State space models 19 November 2014 Business Cycles Theory, IES FSV UK The Plan Introduction Motivation Example: time-varying parameter regression Estimation Kalman filter MLE Examples in R Local level model Local linear trend model Business Cycles Theory, IES FSV UK General state space models TVP model State space models ๏ Unobservable variables in economics ๏ Potential GDP ๏ Expectations ๏ Time-varying parameters ๏ Volatility Business Cycles Theory, IES FSV UK State space models: applications ๏ Estimating models ๏ ๏ ๏ ๏ ๏ ๏ Disaggregating time series (monthly GDP etc.) ๏ Factor models ARMA, VAR DSGE volatility (GARCH, stochastic volatility) Estimating “invisible” variables ๏ coincident indicators ๏ nowcasting ๏ FAVARs ๏ Potential output, output gaps ๏ Missing data ๏ NAIRU ๏ Seasonal adjustment Time-varying parameter models (e.g. TVP-VAR) Business Cycles Theory, IES FSV UK Example: TVP (time varying parameter) regression Measurement equation: yt = x t t + et vt ⇠ N(0, Q) Transition equation t =µ+F t 1 + vt vt ⇠ N(0, Q) Dimensions: yt : 1x1 dependent variable, xt : 1xk exogenous variables, time-varying parameters, F : kxk, Q : kxk, R : 1x1 If µ = 0, F = Ik : coefficients follow a random walk Business Cycles Theory, IES FSV UK t : kx1 Example: time-varying CAPM betas 2 ๏ US banking sector ๏ Top panel: betas ๏ Bottom panel: stochastic volatility 1.5 1 0.5 0.1 0.08 0.06 0.04 0.02 92 95 Business Cycles Theory, IES FSV UK 97 00 02 05 07 10 General Linear State Space Model Measurement equation: yt = H t t + Azt + et Transition equation: t =µ+F t 1 + vt where et ⇠ i.i.d.N(0, R), vt ⇠ i.i.d.N(0, Q), E (et vs0 ) = 08t, s yt : nx1 vector, observed variables t : kx1 unobserved state variables Ht : nxk matrix, links un/observed variables zt : rx1 vector of exogenous variables µ: kx1, vt : kx1 Business Cycles Theory, IES FSV UK Estimation algorithm 1. Model formulation 2. Estimation ๏ Provided we know hyperparameters (variances of shocks, system matrices), we can run the Kalman filter to estimate state variables ๏ The Kalman filter’s output, as a byproduct, is the likelihood Business Cycles Theory, IES FSV UK Estimation algorithm Model formulation Write the model in state space form 2 kinds of unknowns: - parameters - states Filtering state variables Conditional on model parameters, it is easy to estimate state variables: Kalman filter Estimating parameters Maximum likelihood: run the Kalman filter, calculate likelihood Need to estimate the parameters General Linear State Space Model Measurement equation: Iterate until likelihood is maximized yt = H t t + Azt + et Transition equation: t =µ+F t 1 + vt where et ⇠ i.i.d.N(0, R), vt ⇠ i.i.d.N(0, Q), E (et vs0 ) = 08t, s yt : nx1 vector, observed variables state variables t : kx1 unobserved Business Cycles Theory, IES FSV UK Ht : nxk matrix, links un/observed variables Set parameters Kalman filter Likelihood The Kalman filter ๏ ๏ Intuition: ๏ we specify (assume) a process that unobservable variables follow ๏ if they are closely linked with observed variables, we can guess their values 2 parts: ๏ prediction step: forecasting values of t given information at t-1 ๏ updating step: updating forecasts given the prediction error Business Cycles Theory, IES FSV UK The Kalman filter Assume 0 ⇠ N( 0|0 , P0|0 ) Prediction of beta Variance of prediction Prediction error Variance of prediction error Business Cycles Theory, IES FSV UK Maximum likelihood estimation ๏ Model parameters are estimated using the maximum likelihood ๏ Maximizes the following expression with respect to model’s parameters: Business Cycles Theory, IES FSV UK Examples ๏ Writing some models in the state space form ๏ local level model ๏ local linear trend model ๏ AR(2) model ๏ TVP regression model Business Cycles Theory, IES FSV UK Local level model Sometimes known as a random walk plus noise model I Measurement equation: yt = µ t + ✏ t , I ✏t ⇠ N(0, 2 ✏) Transitionequation: µt+1 = µt + ⌘t , Business Cycles Theory, IES FSV UK ⌘t ⇠ N(0, 2 ⌘) Local linear trend model Extends the local level model by adding a slope I Measurement equation: ⌘t ⇠ N(0, yt = µ t + ✏ t , I 2 ✏) (3) Transition equation: µt = t 1 + µt 1 + ⌘t , ⌘t ⇠ N(0, 2 ⌘) (4) = t 1 + ⇠t 1 + ⇠t , ⌘t ⇠ N(0, 2 ⇠) (5) t Business Cycles Theory, IES FSV UK AR(2) model yt = ↵ + Business Cycles Theory, IES FSV UK 1 yt 1 + 2 yt 2 + ⌘t , ⌘t ⇠ N(0, 2 ⌘) Business Cycles Theory, IES FSV UK Example: potential GDP, output gap ๏ Source: CNB’s Inflation Report, IV/2014 Business Cycles Theory, IES FSV UK Stock and Watson’s (1988) coincident index Business Cycles Theory, IES FSV UK ๏ Overall state of the economy ๏ Dynamic factor model ๏ DOC: department of commerce index Business Cycles Theory, IES FSV UK Summary ๏ Linear state-space model ๏ Intuition behind the Kalman filter ๏ Applications ๏ DLM package in R ๏ http://www.jstatsoft.org/v36/i12/paper Business Cycles Theory, IES FSV UK
© Copyright 2024