SOLUTIONS SOLUTIONS 1. f(x) = 2x3 + 6x2 – 6x + 7 f '( x) 6 x 2 12 x 6 CALCULUS I Worksheet #69 SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS f "( x) 12 x 12 0 x 1 + 0 -f "--------|-------2. Inflection point @ (1,17) -1 2 y = – x + 4x + 25 on [–2,3] y ' 2 x 4 0 x 2 Critical point @ (2, 29) Look at endpoints: (-2, 13) and (3, 28) Maximum y-value is 29 3. f(x) = x3 – 6x2 on [1,2] f '( x) 3x 2 12 x 3x( x 4) 0 x 0, 4 Neither critical point is in the given interval, so need to look at endpoints only (1, -5) and (2, -16) Absolute minimum y-value is -16. 4. f ' (x) < 0 and f " (x) > 0 f(x) is decreasing and concave up - A 5 y 1 x x 3 ( x 3)(1) (1 x)(1) 2 y' 2( x 3) 2 2 2 ( x 3) ( x 3) 4 y " 4( x 3) 3 0 4 0 No inflection point but you must look at x=3 ( x 3)3 + u -y"------------|------------ 6. Concave up (-,3) 3 f(x) = 3x4 + x3 f '( x) 12 x3 3x 2 0 3x 2 (4 x 1) 0 x 0, -0 + 0 + f '-----------|--------------|------------1 0 4 1 4 -1 1 Rel min @ , ; Terrace pt @ (0,0) 4 256 7. f(x) = 2x3 + 3x2 f '( x) 6 x 2 6 x 6 x( x 1) 0 x 0, 1 + 0 -- 0 + f ' | | -1 Increasing (-, -1) & (0, ) 0 2 x y 160 y 160 2 x 8. Building – no fence here A xy x(160 2 x) 160 x 2 x 2 A ' 160 4 x 0 x 40; y 80 x x y 9. f ' (x) = 0 and f " (x) > 0 10. f ' (x) > 0 and f " (x) > 0 Critical point and concave up E Increasing and concave up B -- 11. f '(9) 0 f ' | This means f(x) is decreasing at x = 9 C 9 Not enough info to determine whether I and II are true all the time. 12. y x 2 3x 2 ( x 2)( x 1) x2 y 2 x 4 x 3 ( x 3)( x 1) x 3 1 Hole: 1, 2 Vertical Asymptote: x = 3 Horizontal Asymptote: y = 1 -2 2 y-intercept (where x=0) y 0, -3 3 x-intercept (where y = 0) 0 x-2 0 x 2 x 2 (2, 0) x -3 y x 13. x2 F ( x) 3sint 2 dt F '( x) 3sin( x 2 ) 2 (2 x) 6 x sin x 4 4 . 14. x = 3y – y2 and y = x; revolved around the y-axis Washer R 3 y y 2 and r = x 56 V [(3 y y ) y ]dy 15 0 2 2 2 15. 2 y x Base: x2 + y2 = 16. Cross sections: perpendicular to the y=axis are squares. x 2 16 y 2 x 16 y 2 x 16 y 2 s 16 y 2 16 y 2 2 16 y 2 2 V 4 dy 1024 3 2 4 16 y 2 s x 16 y 2
© Copyright 2024