Teknisk Psykologi (Engineering Psychology) 729g42 Daniel Västfjäll & William Hagman Kursmål Efter avslutad kurs ska den studerande kunna • - beskriva, identifiera psykologiska och tekniska faktorer som påverkar samspelet mellan människan och den fysiska och sociala omgivningen, • - muntligt och skriftligt redogöra för centrala teorier, modeller, metoder och forskningsfynd inom teknisk psykologi och kognitiv ergonomi, • - analysera olika lösningar och praktiskt tillämpa kunskaper om människans kognitiva och biologiska förutsättningar och begränsningar i interaktionen människa-maskinsystem och människa-dator interaktion, • - beskriva hur teknisk psykologi som vetenskaplig disciplin förhåller sig till angränsade discipliner som kognitiv psykologi, neurovetenskap, lingvistik, filosofi och datavetenskap. Under kursens gång fokuseras följande områden: • - Människan som ett biologiskt och psykologiskt system • - Perceptuella förutsättningar för god ergonomi och människa-dator interaktion • - Grundläggande fysiologisk ergonomi • - Kognitiva, emotionella och fysiologiska förutsättningar för människa-system interaktion och människa-dator interaktion • - Tillämpningar av ergonomi och human factors i olika kontexter såsom design av datorsystem, användarstöd, och informationssystem. Begränsningar i: Biologi Perception Kognition Emotion Tillämpning Mätning: Biomekanik NeuroErgonomi ERP Haptics and music Auditory displays Hearing/CI Psykofysik Human Error Pilot Decision-making WM/Spatial Emotional design Affective Computing Begränsningar = Förutsättningar: Heuristics 130402 130404 130404 130405 130409 130411 130411 130412 130418 130419 130425 130425 130426 130502 130502 130503 Introduktion Kognitiva begränsningar 1 Fördjupningsarbete 1 Perceptuella begränsningar 1 Perceptuella begränsningar 2 Perceptuell tilllämpning Fördjupningsarbete 2 Kognitiva begränsningar 2 Biomekanik Perceptuell mätning/Psykofysik Emotionella begränsningar Fördjupningsarbete 3 Perceptuell till: Haptics and music Emotionell tillämpning Fördjupningsarbete 4 Kog mätning: ERP Cortical brain 8-10 Daniel Västfjäll William Hagman 13-15 Daniel Västfjäll 15-17 William Hagman 10-12 Daniel Västfjäll 8-10 Daniel Västfjäll 13-15 Daniel Västfjäll 15-17 William Hagman 10-12 Daniel Västfjäll 13-15 Jonas Stålhand 10-12 William Hagman 13-15 Daniel Västfjäll 15-17 William Hagman 11.00-12 Erkin Asutay 13-15 Daniel Västfjäll 15-17 William Hagman 10-12 Carinne Signoret 130507 130514 130516 130516 130517 130523 130523 130524 130528 130530 130530 130604 No lecture 8-10 No lecture 8-10 Human error 13-15 Pilot Decision Making 15-17 Kog tillämpning: Hear cognition 10-12 Kog till: CI and Cognition 13-15 Fördjupningsarbete 6 15-17 Kog tillämp: spatial WM and HMI 10-12 Reserv 8-10 Presentation fördjupningsarbete 13-15 Presentation fördjupningsarbete 15-17 Tenta PREL PREL Johan Lindvall Johan Lindvall Thomas Lunner Cecilia Henricsson William Hagman Kenny Skagerlund William Hagman Daniel Västfjäll Tenta 4 hp • Skriv om 2 frågor i essäform • En lista med möjliga frågor kommer att delas ut i v18 • Typ” beskriv Wickens informationsbearbetningsmodell” Fördjupningsarbete 2 hp Veckovis seminarie/inlämning av examinationsuppgift. Uppgift (genomförs i grupper om 4-5): • Identifiera en problematik i valfri tillämpning där ni tror att kunskap inom teknisk psykologi kan leda till en förbättring. Inledningsvis, beskriv valt problem i detalj. Utifrån föreläsningar och kurslitteratur ska ni sedan på en veckobasis arbeta med en plan för angripa er valda problematik. Under veckan finns schemalagd tid att arbeta med detta (minst 2 timmar per vecka) och tid för handledning. • Till sista veckan ska det finnas en färdig rapport där ni beskriver och analyser hur minst 5 relevanta aspekter som föreläsningar/boken berört kan användas för att ”lösa” ert problem. Rapporten ska presenteras gruppvis den 30/5. Ytterligareinformation ges på torsdag 4/5 0205945740.jpg 200×252 bildpunkter Teminologi • Engineering Psychology (det som händer ovanför nacken….) • Applied-Experimental Psychology • Human Performance Engineering • Human Factors • Ergonomics • Cognitive Ergonomics • Cognitive Engineering • Human-Machine Interaction (HMI) Affordance (Gibson) An affordance is a quality of an object, or an environment, which allows an individual to perform an action. For example, a knob affords twisting, and perhaps pushing, while a cord affords pulling. • • • • • See handle Reach out hand Grasp handle Turn handle Pull door Bilder från Raja Parasuraman Using tools • Form: Physical appearance • Function: Sequence of activity • Experience: Knowledge of use The Cooker Problem #1 Which control acts on which ring? The Cooker Problem #2 Which control acts on which ring? Spatial Compatibility? http://www.baddesigns.com/boombox.html Direction of motion Stereotypes 1 2 3 4 ? 1 2 5 6 ? 3 4 Clockwise = increase Clockwise = right 5 6 Clockwise to Increase? 7 6 5 4 3 2 1 Rule I: to set time turn control; Rule II: to set time < 15s, turn control past 15s and then turn back to desired time http://www.baddesigns.com/timer.html Conclusions… • We have learned ‘routines’ for how to use many technologies • We apply these routines ‘automatically’ • When the routines succeed, they are reinforced • When the routines fail, we shift from ‘automatic’ to ‘problem-solving’ activity Historen bakom Teknisk Psykologi Overview • • • • What this course is about What this course is not about Course objectives Topics – History of Human Factors – The Systems Approach Professional Societies • Applied-Experimental and Engineering Psychology (Division 21, American Psychological Association) – Journal: Journal of Experimental Psychology: Applied • Human Factors and Ergonomics Society (USA) – Journals: Human Factors, Ergonomics in Design, Journal of Cognitive Engineering • Ergonomics Society (UK) – Journal: Ergonomics; Applied Ergonomics • International Ergonomics Association (IEA) • ACM Special Interest Group on Computer-Human Interaction (SIG-CHI) – Journal: CHI Proceedings • IEEE Systems, Man, and Cybernetics Society – Journal: IEEE Transactions on Systems, Man, and Cybernetics, Part A. Systems and Humans What this course is about • Provides a basic background on the role of human cognitive capabilities and limitations in the design of products, work places, and large systems. • The course emphasizes theories and findings on human performance, rather than the design of systems per se. What this course is NOT about • A course in cognitive engineering design • A basic course in cognitive psychology Engineering Psychology vs. Human Factors vs. Experimental Psychology The aim of engineering psychology is not simply to compare two possible designs for a piece of equipment [which is the role of human factors], but to specify the capacities and limitations of the human [generate an experimental data base] from which the choice of a better design should be directly deducible. (Poulton, 1966) Why this Course is Not Human Factors Design Boeing 777 Flight Deck! Designing a safe and! efficient automated cockpit! ! ! Successful design may involve ! the application of human performance principles, but ! not necessarily their discovery! Designing a safe and ! usable infusion pump! ! Why this Course is Not Cognitive Psychology Stimulus! Response! Inferred Information ! Processing Components! ! ! The Machinery of the Mind ! Why this Course is Not Cognitive Neuroscience Stimulus! Response! Peering into the Black Box ! Because Minds and Brains are Situated —in a Body and Environment with Artifacts and Tools—Hence Engineering Psychology Why this Course is Not Cognitive Psychology or Cognitive Neuroscience Successful cognitive psychology or cognitive! neuroscience may involve the discovery of! principles, but with no requirement to! apply those principles or to ensure that! they describe phenomena outside the laboratory! Neuroergonomics Using Brain Function to Enhance Human Performance in Complex Systems Neuro-Ergonomics The scientific study of brain mechanisms and psychological and physical functions of humans in relation to technology, work, and environments In this course: • Understand the major cognitive theories and empirical findings in several domains of human performance • Examine the role of these theories in modern human-machine systems • Understand how human performance theories can improve design and enhance training • BUT NOT DESIGN SOLUTIONS OR METHODS! Resources • Books—General – Salvendy (1997), Handbook of Human Factors & Ergonomics, 2nd, Edition. – Wickens, Gordon, & Liu (1998), Introduction to Human Factors Engineering. – Matthews et al. (2000), Human Performance – Gawron (2000), Human Performance Measures Handbook – Proctor and Van Zandt (1994) Human Factors in Simple and Complex Systems Resources • Books—Specific – – – – – – – – – Vicente (1999), Cognitive Work Analysis Vicente (2004), The Human Factor Norman (1999), The Invisible Computer Parasuraman and Mouloua (1996), Automation and Human Performance Sheridan (2002), Humans and Automation Sarter and Amelberti (2000), Cognitive Engineering in the Aviation Domain Wickens et al. (1998), The Future of Air Traffic Control Backs and Boucsein (2000), Engineering Psychophysiology Parasuraman and Rizzo (2007), Neuroergonomics: The Brain at Work Resources • Journals—Main – – – – – – Human Factors Ergonomics Journal of Experimental Psychology: Applied CHI Proceedings HFES Proceedings Theoretical Issues in Ergonomics Science • Journals—Secondary – – – – – – – International Journal of Aviation Psychology International Journal of Cognitive Ergonomics International Journal of Human-Computer Studies Applied Ergonomics Applied Cognitive Psychology Ergonomics in Design IEEE Transactions on Systems, Man, & Cybernetics: Part A. Systems and Humans Resources • A Few Web Sites – Human Factors and Ergonomics Society: http://hfes.org – ACM Special Interest Group on Computer-Human Interaction: http://www.acm.org/sigchi/ – University of Illinois, Institute of Aviation: http://skylane.aviation.uiuc.edu/ – Bad Human Factors Designs: http://www.baddesigns.com/ Human Factors: A Brief History Historical Overview • 1890 s - 1920 s – Time-and-motion studies – Taylor s scientific management • Use time and motion analysis to determine the most efficient method for performing each component task in a job • Link employee compensation to a piece-rate system (to maximize employee work effort) • Select and train employees based on a their skills, intelligence, and personality – Mass production and the assembly line – Industrial safety History of Human Factors in Design The Best Way to Lift Bricks • Frank and Lillian Gilbreth: …to lift 90 pounds of brick at a time is most advantageous physiologically as well as economically … Bricks/Lift Weight/Lift (lbs) 1 5 18 90 24 120 Work/Hour (kCal) Bricks/Hour 520 250 285 600 450 300 Optimal Procedure [Data Source: Moore and Andrews, 1997] Historical Overview (contd.) • 1930 s - 1940 s – Selection and training – Army IQ test – Job training methods • The birth of Industrial/Organizational (I/O) Psychology Historical Overview (contd.) • 1940 s-1950 s • Problems with military systems--even for skilled, well trained, motivated operators – Army: Accidents in using new artillery systems (Broadbent, 1958) – Air Force: Aircraft crashes (Fitts & Jones, 1947) – Royal Air Force (UK): Airborne radar operators missing U-boat contacts (Mackworth, 1950) Historical Overview (contd.) • 1960 s - 1970 s: NASA and the space program • 1980 s - present: The personal computer revolution – Graphical user interface; mouse (Xerox→Apple→Microsoft) – Catastrophic accidents involving poor HF design • Nuclear power (Three Mile Island, Chernobyl) • Aviation (Korean Airlines shooting down, American Airlines Cali accident, etc.) • 2000 - : Diversification: from military and space systems to transportation, robotics, consumer products, aging, health care, home automation, etc. Key Historical Figures F. W. Taylor, USA 1860s - 1910s Donald Broadbent UK, 1950s - 1980s Paul Fitts, USA 1950s - 1970s Michael Posner, USA 1970s present Key Historical Figures (contd) Donald Norman, USA 1980s - present Christopher Wickens, USA 1980s - present Wickens information processing model – en form…
© Copyright 2024