University of California, Los Angeles Department of Statistics Statistics 100B Instructor: Nicolas Christou Joint moment generating functions Let X = X1 X2 .. . , be a random vector and let t = t1 t2 .. . . The joint moment generating tn Xn Pn t0 X function of X is defined as MX (t) = Ee = Eexp( i=1 ti xi ). Theorem 2 2 X (t) X (t) Let Mi (t) = ∂M∂tXi(t) , Mii (t) = ∂ M , and Mij (t) = ∂ ∂tMi ∂t . ∂ti 2 j 2 Then, EXi = Mi (0), EXi = Mii (0), and EXi Xj = Mij (0). Corollary 2 ψ (t) X , and ψij (t) = Let ψ(t) = logMX (t), ψi (t) = ∂ψ∂tXi(t) , ψii (t) = ∂ ∂t 2 i Then EXi = ψi (0), var(Xi ) = ψii (0), and cov(Xi Xj ) = ψij (0). Theorem ! ∂ 2 ψX (t) . ∂ti ∂tj Y Let X = . The marginal moment generating function of Y (Z) is the moment genZ erating function of X ignoring the vector!Z (Y). This is expressed as MY (u) = MX (u, 0) u and MZ (v) = MX (0, v), where t = . v Proof Theorem If Y and Z are independent then MX (t) =MY (u)MZ (v). Proof 1 Example 1 X1 X= X2 have joint moment generating function X3 MX (t1 , t2 , t3 ) = (1 − t1 + 2t2 )−4 (1 − t1 + 3t3 )−3 (1 − t1 )−2 . Use the corollary on page 1 to find: a. E(X1 ), E(X2 ), E(X3 ). b. var(X1 ), var(X2 ), var(X3 ). c. cov(X1 , X2 ), cov(X1 , X3 ), cov(X2 , X3 ). d. ρX1 ,X3 . Example 2 Let X and Y be independent normal random variables, each with mean µ and standard deviation σ. a. Consider the random quantities X + Y and X − Y . Find the moment generating function of X + Y and the moment generating function of X − Y . c. Find the joint moment generating function of (X + Y, X − Y ). d. Are X + Y and X − Y independent? Explain your answer using moment generating functions. 2
© Copyright 2024