mindst 90% Basismobilitet Andelen af patienter, hvor ernæringsplan er udarbejdet Ernæring 5 Profylakse Osteoporose 6 Andelen af patienter, hvor der udover behandling med calcium og vitamin D, er taget stilling til medicinsk osteoporoseprofylakse. Proces Mindst 90% Profylakse Fald 7 Andelen af patienter, hvor der er taget stilling til faldprofylakse Proces Mindst 90% Overlevelse 8 Andelen af patienter, som er i live 30 dage efter operationsdato Resultat Mindst 90% 9 Andelen af patienter, der udskrives med almen genoptræningsplan, hvor der påbegyndes genoptræning i kommunalt regi Proces Sættes ved audit Ventetid til kommunal genoptræning Indikatorområde Indikatorer - Hoftenær Genindlæggelse Andelen af patienter der genindlægges akut – uanset årsag – inden for 30 dage efter udskrivelse fra sygehuse med diagnosen hoftenær lårbensbrud. 10 11 Reoperation Osteosyntese pga. medial fraktur af lårbenshals lårbensbrud Andelen af patienter med osteosynteret medial fraktur uanset frakturstilling, der inden for 2 år reopereres Type Resultat Standard Højst 20% Højst 15% Resultat Højst 10% 11a Andelen af patienter med osteosynteret uforskudt medial fraktur, der inden for 2 år reopereres 11b Andelen af patienter med osteosynteret forskudt medial fraktur, der inden for 2 år reopereres Resultat Reoperation, Osteosyntese pga. per-/subtrochantær femurfraktur 12 Andelen af patienter med osteosynteret pertrochantær / subtrochantær femurfraktur der inden for 2 år reopereres Resultat Højst 5% Reoperation pga. Hemi- eller totalalloplastik 13 Andelen af patienter med en hemi- eller totalalloplastik uanset frakturtype, der inden for 2 år reopereres Resultat Højst 10% Reoperation Dyb infektion 14 Andelen af patienter, der reopereres pga. dyb infektion inden for 2 år Resultat Højest 2% Resultat Højst 20% Ansøgning om data fra kvalitetsdatabaser Protokol (Forskningsmiljø) Tilladelse fra Datatilsynet til at lave projekt Anmodning om dataudtræk fremsendes til Databasernes Fællessekretariat ([email protected]) Betaling - Nej Eksempler på kvalitetsdatabaser • • • • • Dansk Hoftealloplastik Register (DHR)- siden 1995 Dansk Knæalloplastik Register (DKR)- siden 1997 Dansk Skulderalloplastik Register (DSR)- siden 2005 Dansk Korsbåndsrekonstruktion Register (DKRR)- siden 2005 Dansk Tværfagligt Register for Hoftenære Lårbensbrud- siden 2003 • Dansk Transfusions Database (DTDB) Dansk Intensiv Database (DID) Dansk Anæstesi Database (DAD) Dansk Reumatologisk Database (DANBIO) • www.sundhed.dk eller www.rkkp.dk • • • Registry studies- Advantages 1) Data already exist, reducing costs 2) Large sample size, usually population based 3) Data collected for administrative or other purposes unrelated to research objectives 4) More likely to reflect daily usual clinical practice 5) Much more feasible to rare outcomes, long term outcomes, and prognosis studies 6) Nearly complete follow-up Registry studies- Limitations 1) Information on potential confounders may not have been collected • Smoking • Alcohol intake • Diet • Physical activity • Obesity • Severity of the underlying disease • Comorbidity • Socioeconomic status HRT and coronary heart disease BMJ 2004; 329:868-869 Registry studies- Limitations 1) Information on potential confounders may not have been collected 2) Temptation to post hoc analyses 3) Related to data quality Use of registries Requires knowledge about the data validity: • Completeness of patient registration • Completeness of registered data • Quality of registered data Eksempel 1 Validity of different diagnosis codes in the National Registry of Patients Anafylactic shock Crohn's disease Diabetes Ulcerative colitis Myocardial infarction Herniated lumbal disc Meningococcal disease Liver cirrhosis Cancer diagnoses Essential hypertension Rheumatic fever Conn's syndrome Traumatic hip luxation Uterine rupture 0 10 20 30 40 50 60 70 80 90 100 Eksempel 2 Validation in DHR - Registration completeness % 95% CI (%) Overall 94.1 93.9 – 94.4 Primary THAs 93.9 93.6 - 94.2 Revisions 81.4 80.2 – 82.6 Revisions (-hemi) 90.1 89.1 - 91.0 Pedersen AB et al. Acta Orthop 2004 Validity of the registered diagnoses in DHR Diagnosis Primary arthrosis Fresh fracture of proximal femur Sequelae after trauma Atraumatic necrosis of femoral head Inflammatory diseases Hip disorders in childhood PPV (%) 95% CI (%) 84.6 74.7 – 91.8 30.1 19.9 – 42.0 95.0 87.7 – 98.6 98.7 93.2 – 99.9 100 94.9 – 100 89.7 80.8 – 95.5 Eksempel 3 Validation of DHR cont. - Gundtoft PH et al. 2015 • The "true" incidence of surgically treated deep prosthetic joint infection (PJI) after 32,896 primary total hip arthroplasties: a prospective cohort study. • Using algorithm incorporating data from microbiological, prescription, and clinical biochemistry databases and clinical findings from the medical records. • Conclusion: The incidences of PJI based on the DHR and the NRP were consistently 40% lower than those estimated using the algorithm covering several data sources. Eksempel 4 Death following hip arthroplasty Danish Hip Arthroplasty register DHR • All primary THA CPR registry • Each THA patient was matched according to gender and age at the time of surgery with 3 persons from the general population • Outcome: death Pedersen AB et al. JBJS Br 2011 Death following hip arthroplasty using Cause of death registry Pedersen AB et al. JBJS Br 2011 Eksempel 5 VTE following hip arthroplasty- comparison with general population DHR • All primary THA, n=85,965 CPR registry • Comparison cohort without THA from the general population (n=257,895). Matched on gender and age. Danish National Registry of patients • Confounding: comorbiditet • Outcome: VTE Pedersen AB et al. JBJS Br 2012 Adjusted RR VTE following primary THA: comparison with general population 20 18 16 14 12 10 8 6 4 2 0 The risk of VTE was elevated irrespective of the gender, age or level of comorbidity VTE DVT PE 0-90 days 91-365 days Days after THA surgery Pedersen AB et al. JBJS Br 2012 Eksempel 6 Revision risk in THA with diabetes mellitus DHR • All primary THA Danish National Registry of Patients • Hospitalization at all Danish hospitals with ICD-10 codes for diagnoses of type 1 or type 2 diabetes Danish National Drug Prescription Database • Prescription for insulin or an oral antidiabetic drug before surgery Pedersen AB et al. JBJS Br 2009 Example 6 - Revision risk in THA with diabetes mellitus • All primary THA 57,575 patients with a first primary THR in the DHR • Hospitalization at all Danish Danish 3,278 National (5.7%) patients had diabetes hospitals with ICD-10 codes Registry of for diagnoses of type 1 or Patients andtype 2 diabetes DHR 54,297 (94.3%) were non-diabetic Danish National • Prescription for insulin or an Drug Prescription oral antidiabetic drug before Database surgery Revision risk in THA with diabetes mellitus National Registry of Patients hospitalization with diagnoses of type 1 or type 2 diabetes Danish Hip Arthroplasty Registry (DHR) National Drug Prescription Database prescription for insulin or an oral antidiabetic drug before surgery National Registry of Patients Comorbidity level before surgery National Drug Prescription Database prescription for other drugs related to diabetes and revision risk (f.eks. NSAID, statins) Civil Registration System Vital status, complete follow up Integrated Database for Labour Market Research Socioeconomic status Revision risk in THA with diabetes mellitus Revision risk in THA with diabetes mellitus • Revision risk due to deep infection – RR=1.01 (95% CI: 0.33-3.12) in THR pt. with type 1 diabetes – RR=1.49 (95% CI: 1.02-2.18) in THR pt. with type 2 diabetes • This elevated risk is particularly present among THR patients – Who have had diabetes for less than five years – Those with diabetes-related complications – Those with presence of cardiovascular comorbidites prior to surgery Eksempel 7 International samarbejde - For eksempel NARA (Nordic Arthroplasty Register Association) • Pedersen AB et al. Association between fixation technique and revision risk in total hip arthroplasty patients younger than 55 years of age. Results from the Nordic Arthroplasty Register Association. Osteoarthritis and Cartilage 2014. • Mäkelä KT et al. Failure rate of cemented and uncemented total hip arthroplasty: a register study of combined Nordic database of four nations. BMJ 2014 • Glassou EN et al. Hospital procedure volume and risk of implant revision surgery after total hip arthroplasty: A study within the Nordic Arthroplasty Register Association. Osteoarthritis and Cartilage 2015. • Varnum C et al. Risk and Causes for Revision of Cementless Stemmed Total Hip Arthroplasties with Metal-on-Metal Bearings. 19,588 Patients from the Nordic Arthroplasty Registry Association. Acta Orthop 2015 Conclusions • Hvis man har en veldefineret forsknings hypotese: – Undersøg om du kan bruge allerede indsamlede data fra danske sundhedsregistre eller kliniske kvalitetsdatabaser til formålet, – Undersøg validiteten af data, – Overvej samarbejde med en epidemiolog og biostatistikker, som har erfaring i at arbejde med register data, – To do list over de forskellige tilladelser og ansøgninger • Husk: det kan tage lige så lang tid til at opnå alle tilladelser og få data, end at lave efterfølgende data management og statistiske analyser. START I GOD TID • Tak for jeres opmærksomhed ALMA B. PEDERSEN [email protected] Factors to consider when planning or interpreting the results of observational studies 1. Does the database fit the research question? 2. Does the study population fit to the research question? 3. Is the size of the study population adequate to answer the question? 4. Does the study design fit to the research question? Hepatology, 2006: 1075-1082. Factors to consider when planning or interpreting the results of observational studies- cont. 5. Is the exposure determined accurately? Was the exposure assessed before the outcome occurred? Bias? 6. Is the outcome measured accurately and is it relevant for clinical practice? Bias? 7. Are confounding factors measured accurately? Unmeasured confounding? 8. Are the patients followed for a long enough time to let the outcome occur? Is there any loss to follow-up? 9. Are the statistical methods suitable for the research question? Hepatology, 2006: 1075-1082.
© Copyright 2025