ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج
اﻟﺮﺣﻤـــﻦﻋﺒﺪاﻟﺮﺣـــﻴﻢ
ﺑﺴـــﻢ اﷲ
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
1
2
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
α
А
Alpha
اﻟﻔﺎ
β
В
Beta
ﺑﺘﺎ
γ
Г
Gamma
δ
Δ
Delta
ε
Е
Epsilon
ζ
Z
Zeta
η
H
Eta
إﺗﺎ
θ
Θ
Theta
ﺗﻴﺘﺎ
ι
I
Iota
ﻳﻮﺗﺎ
κ
K
Kappa
آﺎﺑﺎ
λ
Λ
Lambda
μ
M
Mu
ﻣﻴﻮ
ν
N
Nu
ﻧﻴﻮ
ξ
Ξ
Xi
آﺴﺎي
ο
O
Omicron
π
Π
Pi
ﺑﺎي
ρ
Ρ
Rho
رو
σ
Σ
Sigma
τ
Τ
Tau
υ
Υ
Upsilon
φ
Φ
Phi
ﻓﺎي
χ
Χ
Chi
آﺎي
ψ
Ψ
Psi
ﺑﺴﺎي
ω
Ω
Omega
أوﻣﻴﻐﺎ
ﻏﺎﻣﺎ
دﻟﺘﺎ
إﺑﺴﻠﻮن
زﻳﺘﺎ أو دﻳﻐﺎﻣﺎ
ﻻﻣﺪا أو ﻻﻣﺒﺪا
أﻣﻴﻜﺮون
ﺳﻴﻐﻤﺎ
ﺗﺎو
أوﺑﺴﻠﻮن
3
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
اﻟﻌﻼﻣﺔ
إﻧﺠﻠﻴﺰي
≤
Less than equal
≥
Greater than
ﻋﺮﺑﻲ
ﻣﺜﺎل
أﺻﻐﺮ أو ﻳﺴﺎويx ≤ y
y أﺻﻐﺮ أو ﺗﺴﺎويx
أآﺒﺮ أو ﻳﺴﺎويa ≥ b
b أآﺒﺮ أو ﺗﺴﺎويa
equal
<
Less than
>
Greater than
≅
Approximately
Congruent
∝
Proportional
≡
Is congruent to
Modulo
≠
Not equal
±
Plus-minus
=
Equal
×
Times, cross
أﺻﻐﺮ3 < 4
أآﺒﺮ3 > 2
ﺗﻘﺮﻳﺒًﺎ1.99997 ≅ 2
( ﻣﺘﻄﺎﺑﻖ )هﻨﺪﺳﻪΔABC ≅ ΔA ′B ′C ′
ﻣﺘﻨﺎﺳﺐF ∝ x ⇒ F = kx
ﺗﻜﺎﻓﺆ
ﻣﺘﻄﺎﺑﻘﺔ5 ≡ 1(mod 2)
ﻻ ﻳﺴﺎوي3 ≠ 2
زاﺋﺪ ﻧﺎﻗﺺx 2 = 1 ⇒ x = ±1
( ﻳﺴﺎويa = b ) & (b = c ) ⇒ a = c
، ﺿﺮب ﻋﺪدي2 × 3 = 6
→ ﺟﺪاء
ﺿﺮب ﻣﺘﺠﻬﻲ
A = ax i + ay j + az k
→
B = bx i + b y j + bz k
i
→ →
A × B = ax
bx
+
Plus
-
Minus
ﺟﻤﻊ2 + 3 = 5
ﻧﺎﻗﺺ، ﻃﺮح2 − 3 = −1
j
k
ay
by
az
bz
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
6 ÷ 3 = 2ﺗﻘﺴﻴﻢ
50%اﻟﻨﺴﺒﺔ اﻟﻤﺌﻮﻳﺔ
00
50 0اﻟﻨﺴﺒﺔ ﻓﻲ اﻷﻟﻒ
→ →
A ⋅ B = A B cosθ
ﺿﺮب داﺧﻠﻲ
5! = 1 × 2 × 3 × 4 × 5 = 120ﻋﺎﻣﻠﻲ أو ﻓﺎآﺘﻮرﻳﻞ
ﺟﺬر
ﺟﺬر ﺗﺮﺑﻴﻊ
4=2
ﺟﺬر ﺗﻜﻌﻴﺐ
27 = 3
3
ﺟﺬر ﻧﻮﻧﻲ
m
n
ﻧﺎﻗﻞ أو ﻳﺒﺎدل ﺻﻔﻮف و أﻋﻤﺪة ﻓﻲ ﻣﺼﻔﻮﻓﺔ
ﻧﺎﻗﻞ
4
: Divisionأو /أو
Divided by
÷
Percent
%
Per thousand
00
Dot
.
Factorial
!
0
Square root
Transpose
AT
B = A T ⇒ b ji = aij
5.3 ⇒ [ x ] = 5 & y = 5.6 ⇒ [ y ] = 6ﺟﺰء ﺻﺤﻴﺢ
⎤ a12
⎦⎥ a22
⎡ a11ﻣﺼﻔﻮﻓﺔ
⎢a
⎣ 21
3(2 + (4 − 1)) = 15هﻼﻻن ،ﻗﻮﺳﺎن
ﻣﺠﻤﻮﻋﻪ
ﻣﺘﺘﺎﻟﻴﻪ
Bracket
][
Matrix
Parentheses
) (
Set Braces
}{
Sequence
ﺟﺰء آﺴﺮي
][10, 20
) ( −1,0
ﻓﺘﺮة ﻣﻐﻠﻘﺔ
ﻓﺘﺮة ﻣﻔﺘﻮﺣﺔ
close –interval
open-interval
][,
)(,
5
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
[, )
close-open
( ,]
open-close
∗
Convolution
ﻓﺘﺮة ﻣﻐﻠﻘﺔ ﻣﻦ
( −5, −2]
اﻟﻄﺮف اﻷﻳﺴﺮ
[ −10,13)
ﻓﺘﺮة ﻣﻐﻠﻘﺔ ﻣﻦ
اﻟﻄﺮف اﻷﻳﻤﻦ
ﻣﻠﻔﻮف
ﻓﻲ ﺗﺤﻮﻳﻼت ﻓﻮرﻳﻴﻪ
F { g (x ) * f (x )} = F { g (x )} × F {f (x )}
Absolute value
∑
اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ
Determinant
ﻣﺤﺪدة
Summation
ﻣﺠﻤﻮع
⎧x , x > 0
x =⎨
⎩−x , x < 0
a11
a21 a22
n =10
∑
n =0
∏
Product
ﺿﺮب
n =10
∩
ﺗﻘﺎﻃﻊ
= a11 × a22 − a12 × a21
1
1 1
1
= + + ⋅⋅⋅ +
n +2 2 3
11
∏
n =0
Intersection
a12
1
1 1
1
= × × ⋅⋅⋅×
n +1 2 3
11
n =10
∩A
n
= A 0 ∩ A1 ∩ ⋅⋅⋅ ∩ A10
n
= A 0 ∪ A1 ∪ ⋅⋅⋅ ∪ A10
n =0
n =10
∪
Uonion
ﺗﺤ ﺎدإ
∪A
n =0
6
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
∫
Integral
ﺗﻜﺎﻣﻞ
2
∫
1
1 2 1
3
xdx = x 2 = (4 − 1) =
2 1 2
2
∫∫
Double integral
ﺗﻜﺎﻣﻞ ﺛﻨﺎﺋﻲ
∫∫ f (x , y )dxdy
∫∫∫
∫
Triple integral
ﺗﻜﺎﻣﻞ ﺛﻼﺛﻲ
Line integral
ﺗﻜﺎﻣﻞ ﺧﻄﻲ
∫∫∫ g (x , y , z )dxdydz
∫ dl
∫∫
Surface integral
∫∫∫
Volume integral
Contour integral
C
ﺗﻜﺎﻣﻞ ﺳﻄﺤﻲ
A
ﺗﻜﺎﻣﻞ ﺣﺠﻤﻲ
Therefore
إذن
∵
Because
ﻷن
∃
Exist
∃/
Not exist
∀
For all
⇒
⇐
∫∫∫ dν
V
∴
¬ ∼ أو
∫∫ d σ
Propositional
if then
ﻣﻜﻤﻢ وﺟﻮدي
b ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃b
ﻣﻜﻤﻢ ﻏﻴﺮ ﺟﻮدي
b ﻻ ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃/b
ﻣﻜﻤﻢ آﻠﻲ
b ﺗﻮﺟﺪa ∀ ﻟﺠﻤﻴﻊa , ∃b
∼( ∼ ﻧﻘﻴﺾ أو ﻧﻔﻲp ) = p
إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮفp ⇒ q ⎫
⇒ p⇒r
اﻷﻳﺴﺮq ⇒ r ⎬
⎭
إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮف
اﻷﻳﻤﻦ
7
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
⇔
if and only if
iff
∈
Membership
Element of
∉
Not member
إﺳﺘﻨﺘﺎج ﻣﻦ اﻟﻄﺮﻓﻴﻦp ⇒ q ⎫
⇒ p ⇔q
إذا و ﻓﻘﻂ إذاq ⇒ p ⎬
⎭
ﻳﻨﺘﻤﻲA = {a ,b ,c } , a ∈ A
ﻋﻀﻮ ﻣﻦ
ﻻ ﻳﻨﺘﻤﻲ أوA = {a ,b ,c } , d ∉ A
ﻏﻴﺮﻋﻀﻮ
∪
Union
إﺗﺤﺎدA = {a ,b ,c } , B = {a , d }
A ∪ B = {a ,b ,c , d }
Intersection
ﺗﻘﺎﻃﻊA ∩ B = {a}
⊆ ⊂ و
(proper) Subset
ﺟﺰﺋﻴﻪC = {a} , C ⊆ A
⊇⊃ و
superset
إﺣﺘﻮاء
∩
⊄
Not subset
∅
Empty set
⊂ ∅ ﻏﻴﺮ ﺟﺰﺋﻴﻪ
/ B
{ = ∅ اﻟﻤﺠﻤﻮﻋﻪ اﻟﺨﺎﻟﻴﻪ
}
∅′ = M
ﻣﺘﻤﻢ اﻟﻤﺠﻤﻮﻋﺔ اﻟﺨﺎﻟﻴﺔ ﻳﺴﺎوي اﻟﻤﺠﻤﻮﻋﺔ
اﻟﺸﺎﻣﻠﺔ
أوD X '
Derivation to x
x إﺷﺘﻘﺎق ﺑﺎﻟﻨﺴﺒﺔ ل
d
dx
∂
,
df
= 2x
dx
,
∂f
= 2x
∂x
,
df 2
= 6x
dx 2
f ′(x ) = 2x
Paritial
ﺗﻔﺎﺿﻞ ﺟﺰﺋﻲ
derivation
dn
dx n
f (x ) = x 2
Derivation n
order
nth , nth
n ﺗﻔﺎﺿﻞ رﺗﺒﺔ
f (x ) = x 2
f (x ) = x
3
8
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
∂n
∂x n
Partial
derivation n
ﺗﻔﺎﺿﻞ ﺟﺰﺋﻲ رﺗﺒﺔ
n
f (x ) = x
3
,
∂f 2
= 6x
∂x 2
order nth
∇
Nabla
Laplace
ﻧﺎﺑﻼ أو ﻣﻌﻤﻞ
ﻻﺑﻼس
∇=
∂
∂
∂
+
+
∂x ∂y ∂z
operator (Nabla)
∇2
Square Lap. Op.
Laplacian
AB
→
AB
↔
AB
Line segment
Ray
Infinity line
ﻣﺮﺑﻊ )ﺗﺮﺑﻴﻊ( ﻣﻌﻤﻞ
∂2
∂2
∂2
∇ = 2+ 2+ 2
ﻻﺑﻼس
∂x
∂y
∂z
2
ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻢ
(ﺷﻌﺎع )ﻣﺴﺘﻘﻴﻢ
ﻣﺴﺘﻘﻴﻢ ﻏﻴﺮ ﻣﻨﺘﻪ
ﻣﺜﻠﺚΔABC , ABC اﻟﻤﺜﻠﺚ
Δ
Triangle
∠
Angle
(∠ زاوﻳﻪ )ﺣﺎدةABC , ABC اﻟﺰاوﻳﻪ
∟
Right angle
(زاوﻳﻪ )ﻗﺎﺋﻤﺔ
Square
Parallelogram
ﻣﺮﺑﻊ
ﻣﺘﻮازي اﻷﺿﻠﻊ
○
Circle
داﺋﺮﻩ
⊥
Perpendicular
ﻋﻤﻮدAB ⊥ AC
Parallel
ﻣﻮازيAB
AC
∼
Similar
ﺗﺸﺎﺑﻪΔABC ∼ ΔA ′B ′C ′
≅
Congruent
ﺗﻄﺎﺑﻖΔABC ≅ ΔA ′B ′C ′
Arc
ﻗﻮس
ABC ﻗﻮس
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
" 30°15' 25ﻋﻼﻣﺔ اﻟﺪرﺟﻪ
ﻋﻼﻣﺔ اﻟﺪﻗﻴﻘﺔ
ﻋﻼﻣﺔ اﻟﺜﺎﻧﻴﺔ
ﻓﻲ اﻟﺼﻔﺤﺔ ) ( −1,5.7
إﺣﺪاﺛﻴﺎت آﺎرﺗﻴﺰﻳﺔ
9
Degree
°
Minute
'
"
Second
Cartesian
) (x , y
Coordinate
ﻓﻲ اﻟﻔﻀﺎء ) (1.4,0, 2إﺣﺪاﺛﻴﺎت ﻓﻀﺎﺋﻴﺔ
إﺣﺪاﺛﻴﺎت ﻗﻄﺒﻴﺔ
°
) (9, 25
→
AB
V ⊕Wﻣﺠﻤﻮع ﻣﺒﺎﺷﺮ
ﻣﺘﺠﻬﻪ
Wو Vﻓﻀﺎﺋﺎن ﻣﺘﺠﻬﻴﺎن
Space Coo.
) (x , y , z
Polar Coo.
) ( r ,θ
Vector
→
Direct sum
⊕
n
ﺗﺤﻠﻴﻞ اﻟﻔﻀﺎﺋﺎت اﻟﻤﺘﺠﻬﻴﺔ أو اﻟﺰﻣﺮ
X = ⊕X i
i =1
اﻟﻰ ﻓﻀﺎﺋﺎت ﻣﺘﺠﻬﻴﺔ ﺟﺰﺋﻴﺔ أو اﻟﻰ زﻣﺮ ﺟﺰﺋﻴﺔ
n
ﺗﺤﻠﻴﻞ اﻟﻔﻀﺎﺋﺎت اﻟﻤﺘﺠﻬﻴﺔ أو اﻟﺰﻣﺮ
X = ⊗X i
i =1
ﺟﺪاء ﻣﺒﺎﺷﺮ ،ﺟﺪاء
Direct product
⊗
ﺳﻠّﻤﻲ
اﻟﻰ ﻓﻀﺎﺋﺎت ﻣﺘﺠﻬﻴﺔ ﺟﺰﺋﻴﺔ أو اﻟﻰ زﻣﺮ ﺟﺰﺋﻴﺔ
p ∧q
q
p
ﺛﺎﺑﺖ اﻟﻮﺻﻞ
T
T
T
)اﻟﻌﻄﻒ( ،و
F
F
T
F
T
F
F
F
F
p ∨q
q
p
T
T
T
T
F
T
T
T
F
F
F
F
and
∧
ﺻﺢ
True
T
ﻏﻠﻂ
False
F
ﺛﺎﺑﺖ اﻟﻔﺼﻞ ،أو
or
∨
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
!n
= P n = (n )k
k
!) (n − k
ﺗﺒﺪﻳﻞ
10
Permutation
(n ) kأو
kﺷﺊ ﻣﻦ nﺷﺊ
Pkn
ﺗﺒﺪﻳﻞ اﻷﺷﻴﺎء ﻣﺴﻤﻮح و ﺗﻜﺮارهﺎ ﻏﻴﺮ ﻣﺴﻤﻮح
⎞⎛n
!n
= ⎟⎟ ⎜⎜ = C n
!) k ⎝ k ⎠ k!(n − k
ﺗﻮﻓﻴﻘﻴﺔ
Combination
kﺷﺊ ﻣﻦ nﺷﺊ
) (
أو C kn
n
k
اﻟﺘﺒﺪﻳﻞ و اﻟﺘﻜﺮار ﻏﻴﺮ ﻣﺴﻤﻮح
= iاﻟﻌﺪد اﻟﺨﻴﺎﻟﻲ
−1
Imaginary
i
number
e = 2.7182818284...ﻋﺪد ﻧﺎﺑﻴﺮ
Napier’s
ﻋﺪد أوﻳﻠﺮ
constant
e
Euler’s number
π = 3.14159265...
اﻟﻨﺴﺒﺔ اﻟﺜﺎﺑﺘﺔ
ϕ = 1.618033988
اﻟﻨﺴﺒﺔ اﻟﺬهﺒﻴﺔ
ﻣﺘﻮﺳﻂ أو وﺳﻂ
n
∑xn
n =1
n
Pi
π
ϕ
mean
x
Golden ratio
= x
sin x
=1
x →0
x
lim
1
∞= +
x −1
lim+
ﻧﻬﺎﻳﺔ
ﻻ ﻧﻬﺎﻳﺔ
Infinity
∞
x →1
}⋅⋅⋅ = {1, 2,3, 4,
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
اﻟﻄﺒﻴﻌﻴﻪ
}⋅⋅⋅ = {0,1, 2,3, 4,
limit
lim
0
اﻷﻋﺪاد اﻟﻄﺒﻴﻌﻴﻪ ﻣﻊ
0
Natural
numbers
Natrural with 0
0
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
}⋅⋅⋅ = {⋅⋅⋅, −2, −1,0,1,2,
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
11
Integer numbers
اﻟﺼﺤﻴﺤﻪ
⎧m
⎫
⎬= ⎨ : m , n ∈ , n ≠ 0
⎩n
⎭
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
Rational
اﻟ ُﻤﻨﻄﻘﺔ
numbers
إﺗﺤﺎد ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟ ُﻤﻨﻄﻘﺔ و اﻟﻐﻴﺮ
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
ُﻣﻨﻄﻘﺔ) ،اﻟﺴﺎﻟﺒﺔ و اﻟﻤﻮﺟﺒﺔ و اﻟﺼﻔﺮ(
اﻟﺤﻘﻴﻘﻴﺔ
Real numbers
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﺤﻘﻴﻘﻴﺔ اﻟﻤﻮﺟﺒﺔ و اﻟﺼﻔﺮ ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
Positive Real
.
اﻟﺤﻘﻴﻘﻴﺔ اﻟﻤﻮﺟﺒﺔ
mumbers
ﻣﺠﻤﻮﻋﺔ ﻋﺪدﻳﺔ ﺗﻜﻮن ﻓﻴﻬﺎ اﻷﻋﺪاد ﺑﺼﻮرة
ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد
Complex
اﻟﻤﺮآﺒﺔ أو اﻟﻌﻘﺪﻳﺔ
numbers
x + iy
و هﻜﺬا ،ﺳﻠﺴﻠﺔ ﻏﻴﺮ
and so on
+
⋅⋅⋅
ﻣﻨﺘﻬﻴﺔ
) y := f ( xﺗﻌﺮﻳﻒ اﻟﻄﺮف
اﻷﻳﺴﺮ ﻣﻦ ﺧﻼل
اﻟﻄﺮف اﻷﻳﻤﻦ
Left hand side
=:
is defined by
the right hand
side
max {−1,3,4,2} = 4
ﻧﻬﺎﻳﺔ ﻋﻈﻤﻰ
Maximum
} { max
min {−1,3,4, 2} = −1
ﻧﻬﺎﻳﺔ ﺻﻐﺮى
Minimum
} { min
1
2
= sin 30°
1
2
= cos 60°
ﺟﻴﺐ
ﺟﻴﺐ اﻟﺘﻤﺎم
tan 45° = 1ﻇﻞ
Sine
sin
Cosine
cos
Tangent
tan
12
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
cot
Cotangent
sec
Secant
csc
Cosecant
ﻗﺎﻃﻊ اﻟﺘﻤﺎم
Arc sin
Arc sine
ﻗﻮس اﻟﺠﻴﺐ
Arc cos
Arc cosine
ﻇﻞ اﻟﺘﻤﺎمcot 45° = 1
ﻗﺎﻃﻊ
ﻗﻮس اﻟﺠﻴﺐ ﺗﻤﺎم
secθ =
1
cosθ
cscθ =
1
sin θ
Arc sin
1
= 30°
2
π
45° = ( ) rad
4
Arc cos
Arc tan
Arc tangent
Arc cot
Arc cotangent
Arc sec
Arc secant
Arc csc
Arc cosecant
أوsinh
Hyperbolic sine
sh
أوcosh
ch
sec h
Hyperbolic
cosine
Hyperbolic
secant
cs c h
Hyperbolic
cosevant
: رادﻳﺎنRadian
2
π
= 45° = ( ) rad
2
4
ﻗﻮس اﻟﻈﻞ
ﻗﻮس اﻟﻈﻞ ﺗﻤﺎم
ﻗﻮس اﻟﻘﺎﻃﻊ
ﻗﻮس اﻟﻘﺎﻃﻊ اﻟﺘﻤﺎم
e x − e −x
sinh x =
()اﻟﻬﺬﻟﻮﻟﻲ
2
ﺟﻴﺐ اﻟﺰاﺋﺪي
e x + e −x
cosh x =
()اﻟﻬﺬﻟﻮﻟﻲ
2
ﺟﻴﺐ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي
ﻗﺎﻃﻊ اﻟﺰاﺋﺪي
()اﻟﻬﺬﻟﻮﻟﻲ
ﻗﺎﻃﻊ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي
()اﻟﻬﺬﻟﻮﻟﻲ
sec hx =
2
e x + e −x
cs c hx =
2
e − e −x
x
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
ﻇﻞ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي
e 2x − 1
tanh x = 2 x
)اﻟﻬﺬﻟﻮﻟﻲ(
e +1
ﻇﻞ اﻟﺘﻤﺎم اﻟﺰاﺋﺪي
e 2x + 1
coth x = 2 x
)اﻟﻬﺬﻟﻮﻟﻲ(
e −1
ﻗﻮس اﻟﺠﻴﺐ اﻟﺰاﺋﺪي
)اﻟﻬﺬﻟﻮﻟﻲ(
⎧1, i = j
⎩0, i ≠ j
⎨ = δ ij
)n (n + 1
2
tangent
th
cot anh Hyperbolicأو
cotangent
Arc hyperbolic
coth
Arc sinh
sine
ﻗﻮس اﻟﺠﻴﺐ اﻟﺘﻤﺎم
اﻟﺰاﺋﺪي )اﻟﻬﺬﻟﻮﻟﻲ(
cosine
دﻟﺘﺎ آﺮوﻧﻜﺮ
tanhأو
Kronecher delta
Tensor
Arc cosh
δ
T ijأو T jki
T jki
iدﻟﻴﻞ ﻋﻠﻮي و jو kدﻻﺋﻞ ﺳﻔﻠﻴﻪ
= Sn
Hyperbolic
Arc hyperbolic
i = 1, 2و T ij = T 1 j + T 2 jﺗﻴﻨﺴﻮر أو ﻣﻮﺗﺮ
،
13
1 + 2 + 3 + ⋅⋅⋅ + n
ﻣﺠﻤﻮع ﻣﺘﺘﺎﻟﻴﺔ
Log 10100 = Log 100 = 2ﻟﻮﻏﺎرﻳﺜﻢ
Log e x = ln xاﻟﻠﻮﻏﺎرﻳﺜﻢ اﻟﻄﺒﻴﻌﻲ
Sequence
Sn
Logarithm
Log ab
Natural
ln
logarithm
102 = 100
aأس n
) P ( A Bإﺣﺘﻤﺎل وﻗﻮع Aإذا ﺣﺪﺛﺖ Bإﺣﺘﻤﺎل
a power n
an
Probability
|
ﻓﻲ ﻧﻈﺮﻳﺔ اﻟﺪوال ﻟﺘﻌﺮﻳﻒ ﻗﻴﻤﺔ اﻟﺪاﻟﺔ أو
اﻹﺷﺘﻘﺎق أو اﻟﺘﻜﺎﻣﻞ ﻓﻲ ﻧﻘﻄﺔ أو ﻧﻘﺎط ﻣﻌﻴﻨﺔ
x =0+
∂f
∂x
داﻟﺔ أو ﺗﺎﺑﻊ
Function
ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
)) g (x ) → f ( g (x
○
fﺗﺮآﻴﺐ
ﺗﺎﺑﻊ اﻟﻌﻼﻣﺔ أو
⎧1, x > 0
⎪ = sgn xاﻹﺷﺎرة
⎨0, x = 0
⎪−1, x < 0
⎩
∞
ﻧﺤﻮ اﻷﺳﻔﻞ
Rounded down
ﻧﺤﻮ اﻷﻋﻠﻰ
Rounded up
∂F ∂F ∂F
+ +
∂x ∂y ∂z
= divF = ∇⋅ F
k
∂
∂z
Fz
∂
∂y
Fy
∂
∂x
Fx
sign function
sgn x
xﻳﺴﻌﻰ ﻧﺤﻮ
∂F ∂F ∂F
i+
j+ k
∂x ∂y
∂z
j
Composition
O
Tend to
= gradF =∇× F
i
14
↓
ﺗﺪرج
Gradient
↑
grad
ﺗﺒﺎﻋﺪ
Divergence
div
Rotation
curl
دوران
= curlF = ∇× F
ﻳﻀﻢ هﺬا اﻟﺒﺤﺚ ﻣﻌﻈﻢ ﻋﻼﺋﻢ و رﻣﻮز اﻟﺮﻳﺎﺿﻴﺎت و ﻟﻴﺲ ﺟﻤﻴﻌﻬﺎ .آﺬﻟﻚ ﺑﻌﺾ اﻟﺮﻣﻮز ﻟﻬﺎ إﺳﺘﻌﻤﺎﻻت
أﺧﺮى أآﺘﻔﻴﺖ ﺑﺄﺷﻬﺮهﺎ .
ﺟﻼل اﻟﺤﺎج ﻋﺒﺪ
ﺷﺘﺎء 2008
ل ا
ج
www.jalalalhajabed.com
: "! و# ا$ ا
[email protected]
[email protected]
© Copyright 2025