Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Cardinal invariants and Tukey reduction ÜäJ oAŒÆêÆÆ 2016-05-21 E 2016c IênÜ6ï?¬ ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ nŽ ½Â ¡ I ⊆ P(ω) ´g g, ê þ nŽ , e I ÷vµ (1). ∅ ∈ I, ω 6∈ I. (2). e I, J ∈ I, KI ∪ J ∈ I. (3). e I ∈ I ¿… J ⊆ I, KJ ∈ I. ½Â ¡ F ⊆ P(ω) ´g g, ê þ ´g,êþ nŽ. Èf, e F ∗ = {A ∈ P(ω) : Ac ∈ F} ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ nŽ ~f ~f F in = {A ⊆ ω : |A| < ω} n n+1 )| Z0 = {A ⊆ ω : limn→∞ |A∩[2 2n,2 P 1 I 1 = {A ⊆ ω : n∈A n+1 < ∞}. = 0}. n ∅ × F in = {A ⊆ ω × ω : ∀n ∈ ω(|An | < ω)} KM = {A ∈ K(2ω ) : A ´1˜j8}. KN = {A ∈ K(2ω ) : A ´"ÿ8}. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Borel8Ü ½Â X ´˜‡ Œ© Ýþ˜m. Borel(X) ⊆ P(X) L«•¹m8 • σ-“ê. Σ11 (X) = {f (A) ⊆ X : f : X → XëY, A ∈ Borel(X)}. ?¿ξ < ω1 : Σ01 (X) = {U ⊆ X : U ´m8} Π0ξ (X) = {A ⊆ X : Ac ∈ Σ0ξ (X)} S Σ0ξ (X) = { n∈ω An : An ∈ Π0ξn (X), ξn < ξ, n ∈ ω} ∆0ξ (X) = Σ0ξ (X) ∩ Π0ξ (X) S S S Borel(X) = ξ<ω1 Σ0ξ (X) = ξ<ω1 Π0ξ (X) = ξ<ω1 ∆0ξ (X) Σ01 ∆01 Σ02 (Fσ ) ∆02 Π01 ··· Π02 (Gδ ) ÜäJ ∆0ξ Σ0ξ ··· Π0ξ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ BorelnŽ ÏLA ←→ χA ò P(ω) ←→ 2ω À• d. 2ω Dƒ¦ÈÿÀ. ½Â ¡ I ⊆ P(ω) ´Borel, eI ∈ Borel(2ω ). ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ |Ü |ܵA½ S ( : Tukey'X, ' Ɖ. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Tukey'X (X, ≤X ), (Y, ≤Y ) ´½• S8. N f : X → Y ¡• Tukey N ,e A ⊆ X Ã.=⇒ f (A) ⊆ Y Ã.. e•3 X Y Tukey N , ¡ X Tukey 8 Y . P• X ≤T Y e X ≤T Y … Y ≤T X, ¡ X Tukey du Y . P• X ≡T Y ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Tukey'X 5Ÿ1 ½n (Tukey 1940) (X, ≤X ), (Y, ≤Y ) ´½• S8. X ≡T Y …= •3½ • S8 (Z, ≤Z ) ¦ (X, ≤X ), (Y, ≤Y ) ÑU —i\ (Z, ≤Z ). ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Tukey'X 5Ÿ2 éó * :: N g : E −→ D ¡• X⊆E — ,e —=⇒ g(X) —. ·K ∃f : D −→ E ´TukeyN ⇐⇒ ∃g : E −→ D ´ —N ¿…, f, gŒ± ÷vXe'Xµ ∀d ∈ D∀e ∈ E(f (d) ≤E e =⇒ d ≤D g(e)) ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ Tukey'X 5Ÿ3 †ÄêØCþ éX: add(D) = min{|A| : A ⊆ DÃ.} cof (D) = min{|A| : A ⊆ D —} ·K (Schmidt 1955) D ≤T E =⇒ add(E) ≤ add(D), cof(D) ≤ cof(E) ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤1 ½n (S. Todorčević 1985) b½ PFA. X ´½• S8… |X| = ω1 , K X Tukey u: 1, ω, ω1 , ω × ω1 , [ω1 ]<ω ƒ˜. d ½n (S. Todorčević 1985) •3 2ω1 ‡Œ • c …üü Tukey Ø d ½• ÜäJ S8. Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤2 ½n (D. Fremlin 1991) ω ω ≤T KN ≤T Z0 ≤T l1+ . KN ≤T KM ≤T l1+ . KN 6≤T ω ω . Z0 6≤T KM . ½n (D. Fremlin 1991) (a) K(X) ≡T {0} (b) K(X) ≡T ω (c) K(X) ≡T ωω (d) e X ´Œ© …= …= …= Π11 X ´;˜m. X ´Œ©, ÛÜ; š; ˜m. X ´šÛÜ; š Polish ÜäJ Polish ˜m. ˜m, K K(X) ≡T K(Q). Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤3 ½n (A. Louveau, B. Velickovic 1999) ?¿nŽ I ≤T ω ω , K I ≤T ω ½ö I ≡T ω ω . ?¿š Fσ nŽ I Ñk ω ω ≤T I. ?¿Σ11 P-nŽ I 6≤T ω Ñk ω ω ≤T I ≤T I 1 . n (P(ω), ⊆∗ ) Œ±i\ Σ11 P-nŽŠ‘ Tukey 'X. ½Â P-nŽµ?¿{An : n ∈ ω} ⊆ I, •3A ∈ I ¦ ∀n ∈ ω(|A \ An | < ω). ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤4 ½Â Ä X ´˜‡Œ©Ýþ˜m, ≤ ´ X þ ˜‡ S. ¡ (X, ≤) ´ XJ÷vXe^‡: (1) ?¿ x, y ∈ X, •3˜‡• þ(. ∨(x, y), =, ∨(x, y) ≥ x, y … ∀z ∈ X(x, y ≤ z ⇒ ∨(x, y) ≤ z). ¿… ∨ : X × X → X ´ëYN . (2) ?¿k.S k˜‡Âñ fS . (3) ?¿ÂñS k˜‡k. fS . ½n ( S. Solecki, S. Todorčević 2004) X Ú Y ´ Σ11 —N . Ä S. e X ≤T Y , K•3˜‡ Borel Œÿ ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤5 ½Â I ´g,êþ Σ11 P-nŽ: D(I) = {K ∈ MK(2ω ) : ∃x ∈ I∀n ∈ ω(x\n 6∈ K)}. ½n (S. Solecki, S. Todorčević 2004) I Ú J ´ ω þ Σ11 P-nŽ¿… J 6= F in. e I ≤T J , K D(I) ≤T D(J ). I ´Σ11 P-nŽ. e ω ω <T I, K D(I) <T I. e I ´ ω þ Σ11 P-nŽ, K D(I) ≤T KM . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø1 ¯K (D.Milovich 2008) ´Ä•3‡È Tukey duω ω ? ½n 1 F ´ ω þ ˜‡Èf. e F ≤T ω ω , K•3ëY üN —N g : ω ω → F. AO/, F ´Σ11 . 2 •3˜‡Σ11 3 •3?¿p nŽ I ≡T ω ω . Borel E,Ý nŽ Tukey 4 Ø•3 Fσ nŽ Tukey du ω ω . du ω ω . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø2 ¯K (S. Solecki, S. Todorčević 2004) KM ≡T D(I 1 )? KN ≡T D(I 1 )? n n ½n KM 6≤T D(I 1 ). n I1 n KM Z0 D(I 1 ) n KN D(Z0 ) ωω ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø3 ½n F ´ ω þ ˜‡1 j P-Èf. e ω ω ≤T F, K: (1) Ø•3 σ(Σ11 )-Œÿ (2) •3ëYüN Tukey N . —N . íØ U ´˜‡‡È. U ´ P-: „y ω ω ≤T U. …= Ø•3 Borel Œÿ Tukey N ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø4 ½n I´ωþ Fσ nŽ. e (I, ⊆) ≤T KM , K I ≤T ω. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ÄêØCþ ½Â (Vojtáš 1993) ˜‡ Vojtáš n |´• A = (A− , A+ , A), Ù¥ A ´l A− A+ 'X. ½Â† A k' ÄêØCþXe: kAk = min{|D| : D ⊆ A+ , ∀a ∈ A− ∃d ∈ D(aAd)} ù ÄêØCþ•): d =k (ω ω , ω ω , ≤∗ ) k. b =k (ω ω , ω ω , 6≥∗ ) k. r =k ([ω]ω , [ω]ω , Ø©•) k. s =k ([ω]ω , [ω]ω , ©•) k. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ •õ ÄêØCþ ½Â (S. Coskey, T. Mátrai , J. Steprāns , 2013) A Ú B ´ Vojtáš n |, P ´ A+ A k' XeÄêØCþ: f8 ˜‡5Ÿ. ½Â† kAkP = min{|D| : D ⊆ A+ k5Ÿ P , ∀a ∈ A− ∃d ∈ D(aAd)} ù ÄêØCþ•): a =k ([ω]ω , [ω]ω , 6⊥) káA u =k ([ω]ω , [ω]ω , Ø Ø x, ©•) k¥% , i =k ([ω]ω , [ω]ω , Ø©•) p =k ([ω]ω , [ω]ω , 6⊆∗ ) k)¤Õáx , k¥% . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ÄêØCþBorel ½Â A = (A− , A+ , A) Ú B = (B− , B+ , B) ´Borel Vojtáš n |, P ´ A+ f8 5ŸÚ Q ´ B+ f8 5Ÿ. ¡ (ϕ, ψ) ´l A B Borel , e Borel N ϕ : B− −→ A− , ψ : A+ −→ B+ ÷vXe'X: (1) F k5Ÿ P =⇒ ψ(F) k5Ÿ Q. (2) ∀b− ∈ B− ∀a+ ∈ A+ (ϕ(b− )Aa+ =⇒ b− Bψ(a+ )). eXþ Borel •3, ·‚P kAkP ≤BT kBkQ . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤ Theorem[Coskey, Mátrai, Steprāns, 2013] ZFC-provable (≤) d i u ? a r Borel Tukey (≤BT ) i @ r @ @ @ ? ? R s ? d u a @ @ ? ? R b ? b s @ @ R @ ? p p ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø ¯K (Coskey, Mátrai, Steprāns, 2013) t ≤BT b? ½n (1) t 6≤BT b. (2) t 6≤BT a. (3) t 6≤BT d. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ½Â I Ú J ´ ω þ nŽ. I Ú J ƒm ' Ɖ, P• G(I, J ), ´•: · · · In ∈ I ··· J0 ∈ J · · · Jn ∈ J · · · S S [ II I, XJ n∈ω In ∈ I ⇔ n∈ω Jn ∈ J ¤á. ÄK, I. XJ [ II k˜‡-I üÑ, ·‚P I v J . XJ I v J ¿… J v I, ·‚P I ' J . I II I0 ∈ I ÜäJ [I Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ÄÅ ½Â N f : I → J ¡•ü üN Tukey, e f ´ Tukey N ¿… f ´ü N . eù N •3, ·‚¡ I üN Tukey u J , P•: I ≤MT J . ·K I ≤MT J =⇒ I v J . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ {¤ ½n (M. Hrušák, D. M. Alcántara 2011) ?¿ Borel nŽ I, J , Ɖ G(I, J ) ´û½ . S v ´ûÄ . S v ´A ‚5 ( ?¿‡ó •Ý؇L2 ). •3ØŒêõ‡ ' - da. ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ¯K ¯K (M. Hrušák, D. M. Alcántara 2011) S v ´‚5 (ûS )? ´Ø´•kü‡ Fσδ š Fσ -nŽ ' - da? ˜ kõ ‡ Fσδσ -nŽ ' - da? ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø1 ½Â X ´ 2ω Borel f8. ½Â X ,nŽ T (X)• <ω 2 þd {{x|n : n ∈ ω} : x ∈ X} )¤ nŽ. ½n T ((∅ × F in)+ ) Ú ∅ × F in ´ v -؃N . ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ (Ø2 ½Â A, B ⊆ 2ω , ¡A Wadge uB XJ•3ëYN ¦ f −1 (B) = A. P•A ≤W B. A ≡W B XJA ≤W B ¿…B ≤W A. f : 2ω → 2ω ½n I, J ´ ω þ Borel nŽ¿…Ù Wadge Ýpu ∆(Dω (Σ02 )), K I ≡W J ⇔ T (I) ' T (J ). ÜäJ Cardinal invariants an Ä Vg nŽm Tukey'X ÄêØCþƒm Tukey'X nŽm ' Ɖ ! ÜäJ Cardinal invariants an
© Copyright 2024