Kevin Bishop

9/17/2015
Catchment Science:
A Short History of
the ”Pre-Krycklan”
(B.K. 100-0)
Krycklan’s Deep Roots:
Swedish Forest Hydrology
Two approaches
(as identifed by Harald Grip):
Forest Hydrology Issues*
Production
1903-1931 Swampification
1905 Forest ditching
1912 Fertilization
1968 Acidification
Processes
Water Flowpaths and Residence Times
Water and Element balances
Weathering and soil formation
•Production: How can we increase the amount
and quality of timber/biomass at less cost?
9/17/2015
1
•Effects: What are consequences for aquatic
ecosystems and the water balance.?
First Hydrological Hillslope Study:
Rokliden, Piteå, 1905
Our Origin: Swampification
Statens skogsförsöksanstalt
Skogshögskolan
S-fak, SLU
Skogforsk
LU LTH KTH UU UmU IVL
SJFR (Formas)
NFR (VR)
SNV (NV)
Harald Grip’s summary,
paper in preparation
Effects
Harvest
Ditching
Fertilization
Acidification
What if the Hydrological World Spoke Swedish?
Would ”Tammian Subsurface flow have replaced Horton?
Lively debates in the 1800’s
Forest Research Institute’s agenda - 1903
Henrik Hesselman,
botanist
25 years to resolve Swampification in Norrland
Malmström 1923. Degerö stormyr. En botanisk, hydrologisk och
utvecklingshistorisk undersökning över ett nordsvenskt myrkomplex. Avhandl.
1
9/17/2015
SLU Forest Hydrology Theses
Harvest Effects
(Kloten Science Collective 1970s)
Evapotranspiration
Hesselman 1910. Om vattnets syrehalt och dess inverkan på skogsmarkens
försumpning och skogens växtlighet.
Romell 1922. Luftväxlingen i marken som ekologisk faktor. Avhandl.
Swedish Coniferous Forest Ecology Project
Computers key to an ecosystem model
Tänkta flöden av kol, vatten och mineralämnen
Malmström 1923. Degerö stormyr. En botanisk, hydrologisk och utvecklingshistorisk
undersökning över ett nordsvenskt myrkomplex. Avhandl.
(NOPEX – pre-ICOS)
Tamm 1931. Studier över jordmånstyper och deras förhållande till markens hydrologi i
nordsvanska skogsterränger. Avhandl.
Flowpaths
Nordén 1989 Water use by Norway spruce
Who
When Where Tracer
Henrik Hesselman 1921 G
ClOlof Tamm
1931 G
O2
Tryggve Troedsson 1955 G, M
Gert Knutsson
1971 G
ja
3H
Lars Lundin
1982 G, M, A
18O
Allan Rodhe
1987 G, A
18O
Bengt Espeby
1989 G, M
Kevin Bishop
1991 G, M, A 18O
18O
Lars Nyberg
1995 G, A
Hjalmar Laudon
2004 G, M, A 18O
Notes.
Dilution
Flow arteries
Översilning, Ådror
Pump tests
Ksat decline with dept
Isotope Hydrograph Sep.
Physical modeling
Transmissivity Feedbac
Topographic influence
Spring flood acidity
Magnusson 1992 Temporal and spatial variation of the soil atmosphere in forest soils of
northern Sweden
Mätning av vatten- och
energibalans i tallskog i
Jädraås (EBBR)
Modeller
Halldin: Kausha
Halldin, Jansson: SOIL
CoupModel
Giesler 1996 Chemistry of soil solution extracted by centrifugation
Nylén 1996 Uptake, turnover and transport of radiocaesium in boreal forest ecosystems
Nederbörd
Granberg 1998 Environmental control of methane emission from boreal mires
Lufttemp.
CO2
Rapp 1998 Critical loads for surface waters: Validation and challenges (Lic)
Plamboeck 1999 Root activity in Scots pine dominated stands assessed by isotopic
methods
Oleskog 1999 The effect of seedbed substrate on moissture conditions, germination and
seedling survival of Scots pine
Laudon 2000 Separating natural acidity from anthropogenic acidification in the spring
flood of northern Sweden
LAI
SWECON
1973-1978
C
Marktemp.
H2 O
Flöde
Påverkan
Förråd
Påverkande
variabel
NFR, Ekologikommittén, 1972. Barrskogslandskapets ekologi, Projektbeskrivning
Swedish Effects Research
An invasive exotic species?
Inspired 1970’s ”Kloten Collective”
• Hydrology, Aquatic Ecology, Biogeochemistry
• Harald Grip and Svartberget,
•
•
•
•
Svartberget’s Startup 1980-1990
Nutrient loss after harvest (Kaj Rosén)
Acidification (Harald Grip)
Isotope Hydrology (Allan Rodhe)
Quiz:
1. Name this iconic experiment
2. Why is it so misunderstood?
2
9/17/2015
Svartberget: Swedish National Encyclopedia’s
Definition of Catchment (Avrninningsområde)
Acid Rain
1970-1990
(rest in peace?)
• 1900-talet
Forestry ≈ Acid Rain
• 2000-talet
Forestry >> Acid Rain
Grip, H. och Rodhe, A. 1994. Vattnets
väg från regn till bäck. Hallgren &
Fallgren Studieförlag, 3 upplagan,
s.154.
101
Cambridge Acid Rain Expedition 86-88
10,000 Groundwater
measurements
(all manual)
One Good Idea: Dig!
100
Acid Stream
pH 4-5
99
Circumneutral
Shallow
Groundwater
pH 6.5-7.5
98
Round-the-Clock
Stream Sampling
of flow episodes
Ground surface
Groundwater
level
Riparian
Zone ???
97
-30
-20
-10
0
10
20
30
meters
Built
Subsurface
Flow Picture
A picture of water
chemistry changing
downstream
(Acid hotspot from a topographic
hollow at low flow)
3
9/17/2015
Harvest Effects
(Kloten Science Collective 1970s)
Put the Stream and it’s
Catchment together
Evapotranspiration
(NOPEX – pre-ICOS)
Met at the riparian zone
Flowpaths
Who
When Where Tracer
Henrik Hesselman 1921 G
ClOlof Tamm
1931 G
O2
Tryggve Troedsson 1955 G, M
Gert Knutsson
1971 G
ja
3H
Lars Lundin
1982 G, M, A
18O
Allan Rodhe
1987 G, A
18O
Bengt Espeby
1989 G, M
Kevin Bishop
1991 G, M, A 18O
18O
Lars Nyberg
1995 G, A
Hjalmar Laudon
2004 G, M, A 18O
Notes.
Dilution
Flow arteries
Översilning, Ådror
Pump tests
Ksat decline with dept
Isotope Hydrograph Sep.
Physical modeling
Transmissivity Feedbac
Topographic influence
Spring flood acidity
Where does runoff come from?
Where does runoff come from?
18O:
Natural Tracers of Water
= 99.763%
17O = 0.0375%
18O
= 0.1995%
• Swedish studies have
shown that event rainfall is a
small part of event runoff.
Precipitation
Nature’s tracer
Catchment or
hillslope
-4
18O‰
16O
• Chemical tracers can
identify sources of runoff in
the catchment.
-8
-12
-16
Runoff
-4
Residence
Time
2 years
Average -9.4‰
Amplitude 10.1‰
Std Dev. 3.4 ‰
-8
-12
18O‰
DOC, Mercury, Acidity,
metals…
-16
Average -9.4‰
Amplitude 1.2‰
Std Dev. 0.6 ‰
Convolution Integral
Plummer et al., Chem. Geology 2001
4
9/17/2015
0.4
DOC
Discharge
ClCa2+
40
-1
-1
total flow
old water
Discharge (mm h )
0.2
0.1
0.0
Apr 1
Apr 15
Apr 29
May 13
0.3
30
0.2
DOC (mg/L)
Discharge (mm h )
Hydrology’s Double Paradox
How does “old” water increase so quickly
with such different chemical dynamics
Wetland outlet
0.1
0.0
Apr 1
Apr 15
Apr 29
May 13
20
180
160
140
120
100
Västrabäcken (C2)
- Spring 1997
80
60
10
Flow L/s or ueq/L
Forested stream
40
20
0
11-Apr
0
25-Apr
9-May
23-May
6-Jun
27
Transmissivity Feedback
Vertical differentiation of flow & residence times,
1. Rain raises water table,
2. saturates larger pores in
more conductive,
superficial soil layers
3. Transmissivity increases
4. More water flow downslope
Transmissivitythe ability of a soil profile to
transmit water downslope
Rodhe, 1989
Water residence time
traversing a one meter
wide swathe of soil under
saturated flow conditions,
Bishop and Seibert, Hyd. Proc. 2011
5
9/17/2015
A Conceptual Layer Cake
Liming Goal: Always pH > 5,6
101
One Good Idea: Dig!
100
Riparian Soil Profile
Chemostat
Acid Stream
pH 4-5
99
Circumneutral
Shallow
Groundwater
pH 6.5-7.5
98
Ground surface
Groundwater
level
Riparian
Zone ???
97
-30
-20
-10
0
10
20
30
meters
Fish Die Only Once: Spring Flood
Is liming the right
remediation?
Köhler, S.J. (1999)
Quantifying the Role of Natural Organic Acids
on pH and Buffering in Swedish Surface
Waters. Doctoral Thesis Acta Universitatis
Agriculturae Sueciae, Silvestria 92,
Laudon, H. (2000)
Separating Natural from
Anthropogenic Acidity in the
Spring Flood. Doctoral Thesis
Acta Universitatis Agriculturae
Sueciae, Silvestria 160,
6.0
15
5.5
10
5.0
5
Discharge (mm day-1)
20
6.5
pH
Breeding sites,
migration barriers,
fishing pressure
Dissolved Organic Carbon (DOC)
– An acid
- Often increases with runoff!
Discharge
pH
4.5
04/15
04/22
04/29
05/06
05/13
05/20
05/27
0
Photo: Stefan Löfgren
6
9/17/2015
• Learn from the past
• Leverage the knowledge
• Don’t be a Rökliden
• Get your work out
• Don’t be intimidated
• The big questions remain
Thanks for your time!
…and all these years
to dig into the RZ with
friends and colleagues.
They were great years,
But science moves on,
And the Krycklan era was
about to begin
©Bill Waterson
Water Storage and residence time in a till catchment: The Gårdsjön Roof Experiment
Infiltration Excess Overland Flow (IEOF) or Horton Overland Flow
(HOF)
Department of Aquatic Science and Assessment
7
9/17/2015
Time-1 [day-1]
-10

groundwater storage
0.012
-8
Monthly mean
precipitation
-12 mil]
[per
-14
50
g(t)
T=65
0.010
0.008
precipitation
0
01/04/91
01/05/91
31/05/91
30/06/91
30/07/91
29/08/91
28/09/91
28/10/91
27/11/91
27/12/91
26/01/92
25/02/92
26/03/92
25/04/92
25/05/92
-10
0.006
0.002
0.000
-18
0
50
100
150
200
250
300
cCREW
Forested system
Cold Climate REsearch in boreal Watersheds
http://ccrew.sek.slu.se/
S04
Cold Climate REsearch in boreal Watersheds
http://ccrew.sek.slu.se/
S22
Soil surface
S12
10 mm day-1
1,5
Soil surface
S12
S04
10 mm day-1
0.1 mm day-1
0,5
-15
-15
-15
0,0
0
-14 -13
18O
5
-12
-14 -13
18O
-12
-14 -13
18O
-12
1 mm day-1
(m)
(m)
1 mm day-1
1,0
1,0
0.1 mm day-1
0,5
-15
-15
0,0
10
15
20
Distance from stream (m)
25
Runoff
cCREW
Forested system
2,0
S22
0
10
Day [flow-corrected time]
1,5
b. Evapotranspiration
0.004
-16
2,0
unsaturated storage
100
0.014
Irrigation
-6
8O
150
0.016
Precipitation
-4
total water
storage
200
(mm d-1)
0
250
Also shown is an exponential transit time distribution (Eq.
13) with the mean transit time T = 65 days (flow corrected
time
01/90 07/90 01/91 07/91 01/92 07/92 01/93 07/93 01/94
-2
Daily irrigation and water storage (total, unsaturated, groundwater), as well as (b)
runoff and modeled evapotranspiration for a two year period starting in April, 1991
[mm]
18O of the input water to G1, from February
1990 to December 1993.
Transit time distribution obtained from the breakthrough curve for new water (flow corrected time).
0
-14 -13
18O
5
-15
-14 -13
18O
10
15
-12
-12
20
-14 -13
18O
-12
25
Distance from stream (m)
8
9/17/2015
Hydrograph Separation
quickflow and baseflow
Graphical Methods of Hydrograph Separation
9
9/17/2015
Vattenpotentialen
varierar mycket
inom en liten yta
på Svartberget
Sweden’s contribution to hydrological modeling:
Scandinavian simplicity
Are Forests Good for Water Resources?
”Footprints”, Forest Waters and #3
Environmental Certification
More and more metrics of
environmental performance
”Soil Sponge”
”Rainfall attractor”
Increasingly, consumers are
basing their purchasing
decisions on the real or
perceived environmental
impact of goods and
services.
vs. Thief
L.-G. Nordén, 1989. Water use by Norway
Spruce – a study of two stands using field
measurements and soil water modelling.
Dep. Forest Site Research, SLU, Umeå
The Forest - Water Debate:
A Question of Scale
• Most Agree: Trees Increase Evapotranspiration
– Demand-side View: Reduces runoff
– Supply-side View: Recycles Water, Increases Rain
• View point depends on Scale
– Demand at Small Scale
– Supply at Large Scale
The wrong tools may unfairly
penalize the forest sector
10
9/17/2015
Harvest Increases Mercury in Fish &
Runoff
Canada, Finland, Sweden, Amazon
Blue & Green Water – Pathways
“…between 10% and 25% of the Hg in
the fish of high-latitude, managed forest
landscapes can be attributed to
harvesting.”
percentages
Ambio 2009, 38:373-380
Bishop, Allan, Bringmark, Garcia,
Hellsten, Högbom, Johansson, Meili,
Munthe, Nilsson, Porvari, Skyllberg,
Sorensen, Zetterberg, Åkerblom.
Garcia & Carignan 1999, Porvari et al., 1999,
Munthe and Hultberg et al., 2004
Consumptive water use by terrestrial ecosystems as seen in a global perspective. (Falkenmark in SIWI Seminar 2001).
Some of the ”More” to
Mercury
in Swedish Fish
Harvest Effects ≈ Upland/Wetland
Difference
8
6
PostLogging
4
PreLogging
2
0
PreTrack
Finland, Porvari et al, 2001
PostTrack
Sweden, IVL News, 2002
Wetlands
Wetland
Hotspots
6
10-30
Harvest
mg/ha/yr MeHg
mg/ha/yr MeHg
8
Harvest Increases Mercury in Fish &
Runoff
Canada, Finland, Sweden, Amazon
4
Forest
Harvest
Wetlands
Uplands
2
0
Shanley and Bishop, 2012.
Sources: St. Louis et al., 1994; Krabbenhoft et
al., 1995; Bishop and Lee, 1997; Lee et al., 2000.
Sulfur Rain
Garcia & Carignan 1999, Porvari et al., 1999,
Munthe and Hultberg et al., 2004
11
9/17/2015
Where would World Hydrology be if
more people spoke Swedish in 1930 (BK 70)?
Lake Titration Model Wrong
• Acid Episodes even with Alkaline Rain
• Soil Acidification the key
• Explanatory Model needed
– Mobile Anion Hypothesis
• Hydrology needed to support chemistry
25
6.0
pH
5.5
15
5.0
10
4.5
5
4.0
pH
mm/day
Flow
20
0
870723
3.5
870730
870806
Henrik Hesselman 1909. Berättelse öfver den botaniska afdelningens
verksamhet åren 1906-1908 jämte förslag till program. Medd. från Statens
Skogsförsöksanstalt 6: 27-52.
12