9/17/2015 Catchment Science: A Short History of the ”Pre-Krycklan” (B.K. 100-0) Krycklan’s Deep Roots: Swedish Forest Hydrology Two approaches (as identifed by Harald Grip): Forest Hydrology Issues* Production 1903-1931 Swampification 1905 Forest ditching 1912 Fertilization 1968 Acidification Processes Water Flowpaths and Residence Times Water and Element balances Weathering and soil formation •Production: How can we increase the amount and quality of timber/biomass at less cost? 9/17/2015 1 •Effects: What are consequences for aquatic ecosystems and the water balance.? First Hydrological Hillslope Study: Rokliden, Piteå, 1905 Our Origin: Swampification Statens skogsförsöksanstalt Skogshögskolan S-fak, SLU Skogforsk LU LTH KTH UU UmU IVL SJFR (Formas) NFR (VR) SNV (NV) Harald Grip’s summary, paper in preparation Effects Harvest Ditching Fertilization Acidification What if the Hydrological World Spoke Swedish? Would ”Tammian Subsurface flow have replaced Horton? Lively debates in the 1800’s Forest Research Institute’s agenda - 1903 Henrik Hesselman, botanist 25 years to resolve Swampification in Norrland Malmström 1923. Degerö stormyr. En botanisk, hydrologisk och utvecklingshistorisk undersökning över ett nordsvenskt myrkomplex. Avhandl. 1 9/17/2015 SLU Forest Hydrology Theses Harvest Effects (Kloten Science Collective 1970s) Evapotranspiration Hesselman 1910. Om vattnets syrehalt och dess inverkan på skogsmarkens försumpning och skogens växtlighet. Romell 1922. Luftväxlingen i marken som ekologisk faktor. Avhandl. Swedish Coniferous Forest Ecology Project Computers key to an ecosystem model Tänkta flöden av kol, vatten och mineralämnen Malmström 1923. Degerö stormyr. En botanisk, hydrologisk och utvecklingshistorisk undersökning över ett nordsvenskt myrkomplex. Avhandl. (NOPEX – pre-ICOS) Tamm 1931. Studier över jordmånstyper och deras förhållande till markens hydrologi i nordsvanska skogsterränger. Avhandl. Flowpaths Nordén 1989 Water use by Norway spruce Who When Where Tracer Henrik Hesselman 1921 G ClOlof Tamm 1931 G O2 Tryggve Troedsson 1955 G, M Gert Knutsson 1971 G ja 3H Lars Lundin 1982 G, M, A 18O Allan Rodhe 1987 G, A 18O Bengt Espeby 1989 G, M Kevin Bishop 1991 G, M, A 18O 18O Lars Nyberg 1995 G, A Hjalmar Laudon 2004 G, M, A 18O Notes. Dilution Flow arteries Översilning, Ådror Pump tests Ksat decline with dept Isotope Hydrograph Sep. Physical modeling Transmissivity Feedbac Topographic influence Spring flood acidity Magnusson 1992 Temporal and spatial variation of the soil atmosphere in forest soils of northern Sweden Mätning av vatten- och energibalans i tallskog i Jädraås (EBBR) Modeller Halldin: Kausha Halldin, Jansson: SOIL CoupModel Giesler 1996 Chemistry of soil solution extracted by centrifugation Nylén 1996 Uptake, turnover and transport of radiocaesium in boreal forest ecosystems Nederbörd Granberg 1998 Environmental control of methane emission from boreal mires Lufttemp. CO2 Rapp 1998 Critical loads for surface waters: Validation and challenges (Lic) Plamboeck 1999 Root activity in Scots pine dominated stands assessed by isotopic methods Oleskog 1999 The effect of seedbed substrate on moissture conditions, germination and seedling survival of Scots pine Laudon 2000 Separating natural acidity from anthropogenic acidification in the spring flood of northern Sweden LAI SWECON 1973-1978 C Marktemp. H2 O Flöde Påverkan Förråd Påverkande variabel NFR, Ekologikommittén, 1972. Barrskogslandskapets ekologi, Projektbeskrivning Swedish Effects Research An invasive exotic species? Inspired 1970’s ”Kloten Collective” • Hydrology, Aquatic Ecology, Biogeochemistry • Harald Grip and Svartberget, • • • • Svartberget’s Startup 1980-1990 Nutrient loss after harvest (Kaj Rosén) Acidification (Harald Grip) Isotope Hydrology (Allan Rodhe) Quiz: 1. Name this iconic experiment 2. Why is it so misunderstood? 2 9/17/2015 Svartberget: Swedish National Encyclopedia’s Definition of Catchment (Avrninningsområde) Acid Rain 1970-1990 (rest in peace?) • 1900-talet Forestry ≈ Acid Rain • 2000-talet Forestry >> Acid Rain Grip, H. och Rodhe, A. 1994. Vattnets väg från regn till bäck. Hallgren & Fallgren Studieförlag, 3 upplagan, s.154. 101 Cambridge Acid Rain Expedition 86-88 10,000 Groundwater measurements (all manual) One Good Idea: Dig! 100 Acid Stream pH 4-5 99 Circumneutral Shallow Groundwater pH 6.5-7.5 98 Round-the-Clock Stream Sampling of flow episodes Ground surface Groundwater level Riparian Zone ??? 97 -30 -20 -10 0 10 20 30 meters Built Subsurface Flow Picture A picture of water chemistry changing downstream (Acid hotspot from a topographic hollow at low flow) 3 9/17/2015 Harvest Effects (Kloten Science Collective 1970s) Put the Stream and it’s Catchment together Evapotranspiration (NOPEX – pre-ICOS) Met at the riparian zone Flowpaths Who When Where Tracer Henrik Hesselman 1921 G ClOlof Tamm 1931 G O2 Tryggve Troedsson 1955 G, M Gert Knutsson 1971 G ja 3H Lars Lundin 1982 G, M, A 18O Allan Rodhe 1987 G, A 18O Bengt Espeby 1989 G, M Kevin Bishop 1991 G, M, A 18O 18O Lars Nyberg 1995 G, A Hjalmar Laudon 2004 G, M, A 18O Notes. Dilution Flow arteries Översilning, Ådror Pump tests Ksat decline with dept Isotope Hydrograph Sep. Physical modeling Transmissivity Feedbac Topographic influence Spring flood acidity Where does runoff come from? Where does runoff come from? 18O: Natural Tracers of Water = 99.763% 17O = 0.0375% 18O = 0.1995% • Swedish studies have shown that event rainfall is a small part of event runoff. Precipitation Nature’s tracer Catchment or hillslope -4 18O‰ 16O • Chemical tracers can identify sources of runoff in the catchment. -8 -12 -16 Runoff -4 Residence Time 2 years Average -9.4‰ Amplitude 10.1‰ Std Dev. 3.4 ‰ -8 -12 18O‰ DOC, Mercury, Acidity, metals… -16 Average -9.4‰ Amplitude 1.2‰ Std Dev. 0.6 ‰ Convolution Integral Plummer et al., Chem. Geology 2001 4 9/17/2015 0.4 DOC Discharge ClCa2+ 40 -1 -1 total flow old water Discharge (mm h ) 0.2 0.1 0.0 Apr 1 Apr 15 Apr 29 May 13 0.3 30 0.2 DOC (mg/L) Discharge (mm h ) Hydrology’s Double Paradox How does “old” water increase so quickly with such different chemical dynamics Wetland outlet 0.1 0.0 Apr 1 Apr 15 Apr 29 May 13 20 180 160 140 120 100 Västrabäcken (C2) - Spring 1997 80 60 10 Flow L/s or ueq/L Forested stream 40 20 0 11-Apr 0 25-Apr 9-May 23-May 6-Jun 27 Transmissivity Feedback Vertical differentiation of flow & residence times, 1. Rain raises water table, 2. saturates larger pores in more conductive, superficial soil layers 3. Transmissivity increases 4. More water flow downslope Transmissivitythe ability of a soil profile to transmit water downslope Rodhe, 1989 Water residence time traversing a one meter wide swathe of soil under saturated flow conditions, Bishop and Seibert, Hyd. Proc. 2011 5 9/17/2015 A Conceptual Layer Cake Liming Goal: Always pH > 5,6 101 One Good Idea: Dig! 100 Riparian Soil Profile Chemostat Acid Stream pH 4-5 99 Circumneutral Shallow Groundwater pH 6.5-7.5 98 Ground surface Groundwater level Riparian Zone ??? 97 -30 -20 -10 0 10 20 30 meters Fish Die Only Once: Spring Flood Is liming the right remediation? Köhler, S.J. (1999) Quantifying the Role of Natural Organic Acids on pH and Buffering in Swedish Surface Waters. Doctoral Thesis Acta Universitatis Agriculturae Sueciae, Silvestria 92, Laudon, H. (2000) Separating Natural from Anthropogenic Acidity in the Spring Flood. Doctoral Thesis Acta Universitatis Agriculturae Sueciae, Silvestria 160, 6.0 15 5.5 10 5.0 5 Discharge (mm day-1) 20 6.5 pH Breeding sites, migration barriers, fishing pressure Dissolved Organic Carbon (DOC) – An acid - Often increases with runoff! Discharge pH 4.5 04/15 04/22 04/29 05/06 05/13 05/20 05/27 0 Photo: Stefan Löfgren 6 9/17/2015 • Learn from the past • Leverage the knowledge • Don’t be a Rökliden • Get your work out • Don’t be intimidated • The big questions remain Thanks for your time! …and all these years to dig into the RZ with friends and colleagues. They were great years, But science moves on, And the Krycklan era was about to begin ©Bill Waterson Water Storage and residence time in a till catchment: The Gårdsjön Roof Experiment Infiltration Excess Overland Flow (IEOF) or Horton Overland Flow (HOF) Department of Aquatic Science and Assessment 7 9/17/2015 Time-1 [day-1] -10 groundwater storage 0.012 -8 Monthly mean precipitation -12 mil] [per -14 50 g(t) T=65 0.010 0.008 precipitation 0 01/04/91 01/05/91 31/05/91 30/06/91 30/07/91 29/08/91 28/09/91 28/10/91 27/11/91 27/12/91 26/01/92 25/02/92 26/03/92 25/04/92 25/05/92 -10 0.006 0.002 0.000 -18 0 50 100 150 200 250 300 cCREW Forested system Cold Climate REsearch in boreal Watersheds http://ccrew.sek.slu.se/ S04 Cold Climate REsearch in boreal Watersheds http://ccrew.sek.slu.se/ S22 Soil surface S12 10 mm day-1 1,5 Soil surface S12 S04 10 mm day-1 0.1 mm day-1 0,5 -15 -15 -15 0,0 0 -14 -13 18O 5 -12 -14 -13 18O -12 -14 -13 18O -12 1 mm day-1 (m) (m) 1 mm day-1 1,0 1,0 0.1 mm day-1 0,5 -15 -15 0,0 10 15 20 Distance from stream (m) 25 Runoff cCREW Forested system 2,0 S22 0 10 Day [flow-corrected time] 1,5 b. Evapotranspiration 0.004 -16 2,0 unsaturated storage 100 0.014 Irrigation -6 8O 150 0.016 Precipitation -4 total water storage 200 (mm d-1) 0 250 Also shown is an exponential transit time distribution (Eq. 13) with the mean transit time T = 65 days (flow corrected time 01/90 07/90 01/91 07/91 01/92 07/92 01/93 07/93 01/94 -2 Daily irrigation and water storage (total, unsaturated, groundwater), as well as (b) runoff and modeled evapotranspiration for a two year period starting in April, 1991 [mm] 18O of the input water to G1, from February 1990 to December 1993. Transit time distribution obtained from the breakthrough curve for new water (flow corrected time). 0 -14 -13 18O 5 -15 -14 -13 18O 10 15 -12 -12 20 -14 -13 18O -12 25 Distance from stream (m) 8 9/17/2015 Hydrograph Separation quickflow and baseflow Graphical Methods of Hydrograph Separation 9 9/17/2015 Vattenpotentialen varierar mycket inom en liten yta på Svartberget Sweden’s contribution to hydrological modeling: Scandinavian simplicity Are Forests Good for Water Resources? ”Footprints”, Forest Waters and #3 Environmental Certification More and more metrics of environmental performance ”Soil Sponge” ”Rainfall attractor” Increasingly, consumers are basing their purchasing decisions on the real or perceived environmental impact of goods and services. vs. Thief L.-G. Nordén, 1989. Water use by Norway Spruce – a study of two stands using field measurements and soil water modelling. Dep. Forest Site Research, SLU, Umeå The Forest - Water Debate: A Question of Scale • Most Agree: Trees Increase Evapotranspiration – Demand-side View: Reduces runoff – Supply-side View: Recycles Water, Increases Rain • View point depends on Scale – Demand at Small Scale – Supply at Large Scale The wrong tools may unfairly penalize the forest sector 10 9/17/2015 Harvest Increases Mercury in Fish & Runoff Canada, Finland, Sweden, Amazon Blue & Green Water – Pathways “…between 10% and 25% of the Hg in the fish of high-latitude, managed forest landscapes can be attributed to harvesting.” percentages Ambio 2009, 38:373-380 Bishop, Allan, Bringmark, Garcia, Hellsten, Högbom, Johansson, Meili, Munthe, Nilsson, Porvari, Skyllberg, Sorensen, Zetterberg, Åkerblom. Garcia & Carignan 1999, Porvari et al., 1999, Munthe and Hultberg et al., 2004 Consumptive water use by terrestrial ecosystems as seen in a global perspective. (Falkenmark in SIWI Seminar 2001). Some of the ”More” to Mercury in Swedish Fish Harvest Effects ≈ Upland/Wetland Difference 8 6 PostLogging 4 PreLogging 2 0 PreTrack Finland, Porvari et al, 2001 PostTrack Sweden, IVL News, 2002 Wetlands Wetland Hotspots 6 10-30 Harvest mg/ha/yr MeHg mg/ha/yr MeHg 8 Harvest Increases Mercury in Fish & Runoff Canada, Finland, Sweden, Amazon 4 Forest Harvest Wetlands Uplands 2 0 Shanley and Bishop, 2012. Sources: St. Louis et al., 1994; Krabbenhoft et al., 1995; Bishop and Lee, 1997; Lee et al., 2000. Sulfur Rain Garcia & Carignan 1999, Porvari et al., 1999, Munthe and Hultberg et al., 2004 11 9/17/2015 Where would World Hydrology be if more people spoke Swedish in 1930 (BK 70)? Lake Titration Model Wrong • Acid Episodes even with Alkaline Rain • Soil Acidification the key • Explanatory Model needed – Mobile Anion Hypothesis • Hydrology needed to support chemistry 25 6.0 pH 5.5 15 5.0 10 4.5 5 4.0 pH mm/day Flow 20 0 870723 3.5 870730 870806 Henrik Hesselman 1909. Berättelse öfver den botaniska afdelningens verksamhet åren 1906-1908 jämte förslag till program. Medd. från Statens Skogsförsöksanstalt 6: 27-52. 12
© Copyright 2024