الإحصاء الوصفي... الدكتور شرف الدين خليل

7
 

‫‪8‬‬
‫ﺍﻟﻔﺼـــﻞ ﺍﻷﻭﻝ‬
‫‪ 1/1‬ﻣﻘﺪﻣــﺔ‬
‫ﺍﻟﺘﻌﺮﻳﻒ ﺑﻌﻠﻢ ﺍﻹﺣﺼﺎﺀ‬
‫ﻣﻦ ﺍﳌﻔﺎﻫﻴﻢ ﺍﻟﺸﺎﺋﻌﺔ ﺑﲔ ﺍﻟﻨﺎﺱ ﻋﻦ ﺍﻹﺣﺼﺎﺀ‪ ،‬ﻣﺎ ﻫﻲ ﺇﻻ ﺃﺭﻗﺎﻡ ﻭﺑﻴﺎﻧﺎﺕ ﺭﻗﻤﻴﺔ ﻓ ﻘﻂ‪ ،‬ﻛﺄﻋـﺪﺍﺩ‬
‫ﺍﻟﺴﻜﺎﻥ‪ ،‬ﻭﺃﻋﺪﺍﺩ ﺍﳌﻮﺍﻟﻴﺪ‪ ،‬ﻭﺃﻋﺪﺍﺩ ﺍﻟﻮﻓﻴﺎﺕ‪ ،‬ﻭﺃﻋﺪﺍﺩ ﺍﳌﺰﺍﺭﻋﲔ‪ ،‬ﻭﺃﻋﺪﺍﺩ ﺍﳌﺰﺍﺭﻉ‪ ،‬ﻭﺧﻼﻓﻪ‪ ،‬ﻭﻣﻦ ﰒ ﺍﺭﺗﺒﻂ‬
‫ﻣﻔﻬﻮﻡ ﺍﻟﻨﺎﺱ ﻋﻦ ﺍﻹ ﺣﺼﺎﺀ ﺑﺄﻧﻪ ﻋﺪ ﺃﻭ ﺣﺼﺮ ﺍﻷﺷﻴﺎﺀ ﻭﺍﻟﺘﻌﺒﲑ ﻋﻨﻬﺎ ﺑﺄﺭﻗﺎﻡ‪ ،‬ﻭﻫﺬﺍ ﻫﻮ ﺍﳌﻔﻬﻮﻡ ﺍﶈﺪﻭﺩ ﻟﻌﻠﻢ‬
‫ﺍﻹﺣﺼﺎﺀ‪ ،‬ﻭﻟﻜﻦ ﺍﻹﺣﺼﺎﺀ ﻛﻌﻠﻢ‪ ،‬ﻫﻮ ﺍﻟﺬﻱ ﻳﻬﺘﻢ ﺑﻄﺮﻕ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﺗﺒﻮﻳﺒﻬﺎ‪ ،‬ﻭﺗﻠﺨﻴﺼﻬﺎ ﺑﺸﻜﻞ ﳝﻜﻦ‬
‫ﺍﻻﺳﺘﻔﺎﺩﺓ ﻣﻨﻬﺎ ﰲ ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﲢﻠﻴﻠﻬﺎ ﻟﻠﻮﺻﻮﻝ ﺇﱃ ﻗﺮﺍﺭﺍﺕ ﺳﻠﻴﻤﺔ ﰲ ﻇﻞ ﻇﺮﻭﻑ ﻋﺪﻡ ﺍﻟﺘﺄﻛﺪ ‪.‬‬
‫‪ 2/1‬ﻭﻇﺎﺋﻒ ﻋﻠﻢ ﺍﻹﺣﺼﺎﺀ‬
‫ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺍﻟﺴﺎﺑﻖ ﳝﻜﻦ ﲢﺪﻳﺪ ﺃﻫﻢ ﻭﻇﺎﺋﻒ ﻋﻠﻢ ﺍﻹﺣﺼﺎﺀ ﰲ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪Data Description‬‬
‫‪ -2‬ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ ‪Statistical Inference‬‬
‫‪ -3‬ﺍﻟﺘﻨﺒﺆ ‪Forecasting‬‬
‫ﺃﻭﻻ‪ :‬ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﺗﻌﺘﱪ ﻃﺮﻳﻘﺔ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﺗﺒﻮﻳﺒﻬﺎ ﻭﺗﻠﺨﻴﺼﻬﺎ ﻣﻦ ﺃﻫﻢ ﻭﻇﺎﺋﻒ ﻋﻠ ﻢ ﺍﻹﺣـﺼﺎﺀ‪ ،‬ﺇﺫ ﻻ ﳝﻜـﻦ‬
‫ﺍﻻﺳﺘﻔﺎﺩﺓ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳋﺎﻡ‪ ،‬ﻭﻭﺻﻒ ﺍﻟﻈﻮﺍﻫﺮ ﺍﳌﺨﺘﻠﻔﺔ ﳏﻞ ﺍﻻﻫﺘﻤﺎﻡ‪ ،‬ﺇﻻ ﺇﺫﺍ ﰎ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﻋﺮﺿﻬﺎ ﰲ‬
‫ﺷﻜﻞ ﺟﺪﱄ‪ ،‬ﺃﻭ ﺑﻴﺎﱐ ﻣﻦ ﻧﺎﺣﻴﺔ‪ ،‬ﻭﺣﺴﺎﺏ ﺑﻌﺾ ﺍﳌﺆﺷﺮﺍﺕ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﻟﺒﺴﻴﻄﺔ ﺍﻟﱵ ﺗﺪﻟﻨﺎ ﻋﻠـﻰ ﻃﺒﻴﻌـﺔ‬
‫ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﻧﺎﺣﻴﺔ ﺃﺧﺮﻯ ‪.‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼ ﺎﺋﻲ‬
‫ﻭﻫﻮ ﺃﻳﻀﺎ ﻣﻦ ﺃﻫﻢ ﺍﻟﻮﻇﺎﺋﻒ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰲ ﳎﺎﻝ ﺍﻟﺒﺤﺚ ﺍﻟﻌﻠﻤﻲ‪ ،‬ﻭﻳﺴﺘﻨﺪ ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ‬
‫ﻋﻠﻰ ﻓﻜﺮﺓ ﺍﺧﺘﻴﺎﺭ ﺟﺰﺀ ﻣﻦ ﺍ‪‬ﺘﻤﻊ ﻳﺴﻤﻰ ﻋﻴﻨﺔ ﺑﻄﺮﻳﻘﺔ ﻋﻠﻤﻴﺔ ﻣﻨﺎﺳﺒﺔ‪ ،‬ﺑﻐﺮﺽ ﺍﺳﺘﺨﺪﺍﻡ ﺑﻴﺎﻧﺎﺕ ﻫﺬﻩ ﺍﻟﻌﻴﻨﺔ‬
‫ﰲ ﺍﻟﺘﻮﺻﻞ ﺇﱃ ﻧﺘﺎﺋﺞ‪ ،‬ﳝﻜﻦ ﺗﻌﻤﻴﻤﻬﺎ ﻋﻠﻰ ﳎﺘﻤﻊ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻬﺘﻢ ﺍﻻﺳﺘﺪﻻﻝ ﺍ ﻹﺣﺼﺎﺋﻲ ﲟﻮﺿﻮﻋﲔ‬
‫ﳘﺎ ‪:‬‬
‫‪ -1‬ﺍﻟﺘﻘﺪﻳﺮ ‪ : Estimate‬ﻭﻓﻴﻪ ﻳﺘﻢ ﺣﺴﺎﺏ ﻣﺆﺷﺮﺍﺕ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ ﺗـﺴﻤﻰ ﺇﺣـﺼﺎﺀ ‪Statistics‬‬
‫ﺗﺴﺘﺨﺪﻡ ﻛﺘﻘﺪﻳﺮ ﳌﺆﺷﺮﺍﺕ ﺍ‪‬ﺘﻤﻊ ﻭﺗﺴﻤﻰ ﻣﻌﺎﱂ ‪ ، Parameters‬ﻭﻳﻄﻠﻖ ﻋﻠﻰ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻹﺣـﺼﺎﺋﻴﺔ‬
‫ﺍﶈﺴﻮﺑﺔ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺑﺎﻟﺘﻘﺪﻳﺮ ﺑﻨﻘﻄﺔ ‪ ، Point Estimate‬ﻛﻤ ﺎ ﳝﻜـﻦ ﺃﻳـﻀﺎ‬
‫ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﶈﺴﻮﺑﺔ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ ﰲ ﺗﻘﺪﻳﺮ ﺍﳌﺪﻯ ﺍﻟﺬﻱ ﳝﻜﻦ ﺃﻥ ﻳﻘﻊ ﺩﺍﺧﻠـﻪ‬
‫ﻣﻌﻠﻤﺔ ﺍ‪‬ﺘﻤﻊ ﺑﺎﺣﺘﻤﺎﻝ ﻣﻌﲔ‪ ،‬ﻭﻳﺴﻤﻰ ﺫﻟﻚ ﺍﻟﺘﻘﺪﻳﺮ ﺑﻔﺘﺮﺓ ‪. Interval Estimate‬‬
‫‪9‬‬
‫‪ -2‬ﺍﺧﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺮﻭﺽ ‪ : Tests of Hypotheses‬ﻭﻓﻴﻪ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ ﻟﻠﻮﺻﻮﻝ ﺇﱃ ﻗﺮﺍﺭ‬
‫ﻋﻠﻤﻲ ﺳﻠﻴﻢ ﲞﺼﻮﺹ ﺍﻟﻔﺮﻭﺽ ﺍﶈﺪﺩﺓ ﺣﻮﻝ ﻣﻌﺎﱂ ﺍ‪‬ﺘﻤﻊ ‪.‬‬
‫ﺛﺎﻟﺜﺎ‪ :‬ﺍﻟﺘﻨﺒﺆ‬
‫ﻭﻓﻴﻪ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﻧﺘﺎﺋﺞ ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ‪ ،‬ﻭﺍﻟﱵ ﺗﺪﻟﻨﺎ ﻋﻠﻰ ﺳﻠﻮﻙ ﺍﻟﻈﺎﻫﺮﺓ ﰲ ﺍﳌﺎﺿﻲ ﰲ‬
‫ﻣﻌﺮﻓﺔ ﻣﺎ ﳝﻜﻦ ﺃﻥ ﳛﺪﺙ ﳍﺎ ﰲ ﺍﳊﺎﺿﺮ ﻭﺍﳌﺴﺘﻘﺒﻞ ‪ .‬ﻭﻫﻨﺎﻙ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻷﺳﺎﻟﻴﺐ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﳌﻌﺮﻭﻓﺔ ﺍﻟﱵ‬
‫ﺗﺴﺘﺨﺪﻡ ﰲ ﺍﻟﺘﻨﺒﺆ‪ ،‬ﻭﻣﻦ ﺃﺑﺴﻄﻬﺎ ﺃﺳﻠﻮﺏ ﺍﻻﲡﺎﻩ ﺍﻟﻌﺎﻡ‪ ،‬ﻭﻫﻲ ﻣﻌﺎﺩﻟﺔ ﺭﻳﺎﺿﻴﺔ ﻳﺘﻢ ﺗﻘﺪﻳﺮ ﻣﻌﺎﻣﻼ‪‬ﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ‬
‫ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﰒ ﺑﻌﺪ ﺫﻟﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺍﳌﻘﺪﺭﺓ ﰲ ﺍﻟﺘﻨﺒﺆ ﲟﺎ ﳝﻜﻦ ﺃﻥ ﳛﺪﺙ ﻟﻠﻈﺎﻫﺮﺓ ﰲ ﺍﳌﺴﺘﻘﺒﻞ ‪.‬‬
‫‪ 3/1‬ﺃﻧﻮﺍﻉ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﻃﺮﻕ ﻗﻴﺎﺳﻬﺎ‬
‫ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺍﻟﺴﺎﺑﻖ ﻟﻌﻠﻢ ﺍﻹﺣﺼﺎﺀ‪ ،‬ﻳ ﻼﺣﻆ ﺃﻧﻪ ﺍﻟﻌﻠﻢ ﺍﻟﺬﻱ ﻳﻬﺘﻢ ﲜﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ ، Data‬ﻭ ﻧﻮﻉ‬
‫ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ ،‬ﻭﻃﺮﻳﻘﺔ ﻗﻴﺎﺳﻬﺎ ﻣﻦ ﺃﻫﻢ ﺍﻷﺷﻴﺎﺀ ﺍﻟﱵ ﲢﺪﺩ ﺍﻟﺘﺤﻠﻴﻞ ﺍﻹﺣﺼﺎﺋﻲ ﺍﳌﺴﺘﺨﺪﻡ ‪ ،‬ﻭﻟﻠﺒﻴﺎﻧـﺎﺕ ﺃﻧـﻮﺍﻉ‬
‫ﲣﺘﻠﻒ ﰲ ﻃﺮﻳﻘﺔ ﻗﻴﺎﺳﻬﺎ‪ ،‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪ :‬ﺑﻴﺎﻧﺎﺕ ﺍﻟﻨﻮﻉ ) ﺫﻛﻮﺭ ‪ – Male‬ﺇﻧﺎﺙ ‪، ( Female‬‬
‫ﻭﺑﻴﺎﻧﺎﺕ ﺗﻘﺪﻳﺮ ﺍﻟﻄﺎﻟﺐ ) ‪ ، (D-D + -C-C + -B-B + -A-A+‬ﻭﺑﻴﺎﻧﺎﺕ ﻋﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﻟﻼﺯﻣﺔ ﳊﻔـﻆ‬
‫ﺍﻟﺪﺟﺎﺝ ﻓﺘﺮﺓ ﺯﻣﻨﻴﺔ ﻣﻌﻴﻨﺔ‪ ،‬ﻭﺑﻴﺎﻧﺎﺕ ﻋﻦ ﺣﺠﻢ ﺍﻹﻧﻔﺎﻕ ﺍﻟﻌﺎﺋﻠﻲ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ‪ .‬ﻭ ﻣﻦ ﻫـﺬﻩ‬
‫ﺍﻷﻣﺜﻠﺔ ﳒﺪ ﺃﻥ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻨﻮﻉ ﻏﲑ ﺭﻗﻤﻴﺔ‪ ،‬ﺑﻴﻨﻤﺎ ﺑﻴﺎﻧﺎﺕ ﺗﻘﺪﻳﺮ ﺍﻟﻄﺎﻟﺐ ﺑﻴﺎﻧﺎﺕ ﺭﻗﻤﻴﺔ ﻣﻮﺿﻮﻋﺔ ﰲ ﺷـﻜﻞ‬
‫ﻣﺴﺘﻮﻳﺎﺕ ﺃﻭ ﻓﺌﺎﺕ‪ ،‬ﺃﻣﺎ ﺑﻴﺎﻧﺎﺕ ﻛﻞ ﻣﻦ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻭﺣﺠﻢ ﺍﻹﻧﻔﺎﻕ ﺍﻟﻌﺎﺋﻠﻲ ﻓﻬﻲ ﺑﻴﺎﻧﺎﺕ ﺭﻗﻤﻴﺔ‪ ،‬ﻭﻣﻦ‬
‫ﰒ ﳝﻜﻦ ﺗﻘﺴﻴﻢ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺇﱃ ﳎﻤﻮﻋﺘﲔ ﳘﺎ ‪:‬‬
‫‪ -1‬ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ ‪Qualitative Data‬‬
‫‪ -2‬ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ ‪Quantitative Data‬‬
‫ﺃﻭﻻ‪ :‬ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ‬
‫ﻫﻲ ﺑﻴﺎﻧﺎﺕ ﻏﲑ ﺭﻗﻤﻴﺔ‪ ،‬ﺃﻭ ﺑﻴﺎﻧﺎﺕ ﺭﻗﻤﻴﺔ ﻣﺮﺗﺒﺔ ﰲ ﺷﻜﻞ ﻣﺴﺘﻮﻳﺎﺕ ﺃﻭ ﰲ ﺷﻜﻞ ﻓﺌﺎﺕ ﺭﻗﻤﻴـﺔ ‪،‬‬
‫ﻭﻣﻦ ﰒ ﺗﻘﺎ ﺱ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ ﲟﻌﻴﺎﺭﻳﻦ ﳘﺎ ‪:‬‬
‫ﺃ ‪ -‬ﺑﻴﺎﻧﺎﺕ ﻭﺻﻔﻴﺔ ﻣﻘﺎﺳﺔ ﲟﻌﻴﺎﺭ ﺍﲰﻲ ‪ : Nominal Scale‬ﻭﻫﻲ ﺑﻴﺎﻧﺎﺕ ﻏﲑ ﺭﻗﻤﻴﺔ ﺗﺘﻜﻮﻥ ﻣﻦ ﳎﻤﻮﻋﺎﺕ‬
‫ﻣﺘﻨﺎﻓﻴﺔ‪ ،‬ﻛﻞ ﳎﻤﻮﻋﺔ ﳍﺎ ﺧﺼﺎﺋﺺ ﲤﻴﺰﻫﺎ ﻋﻦ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﺧﺮﻯ‪ ،‬ﻛﻤﺎ ﺃﻥ ﻫﺬﻩ ﺍ‪‬ﻤﻮﻋـﺎﺕ ﻻ ﳝﻜـﻦ‬
‫ﺍﳌﻔﺎﺿﻠﺔ ﺑﻴﻨﻬ ﺎ‪ ،‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪:‬‬
‫ ﺍﻟﻨﻮﻉ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﺗﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺍﲰﻲ " ﺫﻛﺮ – ﺃﻧﺜﻰ " ‪.‬‬‫ ﺍﳊﺎﻟﺔ ﺍﻻﺟﺘﻤﺎﻋﻴﺔ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﺗﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺍﲰﻲ " ﻣﺘﺰﻭﺝ ـ ﺃﻋﺰﺏ ـ ﺃﺭﻣﻞ ـ ﻣﻄﻠﻖ " ‪.‬‬‫ ﺃﺻﻨﺎﻑ ﺍﻟﺘﻤﻮﺭ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﻳﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺍﲰﻲ " ﺑﺮﺣﻲ ـ ﺧﻼﺹ ـ ﺳﻜﺮﻱ ـ ‪. " ....‬‬‫ ﺍﳉﻨﺴﻴﺔ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﻳﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺍﲰﻲ " ﺳﻌﻮﺩﻱ ـ ﻏﲑ ﺳﻌﻮﺩﻱ "‬‫ﻭﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﳝﻜﻦ ﺗﻜﻮﻳﺪ ﳎﻤﻮﻋﺎﺗﻪ ﺑﺄﺭﻗﺎﻡ‪ ،‬ﻓﻤﺜﻼ ﺍﳉﻨـﺴﻴﺔ ﳝﻜـﻦ ﺇﻋﻄـﺎﺀ ﺍﳉﻨـﺴﻴﺔ‬
‫" ﺳﻌﻮﺩﻱ " ﺍﻟﻜﻮﺩ ) ‪ ، ( 1‬ﻭﺍﳉﻨﺴﻴﺔ " ﻏﲑ ﺳﻌﻮﺩﻱ " ﺍﻟﻜﻮﺩ ) ‪( 2‬‬
‫‪10‬‬
‫ﺏ ‪ -‬ﺑﻴﺎﻧﺎﺕ ﻭﺻﻔﻴﺔ ﻣﻘﺎﺳﺔ ﲟﻌﻴﺎﺭ ﺗﺮﺗﻴﱯ ‪ : Ordinal Scales‬ﻭﺗﺘﻜﻮﻥ ﻣﻦ ﻣﺴﺘﻮﻳﺎﺕ‪ ،‬ﺃﻭ ﻓﺌـﺎﺕ ﳝﻜـﻦ‬
‫ﺗﺮﺗﻴﺒﻬﺎ ﺗﺼﺎﻋﺪﻳﺎ ﺃﻭ ﺗﻨﺎﺯﻟﻴﺎ‪ ،‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪:‬‬
‫‪ -‬ﺗﻘﺪﻳﺮ ﺍﻟﻄﺎﻟﺐ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﺗﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺗﺮﺗﻴﱯ " ‪"D-D + -C-C + -B-B + -A-A+‬‬
‫ ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﺗﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺗﺮﺗﻴﱯ " ﺃﻣﻲ – ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ ـ ﺍﺑﺘﺪﺍﺋﻴﺔ‬‫ـ ﻣﺘﻮﺳﻄﺔ ـ ﺛﺎﻧﻮ ﻳﺔ ـ ﺟﺎﻣﻌﻴﺔ ـ ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻴﺔ "‬
‫ ﺗﺮﻛﻴﺰ ﺧﻼﺕ ﺍﻟﺼﻮﺩﻳﻮﻡ ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﺣﻔﻆ ﳊﻮﻡ ﺍﻟﺪﺟﺎﺝ ﻣﻦ ﺍﻟﺒﻜﺘﺮﻳﺎ ‪ :‬ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﺗﺮﺗﻴﱯ‬‫ﻳﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺗﺮﺗﻴﱯ " ‪ 0%‬ـ ‪ 5%‬ـ ‪ 10%‬ـ ‪" 15%‬‬
‫‪ -‬ﻓﺌﺎﺕ ﺍﻟﺪﺧﻞ ﺍﻟﻌﺎﺋﻠﻲ ﰲ ﺍﻟﺸﻬﺮ ﺑﺎﻟﺮﻳﺎﻝ " ‪10000-15000 ، 5000-10000 ، <5000‬‬
‫‪." >20000 ، 15000-20000 ،‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ‬
‫ﻫﻲ ﺑﻴﺎﻧﺎﺕ ﻳﻌﱪ ﻋﻨﻬﺎ ﺑﺄﺭﻗﺎﻡ ﻋﺪﺩﻳﺔ ﲤﺜﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﻠﻴﺔ ﻟﻠﻈﺎﻫﺮﺓ‪ ،‬ﻭﺗﻨﻘﺴﻢ ﺇﱃ ﻗﺴﻤﲔ‬
‫ﳘﺎ ‪:‬‬
‫ﺃ ‪ -‬ﺑﻴﺎﻧﺎﺕ ﻓﺘﺮﺓ ‪ : Interval Data‬ﻭﻫﻲ ﺑﻴﺎﻧﺎﺕ ﺭﻗﻤﻴﺔ‪ ،‬ﺗﻘﺎﺱ ﲟﻘﺪﺍﺭ ﺑﻌﺪﻫﺎ ﻋﻦ ﺍﻟﺼﻔﺮ‪ ،‬ﺃﻱ ﺃﻥ‬
‫ﻟﻠﺼﻔﺮ ﺩﻻﻟﺔ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﻟﻈﺎﻫﺮﺓ‪ ،‬ﻭﻣﻦ ﺃﻣﺜﻠﺔ ﺫﻟﻚ ‪:‬‬
‫ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ :‬ﻣﺘﻐﲑ ﻛﻤﻲ ﺗ ﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺑﻌﺪﻱ‪ ،‬ﺣﻴﺚ ﺃﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ " ‪ " 0‬ﻟﻴﺲ‬‫‪o‬‬
‫ﻣﻌﻨﺎﻩ ﺍﻧﻌﺪﺍﻡ ﺍﻟﻈﺎﻫﺮﺓ‪ ،‬ﻭﻟﻜﻨﻪ ﻳ ﺪﻝ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﻟﻈﺎﻫﺮﺓ ‪.‬‬
‫ ﺩﺭﺟﺔ ﺍﻟﻄﺎﻟﺐ ﰲ ﺍﻻﺧﺘﺒﺎﺭ ‪ :‬ﻣﺘﻐﲑ ﻛﻤﻲ ﻳﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ ﺑﻌﺪﻱ‪ ،‬ﺣﻴﺚ ﺣﺼﻮﻝ ﺍﻟﻄﺎﻟـﺐ‬‫ﻋﻠﻰ ﺍﻟﺪﺭﺟﺔ " ‪ " 0‬ﻻ ﻳﻌﲏ ﺍﻧﻌﺪﻡ ﻣﺴﺘﻮﻯ ﺍﻟﻄﺎﻟﺐ ‪.‬‬
‫ﺏ ‪ -‬ﺑﻴﺎﻧﺎﺕ ﻧﺴﺒﻴﺔ ‪ : Ratio Data‬ﻫﻲ ﻣﺘﻐ ﲑﺍﺕ ﻛﻤﻴﺔ‪ ،‬ﺗﺪﻝ ﺍﻟﻘﻴﻤﺔ " ‪ " 0‬ﻋﻠﻰ ﻋـﺪﻡ ﻭﺟـﻮﺩ‬
‫ﺍﻟﻈﺎﻫﺮﺓ ﻭﻣ ﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪:‬‬
‫ ﺇﻧﺘﺎﺟﻴﺔ ﺍﻟﻔﺪﺍﻥ ﺑﺎﻟﻄﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪.‬‬‫ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﺑﺎﻷﻋﻼﻑ ﺑﺎﻟﺪﻭﱎ ‪.‬‬‫ ﻛﻤﻴﺔ ﺍﻷﻟﺒﺎﻥ ﺍﻟﱵ ﺗﻨﺘﺠﻬﺎ ﺍﻟﺒﻘﺮﺓ ﰲ ﺍﻟﻴﻮﻡ ‪.‬‬‫ ﻋﺪﺩ ﻣﺮﺍﺕ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﺰﺭﻋﺔ ﻟﻨﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻷﲰﺪﺓ ‪.‬‬‫ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﳌﻌﻴﺒﺔ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳌﺰﺭﻋ ﺔ ‪.‬‬‫ﻭﻳﻼﺣﻆ ﺃﻥ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻔﺘﺮﺓ ﻻ ﳝﻜﻦ ﺇﺧﻀﺎﻋﻬﺎ ﻟﻠﻌﻤﻠﻴﺎﺕ ﺍﳊﺴﺎﺑﻴﺔ ﻣﺜﻞ ﻋﻤﻠﻴﺎﺕ ﺍﻟـﻀﺮﺏ‬
‫ﻭﺍﻟﻘﺴﻤﺔ‪ ،‬ﺑﻴﻨﻤﺎ ﳝﻜﻦ ﻓﻌﻞ ﺫﻟﻚ ﻣﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻨﺴﺒﻴﺔ ‪.‬‬
‫‪ 4/1‬ﻃﺮﻕ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﺗﻌﺘﱪ ﻃﺮﻳﻘﺔ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺃﻫﻢ ﺍﳌﺮﺍﺣﻞ ﺍﻟﱵ ﻳﻌﺘﻤﺪ ﻋﻠﻴﻬﺎ ﺍﻟﺒﺤﺚ ﺍﻹﺣﺼﺎﺋﻲ‪ ،‬ﻛﻤﺎ‬
‫ﺃﻥ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺄﺳﻠﻮﺏ ﻋﻠﻤﻲ ﺻﺤﻴﺢ‪ ،‬ﻳﺘﺮﺗﺐ ﻋﻠﻴﻪ ﺍﻟﻮﺻﻮﻝ ﺇﱃ ﻧﺘﺎﺋﺞ ﺩﻗﻴﻘﺔ ﰲ ﺍﻟﺘﺤﻠﻴـﻞ‪،‬‬
‫‪11‬‬
‫ﻭﻟﺪﺭﺍﺳﺔ ﻃﺮﻕ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﳚﺐ ﺍﻹﳌﺎﻡ ﺑﺎﻟﻨﻘﺎﻁ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪ -1‬ﻣﺼﺎﺩﺭ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪.‬‬
‫‪ -3‬ﺃﻧﻮﺍﻉ ﺍﻟﻌﻴﻨﺎﺕ‬
‫‪ -2‬ﺃﺳﻠﻮﺏ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪.‬‬
‫‪ -4‬ﻭﺳﺎﺋﻞ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪.‬‬
‫‪ 1 /4 /1‬ﻣﺼﺎﺩﺭ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻫﻨﺎﻙ ﻣﺼﺪﺭﻳﻦ ﻟﻠﺤﺼﻮﻝ ﻣﻨﻬﺎ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻧﺎﺕ ﳘﺎ ‪:‬‬
‫‪ -1‬ﺍﳌﺼﺎﺩﺭ ﺍﻷﻭﻟﻴﺔ ‪.‬‬
‫ﺃﻭﻻ‪ :‬ﺍﳌﺼﺎﺩﺭ‬
‫‪ -2‬ﺍﳌﺼﺎﺩﺭ ﺍﻟﺜﺎﻧﻮﻳﺔ ‪.‬‬
‫ﺍﻷﻭﻟﻴﺔ ‪ :‬ﻭﻫﻲ ﺍﳌﺼﺎﺩﺭ ﺍﻟﱵ ﳓﺼﻞ ﻣﻨﻬﺎ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺸﻜﻞ ﻣﺒﺎﺷﺮ‪ ،‬ﺣﻴﺚ‬
‫ﻳﻘﻮﻡ ﺍﻟﺒﺎﺣﺚ ﻧﻔﺴﻪ ﲜﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺍﳌﻔﺮﺩﺓ ﳏﻞ ﺍﻟﺒﺤﺚ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﻓﻌﻨﺪ ﻣﺎ ﻳﻬﺘﻢ ﺍﻟﺒﺎﺣﺚ ﲜﻤﻊ‬
‫ﺑﻴﺎﻧﺎﺕ ﻋﻦ ﺍﻷﺳ ﺮﺓ‪ ،‬ﻳﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻣﻘﺎﺑﻠﺔ ﻣﻊ ﺭﺏ ﺍﻷﺳﺮﺓ‪ ،‬ﻭﻳﺘﻢ ﺍﳊﺼﻮﻝ ﻣﻨﻪ ﻣﺒﺎﺷﺮﺓ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ‬
‫ﺧﺎﺻﺔ ﺑﺄﺳﺮﺗﻪ‪ ،‬ﻣﺜﻞ ﺑﻴﺎﻧﺎﺕ ﺍﳌﻨﻄﻘﺔ ﺍﻟﺘﺎﺑﻊ ﳍﺎ‪ ،‬ﻭﺍﳊﻲ ﺍﻟﺬﻱ ﻳﺴﻜﻦ ﻓﻴﻪ‪ ،‬ﻭﺍﳊﻨـﺴﻴﺔ‪ ،‬ﻭﺍﳌﻬﻨـﺔ‪،‬‬
‫ﻭﺍﻟﺪﺧﻞ ﺍﻟﺸﻬﺮﻱ‪ ،‬ﻭﻋﺪﺩ ﺃﻓﺮﺍﺩ ﺍﻷﺳﺮ ﺓ‪ ،‬ﻭﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ‪ ... ،‬ﻭﻫﻜﺬﺍ ‪.‬‬
‫ﻭﻳﺘﻤﻴﺰ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﳌﺼﺎﺩﺭ ﺑﺎﻟﺪﻗﺔ ﻭ ﺍﻟﺜﻘﺔ ﰲ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻷﻥ ﺍﻟﺒﺎﺣﺚ ﻫﻮ ﺍﻟﺬﻱ‬
‫ﻳﻘﻮﻡ ﺑﻨﻔﺴﻪ ﲜﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺍﳌﻔﺮﺩﺓ ﳏﻞ ﺍﻟﺒﺤﺚ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﻭﻟﻜﻦ ﺃﻫﻢ ﻣﺎ ﻳﻌﺎﺏ ﻋﻠﻴﻬﺎ ﺃ‪‬ﺎ ﲢﺘﺎﺝ‬
‫ﺇﱃ ﻭﻗﺖ ﻭﳎﻬﻮﺩ ﻛﺒﲑ‪ ،‬ﻭﻣﻦ ﻧﺎﺣﻴﺔ ﺃﺧﺮﻯ ﺃ‪‬ﺎ ﻣﻜﻠﻔﺔ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﳌﺎﺩﻳﺔ ‪.‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﳌﺼﺎﺩﺭ ﺍﻟﺜﺎﻧﻮﻳﺔ‪:‬‬
‫ﻭﻫﻲ ﺍﳌﺼﺎﺩﺭ ﺍﻟﱵ ﳓﺼﻞ ﻣ ﻨﻬﺎ ﻋﻠﻰ ﺍﻟﺒﻴ ﺎﻧﺎﺕ ﺑﺸﻜﻞ ﻏﲑ‬
‫ﻣﺒﺎﺷﺮ‪ ،‬ﲟﻌﲎ ﺁﺧﺮ ﻳﺘﻢ ﺍﳊﺼﻮﻝ ﻋﻠﻴﻬﺎ ﺑﻮﺍﺳﻄﺔ ﺃﺷﺨﺎﺹ ﺁﺧﺮﻳﻦ‪ ،‬ﺃﻭ ﺃﺟﻬﺰﺓ‪ ،‬ﻭﻫﻴﺌـﺎﺕ ﺭﲰﻴـﺔ‬
‫ﻣﺘﺨﺼﺼﺔ‪ ،‬ﻣﺜﻞ ﻧﺸﺮﺍﺕ ﻭﺯﺍﺭﺓ ﺍﻟﺰﺭﺍﻋﺔ‪ ،‬ﻭﻧﺸﺮﺍﺕ ﻣﺼﻠﺤﺔ ﺍﻹﺣﺼﺎﺀ‪ ،‬ﻭﻧﺸﺮﺍﺕ ﻣﻨﻈﻤﺔ ﺍﻷﻏﺬﻳﺔ "‬
‫ﺍﻟﻔﺎﻭ "‪ ....‬ﻭﻫﻜﺬﺍ ‪.‬‬
‫ﻭﻣﻦ ﻣﺰﺍﻳﺎ ﻫﺬ ﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﳌﺼﺎﺩﺭ‪ ،‬ﺗﻮﻓﲑ ﺍﻟﻮﻗﺖ ﻭﺍﳉﻬﺪ ﻭﺍﳌﺎﻝ‪ ،‬ﺇﻻ ﺃﻥ ﺩﺭﺟ ﺔ ﺛﻘﺔ‬
‫ﺍﻟﺒﺎﺣﺚ ﻓﻴ ﻬﺎ ﻟﻴﺴﺖ ﺑﻨﻔﺲ ﺍﻟﺪﺭﺟﺔ ﰲ ﺣﺎﻟﺔ ﺍﳌﺼﺎﺩﺭ ﺍﻷﻭﻟﻴﺔ ‪.‬‬
‫‪ 2 /4 /1‬ﺃﺳﻠﻮﺏ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻳﺘﺤﺪﺩ ﺍﻷﺳﻠﻮﺏ ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﺣﺴﺐ ﺍﳍﺪﻑ ﻣﻦ ﺍﻟﺒﺤﺚ‪ ،‬ﻭﺣﺠﻢ‬
‫ﺍ‪‬ﺘﻤﻊ ﳏﻞ ﺍﻟﺒﺤﺚ‪ ،‬ﻭﻫﻨﺎﻙ ﺃﺳﻠﻮﺑﲔ ﳉﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﳘﺎ ‪:‬‬
‫‪ -1‬ﺃﺳﻠﻮﺏ ﺍﳊﺼﺮ ﺍﻟﺸﺎﻣﻞ ‪.‬‬
‫‪ -2‬ﺃﺳﻠﻮﺏ ﺍﳌ ﻌﺎﻳﻨﺔ‪.‬‬
‫ﺃﻭﻻ ‪ :‬ﺃﺳﻠﻮﺏ ﺍﳊﺼﺮ ﺍﻟﺸﺎﻣﻞ ‪ :‬ﻳﺴﺘﺨﺪﻡ ﻫﺬﺍ ﺍﻷﺳﻠﻮﺏ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺮﺽ ﻣﻦ ﺍﻟﺒﺤﺚ ﻫﻮ‬
‫ﺣﺼﺮ ﲨﻴﻊ ﻣﻔﺮﺩﺍﺕ ﺍ‪‬ﺘﻤﻊ‪ ،‬ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻳﺘﻢ ﲨﻊ ﺑﻴﺎﻧﺎﺕ ﻋﻦ ﻛﻞ ﻣﻔﺮﺩﺓ ﻣﻦ ﻣﻔﺮﺩﺍﺕ ﺍ‪‬ﺘﻤﻊ‬
‫ﺑﻼ ﺍﺳﺘﺜﻨﺎﺀ‪ ،‬ﻛﺤﺼﺮ ﲨﻴﻊ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﻟﺘﻤﻮﺭ‪ ،‬ﺃﻭ ﺣﺼﺮ ﺍﻟﺒﻨﻮﻙ ﺍﻟﺰﺭﺍﻋﻴـﺔ ﰲ ﺍﳌﻤﻠﻜـﺔ‪،‬‬
‫ﻭﻳﺘﻤﻴﺰ ﺃﺳﻠﻮﺏ ﺍﳊﺼﺮ ﺍﻟﺸﺎﻣﻞ ﺑﺎﻟﺸﻤﻮﻝ ﻭﻋﺪﻡ ﺍﻟﺘﺤﻴﺰ‪ ،‬ﻭﺩﻗﺔ ﺍﻟﻨﺘﺎﺋﺞ‪ ،‬ﻭﻟﻜﻦ ﻳﻌﺎﺏ ﻋﻠﻴﻪ ﺃﻧـﻪ‬
‫ﳛﺘﺎﺝ ﺇﱃ ﺍﻟﻮﻗﺖ ﻭﺍ‪‬ﻬﻮﺩ‪ ،‬ﻭﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﻌﺎﻟﻴﺔ ‪.‬‬
‫‪12‬‬
‫ﺛﺎﻧﻴﺎ ‪:‬‬
‫ﺃﺳﻠﻮﺏ ﺍﳌﻌﺎﻳﻨﺔ ‪ :‬ﻳﻌﺘﻢ ﻫﺬﺍ ﺍ ﻷﺳﻠﻮﺏ ﻋﻠﻰ ﻣﻌﺎﻳﻨﺔ ﺟﺰﺀ ﻣﻦ ﺍ‪‬ﺘﻤﻊ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﻳﺘﻢ‬
‫ﺍﺧﺘﻴﺎﺭﻩ ﺑﻄﺮﻳﻘﺔ ﻋﻠﻤﻴﺔ ﺳﻠﻴﻤﺔ‪ ،‬ﻭﺩﺭﺍﺳﺘﻪ ﰒ ﺗﻌﻤﻴﻢ ﻧﺘﺎﺋﺞ ﺍﻟﻌﻴ ﻨﺔ ﻋﻠﻰ ﺍ‪‬ﺘﻤﻊ‪ ،‬ﻭﻣﻦ ﰒ ﻳﺘﻤﻴﺰ ﻫﺬﺍ‬
‫ﺍﻷﺳﻠﻮﺏ ﺑﺎﻵﰐ ‪:‬‬
‫‪ -1‬ﺗﻘﻠﻴﻞ ﺍﻟﻮﻗﺖ ﻭﺍﳉﻬﺪ ‪.‬‬
‫‪ -2‬ﺗﻘﻠﻴﻞ ﺍﻟﺘﻜﻠﻔﺔ ‪.‬‬
‫‪ -3‬ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺃﻛﺜﺮ ﺗﻔﺼﻴﻼ‪ ،‬ﻭﺧﺎﺻﺔ ﺇﺫﺍ ﲨﻌﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣـﻦ ﺧـﻼﻝ ﺍﺳـﺘﻤﺎﺭﺓ‬
‫ﺍﺳﺘﺒﻴﺎﻥ ‪.‬‬
‫‪ -4‬ﻛﻤﺎ ﺃﻥ ﺃﺳﻠﻮﺏ ﺍﳌﻌﺎﻳﻨﺔ ﻳﻔﻀﻞ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﺍﻟﱵ ﻳﺼﻌﺐ ﻓﻴﻬﺎ ﺇﺟﺮﺍﺀ ﺣﺼﺮ ﺷﺎﻣﻞ‪ ،‬ﻣﺜﻞ‬
‫ﻣﻌﺎﻳﻨﺔ ﺩﻡ ﺍﳌﺮ ﻳﺾ‪ ،‬ﺃﻭ ﺇﺟﺮﺍﺀ ﺗﻌﺪﺍﺩ ﻟﻌﺪﺩ ﺍﻷﲰﺎﻙ ﰲ ﺍﻟﺒﺤﺮ‪ ،‬ﺃﻭ ﻣﻌﺎﻳﻨﺔ ﺍﻟﻠﻤﺒﺎﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪.‬‬
‫ﻭﻟﻜﻦ ﻳﻌﺎﺏ ﻋﻠ ﻰ ﺃﺳﺎﻭﺏ ﺍﳌﻌﺎﻳﻨﺔ ‪ :‬ﺃﻥ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﱵ ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﻫﺬﺍ ﺍﻷﺳﻠﻮﺏ ﺃﻗﻞ‬
‫ﺩﻗﺔ ﻣﻦ ﻧﺘﺎﺋﺞ ﺃﺳﻠﻮﺏ ﺍﳊﺼﺮ ﺍﻟﺸﺎﻣﻞ‪ ،‬ﻭﺧﺎﺻﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﻴﻨﺔ ﺍﳌﺨﺘﺎﺭﺓ ﻻ ﲤﺜﻞ ﺍ‪‬ﺘﻤﻊ ﲤﺜـﻴﻼ‬
‫ﺟﻴﺪﺍ ‪.‬‬
‫‪ 3 /4 /1‬ﺃﻧﻮﺍﻉ ﺍﻟﻌﻴﻨﺎﺕ‬
‫ﻟﻜﻲ ﻧﺴﺘﻌﺮﺽ ﺃﻧﻮﺍﻉ ﺍﻟﻌﻴﻨﺎﺕ‪ ،‬ﻳﺘﻢ ﺃﻭﻻ ﲢﺪﻳﺪ ﺍﻟﻔﺮﻕ ﺑﲔ ﳎﺘﻤﻊ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﻭﺍﻟﻌﻴﻨﺔ‬
‫ﺍﳌﺴﺤﻮﺑﺔ ﻣﻦ ﻫﺬﺍ ﺍ‪‬ﺘﻤﻊ ‪.‬‬
‫ﺃ ‪ -‬ﺍ‪‬ﺘﻤﻊ ‪ :‬ﻫﻮ ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳌﻔﺮﺩﺍﺕ ﺍﻟﱵ ﺗﺸﺘﺮﻙ ﰲ ﺻﻔﺎﺕ‪ ،‬ﻭﺧﺼﺎﺋﺺ ﳏـﺪﺩﺓ‪ ،‬ﻭﳎﺘﻤـﻊ‬
‫ﺍﻟﺪﺭﺍﺳﺔ ﻫﻮ ﺍﻟﺬﻱ ﻳﺸﻤﻞ ﲨﻴﻊ ﻣﻔﺮﺩﺍﺕ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﺃﻱ ﻫﻮ ﺍﻟﻜﻞ ﺍﻟﺬﻱ ﻧﺮﻏﺐ ﺩﺭﺍﺳﺘﻪ‪ ،‬ﻣﺜﻞ‬
‫ﳎﺘﻤﻊ ﻣ ﺰﺍﺭﻉ ﺇﻧﺘﺎﺝ ﺍﻟﺪﻭﺍﺟﻦ‪ ،‬ﺃﻭ ﳎﺘﻤﻊ ﻃﻼﺏ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻟﺚ ﺍﻟﺜﺎﻧﻮﻱ ‪.‬‬
‫ﺏ ‪ -‬ﺍﻟﻌﻴﻨﺔ ‪ :‬ﻫﻮ ﺟﺰﺀ ﻣﻦ ﺍ‪‬ﺘﻤﻊ ﻳﺘﻢ ﺍﺧﺘﻴﺎﺭﻩ ﺑﻄﺮﻕ ﳐﺘﻠﻔﺔ ﺑﻐﺮﺽ ﺩﺭﺍﺳﺔ ﻫﺬﺍ ﺍ‪‬ﺘﻤﻊ ‪.‬‬
‫ﺷﻜﻞ ﺭﻗﻢ ) ‪(1‬‬
‫ﺍﻟﻔﺮﻕ ﺑﲔ ﺍ‪‬ﺘﻤﻊ ﻭﺍﻟﻌﻴﻨﺔ‬
‫ﳎﺘﻤﻊ ﺍﻟﺪﺭﺍﺳﺔ‬
‫ﻋﻴﻨﺔ ﺍﻟﺪﺭﺍﺳﺔ‬
‫ﻭﻳﺘﻮﻗﻒ ﳒﺎﺡ ﺍﺳﺘﺨﺪﺍﻡ ﺃﺳﻠﻮﺏ ﺍﳌﻌﺎﻳﻨﺔ ﻋﻠﻰ ﻋﺪﺓ ﻋﻮﺍﻣﻞ ﻫﻲ ‪:‬‬
‫‪ -1‬ﻛﻴﻔﻴﺔ ﲢﺪﻳﺪ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ‪.‬‬
‫‪ -2‬ﻃﺮﻳﻘﺔ ﺍﺧﺘﻴﺎﺭ ﻣﻔﺮﺩﺍﺕ ﺍﻟﻌﻴﻨﺔ‬
‫‪ -3‬ﻧﻮﻉ ﺍﻟﻌﻴﻨﺔ ﺍﳌﺨﺘﺎﺭﺓ ‪.‬‬
‫ﻭﳝﻜﻦ ﺗﻘﺴﻴﻢ ﺍﻟﻌﻴﻨﺎﺕ ﻭﻓﻘﺎ ﻷﺳﻠﻮﺏ ﺍﺧﺘﻴﺎﺭﻫﺎ ﺇﱃ ﻧﻮﻋﲔ ﳘﺎ ‪:‬‬
‫ﺃ ‪ -‬ﺍﻟﻌﻴﻨﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‬
‫ﺏ‪ -‬ﺍﻟﻌﻴﻨﺎﺕ ﻏﲑ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‬
‫‪13‬‬
‫ﺃﻭﻻ‪ :‬ﺍﻟﻌﻴﻨﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‬
‫ﺷﻜﻞ ﺭﻗﻢ )‪(2‬‬
‫ﻫﻲ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﱵ ﻳﺘﻢ ﺍﺧﺘﻴﺎﺭ ﻣﻔﺮﺩﺍ‪‬ﺎ ﻭﻓﻘﺎ ﻟﻘﻮﺍﻋﺪ ﺍﻻﺣﺘﻤﺎﻻﺕ‪ ،‬ﲟﻌﲎ ﺁﺧﺮ ﻫﻲ ﺍﻟﱵ ﻳﺘﻢ‬
‫ﺍﺧﺘﻴﺎﺭ ﻣﻔﺮﺩﺍ‪‬ﺎ ﻣﻦ ﳎﺘﻤﻊ ﺍﻟﺪﺭﺍﺳﺔ ﺑﻄﺮﻳﻘﺔ ﻋﺸﻮﺍﺋﻴﺔ‪ ،‬ﺪﻑ ﲡﻨﺐ ﺍﻟﺘﺤﻴﺰ ﺍﻟﻨﺎﺗﺞ ﻋﻦ ﺍﺧﺘﻴﺎﺭ ﺍﳌﻔﺮﺩﺍﺕ ‪،‬‬
‫ﻭﻣﻦ ﺃﻫﻢ ﺃﻧﻮﺍﻉ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‪ ،‬ﻣﺎ ﻳﻠﻲ‪:‬‬
‫ﺃ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﺒﺴﻴﻄﺔ ‪. Simple Random Sample‬‬
‫ﺏ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﻄﺒﻘﻴﺔ ‪. Stratified Random Sample‬‬
‫ﺕ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﳌﻨﺘﻈﻤﺔ ‪. Systematic Random Sample‬‬
‫ﺙ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﻨﻘﻮﺩﻳﺔ ﺃﻭ ﺍﳌﺘﻌﺪﺩﺓ ﺍﳌﺮﺍﺣﻞ ‪. Cluster Sample‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻟﻌﻴﻨﺎﺕ ﻏﲑ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‬
‫ﻫﻲ ﺍﻟﱵ ﻳﺘﻢ ﺍﺧﺘﻴﺎﺭ ﻣ ﻔﺮﺩﺍ‪‬ﺎ ﺑﻄﺮﻳﻘﺔ ﻏﲑ ﻋﺸﻮﺍﺋﻴﺔ‪ ،‬ﺣﻴﺚ ﻳﻘﻮﻡ ﺍﻟﺒﺎﺣﺚ ﺑﺎﺧﺘﻴﺎﺭ ﻣﻔﺮﺩﺍﺕ‬
‫ﺍﻟﻌﻴﻨﺔ ﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﱵ ﲢﻘﻖ ﺍﳍﺪﻑ ﻣﻦ ﺍﳌﻌﺎﻳﻨﺔ‪ ،‬ﻣﺜﻞ ﺍﺧﺘﻴﺎﺭ ﻋﻴﻨﺔ ﻣﻦ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﻟﺘﻤﻮﺭ ﻣﻦ ﺍﻟﻨﻮﻉ‬
‫ﺍﻟﺴﻜﺮﻱ‪ ،‬ﻭﺃﻫﻢ ﺃﻧﻮﺍﻉ ﺍﻟﻌﻴﻨﺎﺕ ﻏﲑ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‪:‬‬
‫ﺃ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﻤﺪﻳﺔ ‪Judgmental Sample‬‬
‫ﺏ ‪ -‬ﺍﻟﻌﻴﻨﺔ ﺍﳊﺼﺼﻴﺔ ‪Quota Sample‬‬
‫‪14‬‬
‫ﺍﻟﻔﺼـــﻞ ﺍﻟﺜﺎﱐ‬
‫‪ 1/2‬ﻣﻘﺪﻣـــﺔ‬
‫ﻃﺮﻕ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﺍﳋﻄﻮﺓ ﺍﻟﺘﺎﻟﻴﺔ ﺑﻌﺪ ﲨﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﳎﺎﻝ ﺍﻹﺣﺼﺎﺀ ﺍﻟﻮﺻﻔﻲ‪ ،‬ﻫﻮ ﺗﺒﻮﻳﺐ ﺍﻟﺒﻴﺎﻧـﺎﺕ ﻭﻋﺮﺿـﻬﺎ‬
‫ﺑﺼﻮﺭﺓ ﳝﻜﻦ ﺍﻻﺳﺘﻔﺎﺩﺓ ﻣﻨﻬﺎ ﰲ ﻭﺻﻒ ﺍﻟﻈﺎﻫﺮﺓ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﻣﻦ ﺣﻴﺚ ﲤﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﺩﺭﺟﺔ ﲡﺎﻧﺴﻬﺎ‪.‬‬
‫ﻭﻫﻨﺎﻙ ﻃﺮﻳﻘﺘﲔ ﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﳘﺎ ‪:‬‬
‫‪ -1‬ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺟﺪﻭﻟﻴﺎ ‪.‬‬
‫‪ -2‬ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﻴﺎﻧﻴﺎ ‪.‬‬
‫‪ 2/2‬ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺟﺪﻭﻟﻴﺎ‬
‫ﳝﻜﻦ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺻﻮﺭﺓ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ‪ ،‬ﻭﳜﺘﻠﻒ ﺷﻜﻞ ﺍﳉﺪﻭﻝ ﻃﺒﻘﺎ ﻟﻨﻮﻉ ﺍﻟﺒﻴﺎﻧـﺎﺕ‪،‬‬
‫ﻭﺣﺴﺐ ﻋﺪﺩ ﺍﳌﺘﻐﲑﺍﺕ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻋﺮﺽ ﺑﻴﺎﻧﺎﺕ ﻣﺘﻐﲑ ) ﻭﺻﻔﻲ ﺃﻭ ﻛﻤﻲ ( ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜـﺮﺍﺭﻱ‬
‫ﺑﺴﻴﻂ ‪.‬‬
‫‪ 1 /2 /2‬ﻋﺮﺽ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﻮﺻﻔﻲ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ﺑﺴﻴﻂ‬
‫ﺇﺫﺍ ﻛﻨﺎ ﺑﺼﺪﺩ ﺩﺭﺍﺳﺔ ﻇﺎﻫﺮﺓ ﻣﺎ ﲢﺘﻮﻱ ﻋﻠﻰ ﻣﺘﻐﲑ ﻭﺻﻔﻲ ﻭﺍﺣﺪ‪ ،‬ﻓﺈﻧﻪ ﳝﻜﻦ ﻋﺮﺽ ﺑﻴﺎﻧﺎﺗـﻪ ﰲ‬
‫ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ﺑﺴﻴﻂ‪ ،‬ﻭﻫﻮ ﺟﺪﻭﻝ ﻳﺘﻜﻮﻥ ﻣﻦ ﻋﻤﻮﺩﻳﻦ‪ ،‬ﺃﺣﺪﳘﺎ ﺑﻪ ﻣﺴﺘﻮﻳﺎﺕ ) ﳎﻤﻮﻋﺎﺕ ( ﺍﳌﺘﻐﲑ‪،‬‬
‫ﻭﺍﻟﺜﺎﱐ ﺑﻪ ﻋﺪﺩ ﺍﳌﻔﺮﺩﺍﺕ ) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ( ﻟﻜ ﻞ ﻣﺴﺘﻮﻯ ) ﳎﻤﻮﻋﺔ (‪.‬‬
‫ﻭﺍﳌﺜﺎﻝ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﻟﻨﺎ ﻛﻴﻒ ﳝﻜﻦ ﺗﺒﻮﻳﺐ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ ﺍﳋﺎﻡ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 1 -2‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻧﺎﺕ ﻋﻴﻨﺔ ﻣﻦ ‪ 40‬ﻣﺰﺭﻋﺔ ﻋﻦ ﻧﻮﻉ ﺍﻟﺘﻤﺮ ﺍﻟﺬﻱ ﺗﻨﺘﺠﻪ ﺍﳌﺰﺭﻋﺔ ‪.‬‬
‫ﺳﻜﺮﻱ‬
‫ﺧﻼﺹ‬
‫ﺻﻘﻌﻲ‬
‫ﺑﺮﺣﻲ‬
‫ﺧﻼﺹ‬
‫ﺑﺮﺣﻲ‬
‫ﺑﺮﺣﻲ‬
‫ﺧﻼﺹ‬
‫ﺑﺮﺣﻲ‬
‫ﺑﺮﺣﻲ‬
‫ﺳﻜﺮﻱ‬
‫ﺧﻼﺹ‬
‫ﺑﺮﺣﻲ‬
‫ﺳﻜﺮﻱ‬
‫ﺑﺮﺣﻲ‬
‫ﺧﻼﺹ‬
‫ﺑﺮﺣﻲ‬
‫ﺑﺮﺣﻲ‬
‫ﺻﻘﻌﻲ‬
‫ﺻﻘﻌﻲ‬
‫ﺧﻼﺹ‬
‫ﺻﻘﻌﻲ‬
‫ﺑﺮﺣﻲ‬
‫ﺻﻘﻌﻲ‬
‫ﺧﻼﺹ‬
‫ﺑﺮﺣﻲ‬
‫ﺳﻜﺮﻱ‬
‫ﻧﺒﻮﺕ ﺳﻴﻒ‬
‫ﺻﻘﻌﻲ‬
‫ﻧﺒﻮﺕ ﺳﻴﻒ‬
‫ﻧﺒﻮﺕ ﺳﻴﻒ‬
‫ﺳﻜﺮﻱ‬
‫ﺑﺮﺣﻲ‬
‫ﺻﻘﻌﻲ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻣﺎ ﻫﻮ ﻧﻮﻉ ﺍﳌﺘﻐﲑ؟‪ ،‬ﻭﻣﺎ ﻫﻮ ﺍﳌﻌﻴﺎﺭ ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﻗﻴﺎﺱ ﺍﻟﺒﻴﺎﻧﺎﺕ؟ ‪.‬‬
‫‪ -2‬ﺍﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ‪.‬‬
‫‪ -3‬ﻛ ﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪.‬‬
‫‪ -4‬ﻋﻠﻖ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺋﺞ ‪.‬‬
‫ﺧﻼﺹ‬
‫ﻧﺒﻮ ﺕ ﺳﻴﻒ‬
‫ﺑﺮﺣﻲ‬
‫ﺻﻘﻌﻲ‬
‫ﺧﻼﺹ‬
‫ﺧﻼﺹ‬
‫‪15‬‬
‫ﺍﳊـﻞ‬
‫‪ -1‬ﻧﻮﻉ ﺍﻟﺘﻤﺮ ) ﺳﻜﺮﻱ – ﺧﻼﺹ – ﺑﺮﺣﻲ – ﺻﻘﻌﻲ – ﻧﺒﻮﺕ ﺳﻴﻒ ( ﻣﺘﻐﲑ ﻭﺻﻔﻲ‪ ،‬ﺗﻘﺎﺱ ﺑﻴﺎﻧﺎﺗﻪ ﲟﻌﻴﺎﺭ‬
‫ﺍﲰﻲ ‪.‬‬
‫‪ -2‬ﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ‪ ،‬ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫• ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪:‬‬
‫ﻭﻫﻮ ﺟﺪﻭﻝ ﳛﺘﻮﻱ ﻋﻠﻰ ﻋﻼﻣﺎﺕ ﺇﺣﺼﺎﺋﻴﺔ‪ ،‬ﻛﻞ ﻋﻼﻣﺔ ﺗﻌﱪ ﻋﻦ ﺗﻜﺮﺍﺭ ﻟﻠﻤﺠﻤﻮﻋﺔ ﺍﻟﱵ ﻳﻨﺘﻤـﻲ‬
‫ﺇﻟﻴﻬﺎ ﻧﻮﻉ ﺍﻟﺘﻤﺮ ﺍﻟﺬﻱ ﺗﻨﺘﺠﻪ ﺍﳌﺰﺭﻋﺔ‪ ،‬ﻭﻛﻞ ﲬﺲ ﻋﻼﻣﺎﺕ ﺗﻜﻮﻥ ﺣﺰﻣﺔ ﺇﺣﺼﺎﺋﻴﺔ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ‬
‫ﺑﺎﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻋﺪﺩ ﺍﳌﺰﺍﺭﻉ ) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ(‬
‫ﺍﻟﻌﻼﻣﺎﺕ ﺍﻹﺣﺼﺎﺋﻴﺔ‬
‫ﻧﻮﻉ ﺍﻟﺘﻤﺮ‬
‫‪5‬‬
‫ﺳﻜﺮﻱ‬
‫‪10‬‬
‫ﺧﻼﺹ‬
‫‪13‬‬
‫ﺑﺮﺣﻲ‬
‫‪8‬‬
‫‪4‬‬
‫ﺻﻘﻌﻲ‬
‫ﻧﺒﻮﺕ ﺳﻴﻒ‬
‫‪40‬‬
‫‪Sum‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪.‬‬
‫ﻭﻫﻮ ﻧﻔﺲ ﺍﳉﺪﻭﻝ ﺍﻟﺴﺎﺑﻖ‪ ،‬ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﻟﻌﻮﺩ ﺍﻟﺜﺎﱐ‪ ،‬ﻭﻳﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺟﺪﻭﻝ ﺭﻗﻢ )‪(1 -2‬‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻟﻌﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 40‬ﻣﺰﺭﻋ ﺔ ﺣﺴﺐ ﻧﻮﻉ ﺍﻟﺘﻤﺮ ﺍﻟﺬﻱ ﺗﻨﺘﺠﻪ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‬
‫‪ 5 ‬‬
‫‪  = 0.125‬‬
‫‪ 40 ‬‬
‫‪ 10 ‬‬
‫‪  = 0.25‬‬
‫‪ 40 ‬‬
‫‪ 13 ‬‬
‫‪  = 0.325‬‬
‫‪ 40 ‬‬
‫‪ 8 ‬‬
‫‪  = 0.20‬‬
‫‪ 40 ‬‬
‫‪ 4‬‬
‫‪  = 0.10‬‬
‫‪ 40 ‬‬
‫‪1.00‬‬
‫ﻋﺪﺩ ﺍﳌﺰﺍﺭﻉ‬
‫) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ( )‪(f‬‬
‫ﻧﻮﻉ ﺍﻟﺘﻤﺮ‬
‫‪5‬‬
‫ﺳﻜﺮﻱ‬
‫‪10‬‬
‫ﺧﻼﺹ‬
‫‪13‬‬
‫ﺑﺮﺣﻲ‬
‫‪8‬‬
‫ﺻﻘﻌﻲ‬
‫‪4‬‬
‫ﻧﺒﻮﺕ ﺳﻴﻒ‬
‫‪40‬‬
‫‪Sum‬‬
‫‪16‬‬
‫ﺍﳌﺼﺪﺭ ‪ :‬ﺑﻴﺎﻧﺎﺕ ﺍﻓﺘﺮﺍﺿﻴﺔ ‪.‬‬
‫‪ -3‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪:‬‬
‫ﳛﺴﺐ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ ﺑﻘﺴﻤﺔ ﺗﻜﺮﺍﺭ ﺍ‪‬ﻤﻮﻋﺔ ﻋﻠﻰ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‪ ،‬ﺃﻱ ﺃﻥ ‪:‬‬
‫ﻭﺍﻟﻌﻤﻮﺩ ﺍﻟﺜﺎﻟﺚ ﰲ ﺍﳉﺪﻭﻝ ﺭﻗﻢ ) ‪ ( 1 -2‬ﻳﻌﺮﺽ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ ﻟﻠﻤﺰﺍﺭﻋﲔ ﺣﺴﺐ ﻧﻮﻉ ﺍﻟﺘﻤﺮ ‪.‬‬
‫‪ -4‬ﺍﻟﺘﻌﻠﻴﻖ ‪ :‬ﻣﻦ ﺍﳉﺪﻭﻝ ﺭﻗﻢ ) ‪ ( 1 -2‬ﻳﻼﺣﻆ ﺃﻥ ﻧﺴﺒﺔ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﻟﻨﻮﻉ " ﺑﺮﺣﻲ " ﰲ ﺍﻟﻌﻴﻨﺔ ﻫـﻲ‬
‫‪ 32.5%‬ﻭﻫﻲ ﺃﻛﱪ ﻧﺴﺒﺔ ﳑﺎ ﻳﺪﻝ ﻋﻠﻰ ﺃﻥ ﺍﻟﻨﻤﻂ ﺍﻟﺸﺎﺋﻊ ﰲ ﺇﻧﺘﺎﺝ ﺍﻟﺘﻤﻮﺭ ﻫﻮ ﺫﻟﻚ ﺍﻟﻨﻮﻉ‪ ،‬ﺑﻴﻨﻤﺎ ﳒﺪ‬
‫ﺃﻥ ﻧﺴﺒﺔ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﻟﻨﻮﻉ " ﻧﺒﻮﺕ ﺳﻴﻒ " ﺣﻮﺍﱄ ‪ 10.0%‬ﻭﻫﻲ ﺃﻗﻞ ﻧﺴﺒﺔ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 2 -2‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻧﺎﺕ ﻋﻦ ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ ﻟﻌﻴﻨﺔ ﻣﻦ ‪ 50‬ﻓﺮﺩ ‪.‬‬
‫ﻣﺘﻮﺳﻂ‬
‫ﻳﻘﺮﺍ ﻭﻳﻜﺘﺐ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﻳﻘﺮﺍ ﻭﻳﻜﺘﺐ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﻳﻘﺮﺍ ﻭﻳﻜﺘﺐ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻳﻘﺮﺍ ﻭﻳﻜﺘﺐ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻳﻘﺮﺍ ﻭﻳﻜﺘﺐ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﺛﺎﻧﻮﻱ‬
‫‪ -1‬ﺍﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ‪.‬‬
‫‪ -2‬ﻛﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﰒ ﻋﻠﻖ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺋﺞ ‪.‬‬
‫ﺍﳊ ـﻞ‬
‫‪ -1‬ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ‪:‬‬
‫ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ ) ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ‪ -‬ﺍﺑﺘﺪﺍﺋﻲ _ ﻣﺘﻮﺳﻂ‪ -‬ﺛﺎﻧﻮﻱ‪ -‬ﺟﺎﻣﻌﻲ‪ -‬ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ( ﻣﺘﻐﲑ‬
‫ﻭﺻﻔﻲ ﺗﺮﺗﻴﱯ‪ ،‬ﻭﳝﻜﻦ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺃﻋﻼﻩ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ﺑﺈﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫• ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪:‬‬
‫ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻋﺪﺩ ﺍﻷﻓﺮﺍﺩ ) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ(‬
‫ﺍﻟﻌﻼﻣﺎﺕ ﺍﻹﺣﺼﺎﺋﻴﺔ‬
‫ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ‬
‫‪6‬‬
‫ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ‬
‫‪10‬‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫‪12‬‬
‫ﻣﺘﻮﺳﻂ‬
‫‪15‬‬
‫‪5‬‬
‫‪2‬‬
‫‪50‬‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ‬
‫‪Sum‬‬
‫‪17‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭ ﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪:‬‬
‫ﺟﺪﻭﻝ ﺭﻗﻢ )‪(2 -2‬‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻟﻌﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 50‬ﻓﺮﺩ ﺣﺴﺐ ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‬
‫‪0.12‬‬
‫‪0.20‬‬
‫‪0.24‬‬
‫‪0.30‬‬
‫‪0.10‬‬
‫‪0.04‬‬
‫‪1.00‬‬
‫ﻋﺪﺩ ﺍﻷﻓﺮﺍﺩ ) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ (‬
‫)‪(f‬‬
‫‪6‬‬
‫‪10‬‬
‫‪12‬‬
‫‪15‬‬
‫‪5‬‬
‫‪2‬‬
‫‪50‬‬
‫ﺍﳌﺴﺘﻮﻯ ﺍﻟﺘﻌﻠﻴﻤﻲ‬
‫ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ‬
‫ﺍﺑﺘﺪﺍﺋﻲ‬
‫ﻣﺘﻮﺳﻂ‬
‫ﺛﺎﻧﻮﻱ‬
‫ﺟﺎﻣﻌﻲ‬
‫ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ‬
‫‪Sum‬‬
‫ﺍﳌﺼﺪﺭ ‪ :‬ﺑﻴﺎﻧﺎﺕ ﻋﻴﻨﺔ‬
‫‪ -2‬ﺗﻜﻮﻳﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪.‬‬
‫ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ ) ‪ ( 1 -2‬ﳝﻜﻦ ﺣﺴﺎﺏ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ‪ ،‬ﻭﺍﻟﻌﻤﻮﺩ ﺍﻟﺜﺎﻟﺚ ﰲ ﺍﳉﺪﻭﻝ ﺭﻗﻢ‬
‫) ‪ ( 2 -2‬ﻳﱭ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‪،‬‬
‫ﻭﻣﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻨﺴﱯ ﻳﻼﺣﻆ ﺃﻥ ﺣﻮﺍﱄ ‪ 30%‬ﻣﻦ ﺃﻓﺮﺍﺩ ﺍﻟﻌﻴﻨﺔ ﳑﻦ ﻟﺪﻳﻬﻢ ﻣﺆﻫﻞ ﺛﺎﻧﻮ ﻱ‪ ،‬ﺑﻴﻨﻤـﺎ‬
‫ﻳﻜﻮﻥ ﻧﺴﺒﺔ ﺍﻷﻓﺮﺍﺩ ﳑﻦ ﻟﺪﻳﻬﻢ ﻣﺆﻫﻞ ﺍﻗﻞ ﻣﻦ ﺍﻟﺜﺎﻧﻮﻱ ) ﻣﺘﻮﺳﻂ‪ ،‬ﺍﺑﺘﺪﺍﺋﻲ‪ ،‬ﻳﻘﺮﺃ ﻭﻳﻜﺘﺐ ( ﺃﻛﺜﺮ ﻣﻦ ‪، 5%‬‬
‫ﺃﻣﺎ ﻧﺴﺒﺔ ﺍﻷﻓﺮﺍﺩ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﻣﺆﻫﻞ ﺃﻋﻠﻰ ﻣﻦ ﺟﺎﻣﻌﻲ ﺣﻮﺍﱄ ‪ 4%‬ﻭﻫﻲ ﺃﻗﻞ ﻧﺴﺒﺔ ‪.‬‬
‫ﻣﻼﺣﻈﺎﺕ ﻋﻠﻰ ﺍﳉﺪﻭﻝ‬
‫ﻋﻨﺪ ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﻣﺎ ﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﳚﺐ ﻣﺮﺍﻋﺎﺓ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻛﺘﺎﺑﺔ ﺭﻗﻢ ﻟﻠﺠﺪ ﻭﻝ ‪.‬‬
‫‪ -2‬ﻛﺘﺎﺑﺔ ﻋﻨﻮﺍﻥ ﻟﻠﺠﺪﻭﻝ ‪.‬‬
‫‪ -3‬ﻟﻜﻞ ﻋﻤﻮﺩ ﻣﻦ ﺃﻋﻤﺪﺓ ﺍﳉﺪﻭﻝ ﻋﻨﻮﺍﻥ ﻳﺪﻝ ﻋﻠﻰ ﳏﺘﻮﺍﻩ ‪.‬‬
‫‪ -4‬ﳚﺐ ﻛﺘﺎﺑﺔ ﻣﺼﺪﺭ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺍﳉﺪﻭﻝ ‪.‬‬
‫‪ 2 /2 /2‬ﻋﺮﺽ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﻜﻤﻲ ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ﺑﺴﻴﻂ‬
‫ﺑﻨﻔﺲ ﺍﻷﺳﻠﻮﺏ ﺍﻟﺴﺎﺑﻖ ﺍﳌﺘﺒﻊ ﰲ ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ‪ ،‬ﳝﻜﻦ ﺃﻳﻀﺎ ﻋﺮﺽ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﻜﻤﻲ‬
‫ﰲ ﺷﻜﻞ ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ ﺑﺴﻴﻂ‪ ،‬ﻭﻳﺘﻜﻮﻥ ﻫﺬﺍ ﺍﳉﺪﻭﻝ ﻣﻦ ﻋﻤﻮﺩﻳﻦ‪ ،‬ﺍﻷﻭﻝ ﳛﺘﻮﻱ ﻋﻠﻰ ﻓﺌﺎﺕ ﺗـﺼﺎﻋﺪﻳﺔ‬
‫ﻟﻠﻘﺮﺍﺀﺍﺕ ﺍﻟﱵ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ‪ ،‬ﻭﺍﻟﺜﺎﱐ ﻳﺸﻤﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺃﻭ ﻋﺪﺩ ﺍﳌﻔﺮﺩﺍﺕ ﺍﻟﱵ ﺗﻨﺘﻤﻲ ﻗﺮﺍﺀﺍ‪‬ـﺎ ﻟﻠﻔﺌـﺔ‬
‫ﺍﳌﻨﺎﺳﺒﺔ ﳍﺎ‪ ،‬ﻭﺍﳌﺜﺎﻝ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﻛﻴﻒ ﳝﻜﻦ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ ﺑﻴﺎﻧﻴﺎ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 3 -2‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻧﺎﺕ ﺩﺭﺟﺎﺕ ‪ 70‬ﻃﺎﻟﺐ ﰲ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﻨﻬﺎﺋﻲ ﳌﻘﺮﺭ ﻣﺎﺩﺓ ﺍﻹﺣﺼﺎﺀ ﺍﻟﺘﻄﺒﻴﻘﻲ ‪.‬‬
‫‪18‬‬
‫‪75‬‬
‫‪71‬‬
‫‪69‬‬
‫‪63‬‬
‫‪74‬‬
‫‪94‬‬
‫‪78‬‬
‫‪56‬‬
‫‪66‬‬
‫‪75‬‬
‫‪65‬‬
‫‪58‬‬
‫‪72‬‬
‫‪62‬‬
‫‪70‬‬
‫‪62‬‬
‫‪71‬‬
‫‪73‬‬
‫‪60‬‬
‫‪78‬‬
‫‪88‬‬
‫‪66‬‬
‫‪67‬‬
‫‪57‬‬
‫‪66‬‬
‫‪81‬‬
‫‪91‬‬
‫‪64‬‬
‫‪60‬‬
‫‪71‬‬
‫‪69‬‬
‫‪63‬‬
‫‪80‬‬
‫‪85‬‬
‫‪87‬‬
‫‪55‬‬
‫‪61‬‬
‫‪72‬‬
‫‪58‬‬
‫‪74‬‬
‫‪77‬‬
‫‪55‬‬
‫‪70‬‬
‫‪61‬‬
‫‪57‬‬
‫‪67‬‬
‫‪74‬‬
‫‪77‬‬
‫‪57‬‬
‫‪65‬‬
‫‪67‬‬
‫‪68‬‬
‫‪73‬‬
‫‪76‬‬
‫‪83‬‬
‫‪79‬‬
‫‪65‬‬
‫‪70‬‬
‫‪72‬‬
‫‪62‬‬
‫‪73‬‬
‫‪82‬‬
‫‪64‬‬
‫‪56‬‬
‫‪60‬‬
‫‪68‬‬
‫‪72‬‬
‫‪58‬‬
‫‪76‬‬
‫‪79‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻛﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻟﺪﺭﺟﺎﺕ ﺍﻟﻄﻼﺏ ‪.‬‬
‫‪ -2‬ﻛﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪.‬‬
‫‪ -3‬ﻣﺎ ﻫﻮ ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺔ ﻣﺎ ﺑﲔ ‪ 70‬ﺇﱃ ﺃﻗﻞ ﻣﻦ ‪ 80‬؟‬
‫‪ -4‬ﻣﺎ ﻫﻮ ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺔ ﺃﻗﻞ ﻣﻦ ‪ 70‬ﺩﺭﺟﺔ؟‬
‫‪ -5‬ﻣﺎ ﻫﻮ ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠ ﲔ ﻋﻠﻰ ﺩﺭﺟﺔ ‪ 80‬ﺃﻭ ﺃﻛﺜﺮ ؟‬
‫ﺍﳊـﻞ‬
‫‪ -1‬ﺗﻜﻮﻳﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪:‬‬
‫ﺩﺭﺟﺔ ﺍﻟﻄﺎﻟﺐ ﰲ ﺍﻻﺧﺘﺒﺎﺭ ﻣﺘﻐﲑ ﻛﻤﻲ ﻣﺴﺘﻤﺮ‪ ،‬ﻭﻟﻜﻲ ﻳﺘﻢ ﺗﺒﻮﻳﺐ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰲ ﺷـﻜﻞ ﺟـﺪﻭﻝ‬
‫ﺗﻜﺮﺍﺭﻱ‪ ،‬ﻳﺘﻢ ﺍﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫•‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﳌﺪﻯ )‪Range(R‬‬
‫‪Range = Maximum – Minimum‬‬
‫‪R = 94 - 55 = 39‬‬
‫ﲢﺪﻳﺪ ﻋﺪﺩ ﺍﻟﻔﺌﺎﺕ )‪: Classes(C‬‬
‫ﺗﺘﺤﺪﺩ ﻋﺪﺩ ﺍﻟﻔﺌﺎﺕ ﻭﻓﻘﺎ ﻻﻋﺘﺒﺎﺭﺍﺕ ﻣﻨﻬﺎ ‪ :‬ﺭﺃﻱ ﺍﻟﺒﺎﺣﺚ‪ ،‬ﻭﺍﳍﺪﻑ ﻣﻦ ﺍﻟﺒﺤﺚ‪ ،‬ﻭﺣﺠﻢ ﺍﻟﺒﻴﺎﻧﺎﺕ‪،‬‬
‫ﻭﻳﺮﻯ ﻛﺜﲑﺍ ﻣﻦ ﺍﻟﺒﺎﺣﺜﲔ ﺃﻥ ﺃﻓﻀﻞ ﻋﺪﺩ ﻟﻠﻔﺌﺎﺕ ﳚﺐ ﺃﻥ ﻳﺘﺮﺍﻭﺡ ﺑﲔ ‪ 5‬ﺇﱃ ‪ ، 15‬ﺑﻔـﺮﺽ ﺃﻥ‬
‫ﻋﺪﺩ ﺍﻟﻔﺌﺎﺕ ﻫﻮ ‪ 8‬ﻓﺌﺎﺕ‪ ،‬ﺃﻱ ﺃﻥ ‪. (C=8) :‬‬
‫• ﺣﺴﺎﺏ ﻃﻮﻝ ﺍﻟﻔﺌﺔ )‪: Length(L‬‬
‫• ﲢﺪﻳﺪ ﺍﻟﻔﺌﺎﺕ ‪:‬‬
‫‪Range‬‬
‫‪R 39‬‬
‫= =‬
‫‪= 4.875 ≈ 5‬‬
‫‪Classes C‬‬
‫‪8‬‬
‫=‪L‬‬
‫ﺍﻟﻔﺌﺔ ﺗﺒﺪﺃ ﺑﻘﻴﻤﺔ ﺗﺴﻤﻲ ﺍﳊﺪ ﺍﻷﺩﱏ‪ ،‬ﻭﺗﻨﺘﻬﻲ ﺑﻘﻴﻤﺔ ﺗﺴﻤﻲ ﺍﳊﺪ ﺍﻷﻋﻠﻰ‪ ،‬ﻭﻣﻦ ﰒ ﳒﺪ ﺃﻥ ‪:‬‬
‫ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ﺍﻷﻭﱃ ﻫﻮ ﺃﻗﻞ ﻗﺮﺍﺀﺓ ) ﺩﺭﺟﺔ ( ﺃﻱ ﺃﻥ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ﺍﻷﻭﱃ = ‪55‬‬‫ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﻔﺌﺔ ﺍﻷﻭﱃ = ﺍﳊﺪ ﺍﻷﺩﱏ ‪ +‬ﻃﻮﻝ ﺍﻟﻔﺌﺔ = ‪60=55+5 = 55 + L‬‬
‫ﺇﺫﺍ ﺍﻟﻔﺌﺔ ﺍﻷﻭﱃ ﻫﻲ ‪ " 55 to les than 60" :‬ﻭﺗﻘﺮﺃ " ﻣﻦ ‪ 55‬ﺇﱃ ﺃﻗﻞ ﻣﻦ ‪" 60‬‬
‫_ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ = ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﻔﺌﺔ ﺍﻷﻭﱃ = ‪60‬‬
‫ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ = ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ‪ +‬ﻃﻮﻝ ﺍﻟﻔﺌﺔ = ‪65 = 60 + 5‬‬
‫ﺇﺫﺍ ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻫﻲ ‪ "60 to les than 65" :‬ﻭﺗﻘﺮﺃ " ﻣﻦ ‪ 60‬ﺇﱃ ﺃﻗﻞ ﻣﻦ ‪" 65‬‬
‫‪ -‬ﻭﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻳﺘﻢ ﺗﻜﻮﻳﻦ ﺣﺪﻭﺩ ﺍﻟﻔﺌﺎﺕ ﺍﻷﺧﺮﻯ‪ ،‬ﻭﻫﻲ ‪:‬‬
‫‪19‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻟﺜﺔ ‪:‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﺮﺍﺑﻌﺔ ‪70 to les than 75 :‬‬
‫‪65 to les than 70‬‬
‫ﺍﻟﻔﺌﺔ ﺍﳋﺎﻣﺴﺔ ‪75 to les than 80 :‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﺴﺎﺩﺳﺔ ‪80 to les than 85 :‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﺴﺎﺑﻌﺔ ‪85 to les than 90 :‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻣﻨﺔ ‪90 to les than 95 :‬‬
‫ﻭﳝﻜﻦ ﻛﺘﺎﺑﺔ ﺍﻟﻔﺌﺎﺕ ﺑﺄﺷﻜﺎﻝ ﳐﺘﻠﻔﺔ ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﲜﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪:‬‬
‫• ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪:‬‬
‫ﺟﺪﻭﻝ ﺗﻔﺮﻳﻎ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﺍﻟﺪﺭﺟﺔ‬
‫ﻋﺪﺩ ﺍﻟﻄﻼﺏ‬
‫ﺍﻟﻌﻼﻣﺎﺕ‬
‫) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ(‬
‫ﺍﻹﺣﺼﺎﺋﻴﺔ‬
‫ﻓﺌ ﺎﺕ‬
‫ﻓﺌﺎﺕ‬
‫‪10‬‬
‫‪55-‬‬
‫‪55 – 60‬‬
‫‪55 to les than 60‬‬
‫‪12‬‬
‫‪60-‬‬
‫‪60 – 65‬‬
‫‪60 to les than 65‬‬
‫‪65-‬‬
‫‪65 – 70‬‬
‫‪65 to les than 70‬‬
‫‪70-‬‬
‫‪70 – 75‬‬
‫‪70 to les than 75‬‬
‫‪75-‬‬
‫‪75 – 80‬‬
‫‪75 to les than 80‬‬
‫‪80-‬‬
‫‪80 – 85‬‬
‫‪80 to les than 85‬‬
‫‪85-‬‬
‫‪85 – 90‬‬
‫‪90-95‬‬
‫‪90 - 95‬‬
‫‪85 to les than 90‬‬
‫‪90 to les than 95‬‬
‫‪13‬‬
‫‪16‬‬
‫ﻓﺌﺎﺕ‬
‫‪/‬‬
‫‪/‬‬
‫‪10‬‬
‫‪////‬‬
‫‪///‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪Sum‬‬
‫‪70‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪:‬‬
‫ﺟﺪﻭﻝ ﺭﻗﻢ )‪(3 -2‬‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻟﻌﺪﺩ ‪ 70‬ﻃﺎ ﻟﺐ ﺣﺴﺐ ﺩﺭﺟﺎ‪‬ﻢ ﰲ ﺍﺧﺘﺒﺎﺭ ﻣﻘﺮﺭ ﺍﻹﺣﺼﺎﺀ‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‬
‫ﻋﺪﺩ ﺍﻟﻄﻼﺏ ) ﺍﻟﺘﻜﺮﺍﺭﺍﺕ(‬
‫)‪(f‬‬
‫‪10‬‬
‫‪12‬‬
‫‪13‬‬
‫‪16‬‬
‫‪10‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪70‬‬
‫‪0.143‬‬
‫‪0.171‬‬
‫‪0.186‬‬
‫‪0.229‬‬
‫‪0.143‬‬
‫‪0.057‬‬
‫‪0.043‬‬
‫‪0.028‬‬
‫‪1.00‬‬
‫ﺍﳌﺼﺪﺭ ‪ :‬ﺑﻴﺎﻧﺎﺕ ﻧﺘﻴﺠﺔ ﺍﻟﻌﺎﻡ ‪ 1426‬ﻫـ‬
‫‪ -2‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪:‬‬
‫‪f‬‬
‫‪n‬‬
‫= ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‬
‫ﻭﺍﻟﻌﻤﻮﺩ ﺍﻟﺜﺎﻟﺚ ﰲ ﺍﳉﺪﻭﻝ ﺭﻗﻢ )‪ ( 3 -2‬ﻳﺒﲔ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‪.‬‬
‫ﻓﺌﺎﺕ ﺍﻟﺪﺭﺟﺔ‬
‫‪55 – 60‬‬
‫‪60 – 65‬‬
‫‪65 – 70‬‬
‫‪70 – 75‬‬
‫‪75 – 80‬‬
‫‪80 – 85‬‬
‫‪85 – 90‬‬
‫‪90 – 95‬‬
‫‪Sum‬‬
‫‪20‬‬
‫‪ -3‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺎﺕ ﻣﺎ ﺑﲔ ‪ 70‬ﺇﱃ ﺃﻗﻞ ﻣﻦ ‪ 80‬ﻫﻮ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﻳﻦ ﺍﻟﻨﺴﺒﻴﲔ‬
‫ﻟﻠﻔﺌﺘﲔ ﺍﻟﺮﺍﺑ ﻌﺔ ﻭﺍﳋﺎﻣﺴﺔ ‪:‬‬
‫‪ = 0.229 + 0.143 = 0.372‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺎﺕ ﻣﺎ ﺑﲔ ) ‪(80 , 70‬‬
‫ﺃﻱ ﺣﻮﺍﱄ ‪ 37.2%‬ﻣﻦ ﺍﻟﻄﻼﺏ ﺣﺼﻠﻮﺍ ﻋﻠﻰ ﺩﺭﺟﺎﺕ ﻣﺎ ﺑﲔ ) ‪. (80 , 70‬‬
‫‪ -4‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺎﺕ ﺃﻗﻞ ﻣﻦ ‪ ، 70‬ﻫﻮ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨـﺴﺒﻴﺔ ﻟﻠﻔﺌـﺎﺕ‬
‫ﺍﻷﻭﱃ ﻭﺍﻟﺜﺎﻧﻴﺔ‪ ،‬ﻭﺍﻟﺜﺎﻟﺜﺔ ‪:‬‬
‫‪ = 0.143 + 0.171 + 0.186 = 0.5‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺔ ﺃﻗﻞ ﻣﻦ ‪70‬‬
‫ﺃﻱ ﺃﻥ ﺣﻮﺍﱄ ‪ 50%‬ﻣﻦ ﺍﻟﻄﻼﺏ ﺣﺼﻠﻮ ﻋﻠﻰ ﺩﺭﺟﺔ ﺃﻗﻞ ﻣﻦ ‪ 70‬ﺩﺭﺟﺔ‬
‫‪ -5‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺔ ‪ 80‬ﺃﻭ ﺃﻛﺜﺮ‪ ،‬ﻫﻮ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨـﺴﺒﻴﺔ ﻟﻠﻔﺌـﺎﺕ‬
‫ﺍﻟﺜﻼﺙ ﺍﻷﺧﲑﺓ ‪:‬‬
‫‪ = 0.057 + 0.043 + 0.028 = 0.128‬ﻧﺴﺒﺔ ﺍﻟﻄﻼﺏ ﺍﳊﺎ ﺻﻠﲔ ﻋﻠﻰ ﺩﺭﺟﺎﺕ ‪ 80‬ﺃﻭ ﺃﻛﺜﺮ‬
‫ﺃﻱ ﺃﻥ ﺣﻮﺍﱄ ‪ 12.8%‬ﻣﻦ ﺍﻟﻄﻼﺏ ﺣﺼﻠﻮﺍ ﻋﻠﻰ ﺩﺭﺟﺔ ‪ 80‬ﺃﻭ ﺃﻛﺜﺮ‪.‬‬
‫‪ 3/2‬ﺍﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﱐ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ‬
‫ﺍﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﱐ ﻟﻠﺒﻴﺎﻧﺎﺕ‪ ،‬ﻫﻮ ﺃﺣﺪ ﻃﺮﻕ ﺍﻟﱵ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﰲ ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻣﻦ ﺣﻴـﺚ‬
‫ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﻭﻣﺪﻯ ﲤﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﰲ ﻛﺜﲑ ﻣﻦ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄ ﺒﻴﻘﻴﺔ ﻳﻜﻮﻥ ﺍﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﱐ ﺃﺳﻬﻞ ﻭﺃﺳﺮﻉ‬
‫ﰲ ﻭﺻﻒ ﺍﻟﻈﺎﻫﺮﺓ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﻭﲣﺘﻠﻒ ﻃﺮﻕ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﻴﺎﻧﻴﺎ ﺣﺴﺐ ﻧﻮﻉ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ﰲ ﺷﻜﻞ‬
‫ﺟﺪﻭﻝ ﺗﻜﺮﺍﺭﻱ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻋﺮﺽ ﻟﻸﺷﻜﺎﻝ ﺍﻟﺒﻴﺎﻧﻴﺔ ﺍﳌﺨﺘﻠﻔﺔ ‪.‬‬
‫‪ 1 /3 /2‬ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ‬
‫‪Histogram‬‬
‫ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻫﻮ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﱐ ﻟﻠﺠﺪ ﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺒﺴﻴﻂ ﺍﳋﺎﺹ ﺑﺎﻟﺒﻴﺎﻧـﺎﺕ ﺍﻟﻜﻤﻴـﺔ‬
‫ﺍﳌﺘﺼﻠﺔ‪ ،‬ﻭﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺃﻋﻤﺪﺓ ﺑﻴﺎﻧﻴﺔ ﻣﺘﻼﺻﻘﺔ‪ ،‬ﺣﻴﺚ ﲤﺜﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳﻲ‪ ،‬ﺑﻴﻨﻤﺎ ﲤﺜﻞ ﻗﻴﻢ‬
‫ﺍﳌﺘﻐﲑ ) ﺣﺪﻭﺩ ﺍﻟﻔﺌﺎﺕ ( ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ‪ ،‬ﻭﻳﺘﻢ ﲤﺜﻴﻞ ﻛﻞ ﻓﺌﺔ ﺑﻌﻤﻮﺩ‪ ،‬ﺍﺭﺗﻔﺎﻋﻪ ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﻟﻔﺌﺔ‪ ،‬ﻭﻃﻮﻝ‬
‫ﻗﺎﻋﺪﺗﻪ ﻫﻮ ﻃﻮﻝ ﺍﻟﻔﺌﺔ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 4 -2‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﻭﺍﺟﻦ ﺑﺎﳉﺮﺍﻡ‪ ،‬ﺣﺠﻤﻬﺎ ‪ 100‬ﺍﺧﺘﲑﺕ ﻣﻦ ﺃﺣﺪ‬
‫ﺍﳌﺰﺍﺭﻉ ﺑﻌﺪ ‪ 45‬ﻳﻮﻡ ‪.‬‬
‫‪Sum‬‬
‫‪700-720‬‬
‫‪100‬‬
‫‪10‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻣﺎ ﻫﻮ ﻃﻮﻝ ﺍﻟﻔﺌﺔ؟‬
‫‪680-‬‬
‫‪660-‬‬
‫‪640-‬‬
‫‪620-‬‬
‫‪20‬‬
‫‪25‬‬
‫‪20‬‬
‫‪15‬‬
‫‪ 600‬ﺍﻟﻮﺯﻥ‬‫‪10‬‬
‫ﻋﺪﺩ ﺍﻟﺪﺟﺎﺝ‬
‫‪21‬‬
‫‪ -2‬ﺍﺭﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪.‬‬
‫‪ -3‬ﺍﺭﺳﻢ ﺍﳌﺪﺭﺝ ﺍ ﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﰒ ﻋﻠﻖ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ‪.‬‬
‫ﺍﳊـﻞ‬
‫‪ -1‬ﻃﻮﻝ ﺍﻟﻔﺌﺔ )‪(L‬‬
‫‪L = 620 − 600 = 640 − 620 = ... = 720 − 700 = 20‬‬
‫ﺇﺫﺍ ﻃﻮﻝ ﺍﻟﻔﺌﺔ = ‪20‬‬
‫‪ -2‬ﺭﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪.‬‬
‫ﻟﺮﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫• ﺭﺳﻢ ﳏﻮﺭﺍﻥ ﻣﺘﻌﺎﻣﺪﺍﻥ‪ ،‬ﺍﻟﺮﺃﺳﻲ ﻭﳝﺜﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‪ ،‬ﺍﻷﻓﻘﻲ ﻭﳝﺜﻞ ﺍﻷﻭﺯﺍﻥ ‪.‬‬
‫• ﻛﻞ ﻓﺌﺔ ﲤﺜﻞ ﺑﻌﻤﻮﺩ ﺍﺭﺗﻔﺎﻋﻪ ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﻟﻔﺌﺔ‪ ،‬ﻭﻃﻮﻝ ﻗﺎﻋﺪﺗﻪ ﻫﻮ ﻃﻮﻝ ﺍﻟﻔﺌﺔ ‪.‬‬
‫• ﻛﻞ ﻋﻤﻮﺩ ﻳﺒﺪﺃ ﻣﻦ ﺣﻴﺚ ﺍﻧﺘﻬﻰ ﺑﻪ ﻋﻤﻮﺩ ﺍﻟﻔﺌﺔ ﺍﻟﺴﺎﺑﻘﺔ ‪.‬‬
‫ﻭﺍﻟﺸﻜﻞ ) ‪ ( 1 -2‬ﻳﺒﲔ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﺍﻟﺪﺟﺎﺝ ‪.‬‬
‫ﺷﻜﻞ )‪(1 -2‬‬
‫ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 100‬ﺩﺟﺎﺟﺔ‬
‫‪ -3‬ﺭﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ‪ :‬ﻟﺮﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﺍﻵﰐ ‪:‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ ‪.‬‬
‫‪Sum‬‬
‫‪100‬‬
‫‪1.00‬‬
‫‪700-720‬‬
‫‪10‬‬
‫‪0.10‬‬
‫‪680‬‬‫‪20‬‬
‫‪0.20‬‬
‫‪660‬‬‫‪25‬‬
‫‪0.25‬‬
‫‪640‬‬‫‪20‬‬
‫‪0.20‬‬
‫‪620‬‬‫‪15‬‬
‫‪0.15‬‬
‫‪600‬‬‫‪10‬‬
‫‪0.10‬‬
‫ﺍﻟﻮﺯﻥ‬
‫ﻋﺪﺩ ﺍﻟﺪﺟﺎﺝ‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‬
‫‪22‬‬
‫• ﺑ ﺈﺗﺒﺎﻉ ﻧﻔﺲ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺴﺎﺑﻘﺔ ﻋﻨﺪ ﺭﺳﻢ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ‪ ،‬ﻳـﺘﻢ ﺭﺳـﻢ ﺍﳌـﺪﺭﺝ‬
‫ﺍ ﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﺑﺈﺣﻼﻝ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ ﳏﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﳌﻄﻠﻘﺔ ﻋﻠﻰ ﺍﶈـﻮﺭ‬
‫ﺍﻟﺮﺃﺳﻲ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(2 -2‬‬
‫ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ﻷﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 100‬ﺩﺟﺎﺟﺔ‬
‫ﻭﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻋﻼﻩ ﻳﻼﺣﻆ ﺍﻵﰐ ‪:‬‬
‫• ﺃﻥ ‪ 25%‬ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﻳﺘﺮﺍﻭﺡ ﻭﺯﻧﻪ ﺑﲔ ‪ 680 ، 660‬ﺟﺮﺍﻡ ﻭﻫﻲ ﺃﻛﱪ ﻧﺴﺒﺔ ‪.‬‬
‫• ﺃﻥ ﺍﻟﺸﻜﻞ ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ‪ ،‬ﳑﺎ ﻳﺪﻝ ﻋﻠﻰ ﺃﻥ ﺗﻮﺯﻳـﻊ ﺃﻭﺯﺍﻥ ﺍﻟـﺪﺟﺎﺝ ﺳـﺎﻟﺐ‬
‫ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫ﻣﻼﺣﻈﺎﺕ ﻋﻠﻰ ﺷﻜﻞ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ‬
‫ﺃ ‪ -‬ﺃﻥ ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺗﺴﺎﻭﻱ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ )‪. (n‬‬
‫ﺏ ‪ -‬ﺃﻣﺎ ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﻓﻬﻲ ﺗﻌﱪ ﻋﻦ ﳎﻤﻮﻉ ﺍﻟﺘﻜ ﺮﺍﺭﺍﺕ ﺍﻟﻨـﺴﺒﻴﺔ‪،‬‬
‫ﻭﻫﻲ ﺗﺴﺎﻭﻱ ﺍﻟﻮﺍﺣﺪ ﺍﻟﺼﺤﻴﺢ ‪.‬‬
‫ﺕ ‪ -‬ﳝﻜﻦ ﺗﻘﺪﻳﺮ ﺍﻟﻘﻴﻢ ﺍﻟﺸﺎﺋﻌﺔ‪ ،‬ﻭﻫﻲ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﻳﻨﺎﻇﺮﻫﺎ ﺃﻛﱪ ﺍﺭﺗﻔﺎﻉ‪ ،‬ﻓﻔﻲ ﺍﻟﺸﻜﻠﲔ ﺍﻟﺴﺎﺑﻘﲔ‪،‬‬
‫ﳒﺪ ﺃﻥ ﺍﻟﻮﺯﻥ ﺍﻟﺸﺎﺋﻊ ﻳﻘﻊ ﰲ ﺍﻟﻔﺌﺔ )‪ (660-680‬ﻭﻳﻄﻠﻖ ﻋﻠﻴﻪ ﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫ﺙ ‪ -‬ﳝﻜﻦ ﻣﻌﺮﻓﺔ ﺷﻜﻞ ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻷﺷﻜﺎﻝ ﺍﻟﺜﻼﺙ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺷﻜﻞ )‪(3 -2‬‬
‫‪23‬‬
‫‪ 2 /3 /2‬ﺍﳌﻀﻠﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ‬
‫ﻫﻮ ﲤﺜﻴﻞ ﺑﻴﺎﱐ ﺃﻳﻀﺎ ﻟﻠﺠﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺒﺴﻴﻂ‪ ،‬ﺣﻴﺚ ﲤﺜﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳـﻲ‪،‬‬
‫ﻭﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ‪ ،‬ﰒ ﺍﻟﺘﻮﺻﻴﻞ ﺑﲔ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﲞﻄﻮﻁ ﻣﻨﻜﺴﺮﺓ‪ ،‬ﻭﺑﻌﺪ ﺫﻟﻚ ﻳﺘﻢ ﺗﻮﺻﻴﻞ‬
‫ﻃﺮﰲ ﺍﳌﻀﻠﻊ ﺑﺎﶈﻮﺭ ﺍﻷﻓﻘﻲ ‪.‬‬
‫ﻭﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﻫﻲ ﺍ ﻟﻘﻴﻤﺔ ﺍﻟﱵ ﺗﻘﻊ ﰲ ﻣﻨﺘﺼﻒ ﺍﻟﻔﺌﺔ‪ ،‬ﻭﲢﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻧﻈﺮﺍ ﻟﻌﺪﻡ ﻣﻌﺮﻓﺔ ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﻠﻴﺔ ﻟﺘﻜﺮﺍﺭ ﻛﻞ ﻓﺌﺔ‪ ،‬ﻳﻌﺘﱪ ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﻫﻮ ﺍﻟﺘﻘﺪﻳﺮ ﺍﳌﻨﺎﺳﺐ ﻟﻘﻴﻤـﺔ‬
‫ﻛﻞ ﻣﻔﺮﺩﺓ ﻣﻦ ﻣﻔﺮﺩﺍﺕ ﺍﻟﻔﺌﺔ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 5 -2‬‬
‫ﺍﺳﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﰲ ﺍﳌﺜﺎﻝ ) ‪ ( 4 -2‬ﻟﺮﺳﻢ ﺍﳌﻀﻠﻊ ﺍﻟﺘﻜ ﺮﺍﺭﻱ ‪.‬‬
‫ﺍﳊـﻞ‬
‫ﻟﺮﺳﻢ ﺍﳌﻀﻠﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻳﺘﺒﻊ ﺍﻵﰐ ‪:‬‬
‫• ﺣﺴﺎﺏ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ ) ‪( 3 -2‬‬
‫ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ )‪(x‬‬
‫‪(600+620)/2= 610‬‬
‫‪(620+640)/2=630‬‬
‫‪650‬‬
‫‪670‬‬
‫‪690‬‬
‫‪(700+720)/710‬‬
‫ﺍﻟﻮﺯﻥ‬
‫ﻋﺪﺩ ﺍﻟﺪﺟﺎﺝ ) ﺍﻟﺘﻜﺮﺍﺭ(‬
‫‪10‬‬
‫‪15‬‬
‫‪20‬‬
‫‪25‬‬
‫‪20‬‬
‫‪10‬‬
‫‪100‬‬
‫‪600‬‬‫‪620‬‬‫‪640‬‬‫‪660‬‬‫‪680‬‬‫‪700-720‬‬
‫‪Sum‬‬
‫• ﻧﻘﻂ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﻫﻲ ‪:‬‬
‫‪730‬‬
‫‪0‬‬
‫‪710‬‬
‫‪10‬‬
‫‪690‬‬
‫‪20‬‬
‫‪670‬‬
‫‪25‬‬
‫‪650‬‬
‫‪20‬‬
‫‪630‬‬
‫‪15‬‬
‫‪610‬‬
‫‪10‬‬
‫‪590‬‬
‫‪0‬‬
‫ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ )‪(x‬‬
‫ﺍﻟﺘﻜﺮﺍﺭ )‪(y‬‬
‫• ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﱐ ﻟﻨﻘﻂ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﻭﺗﻮﺻﻴﻠﻬﺎ ﲞﻄﻮﻁ ﻣﺴﺘﻘﻴﻤﺔ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﺸﻜﻞ ) ‪( 4 -2‬‬
‫‪24‬‬
‫ﺷﻜﻞ )‪( 4 -2‬‬
‫ﺍﳌﻀﻠﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 100‬ﺩﺟ ﺎﺟﺔ‬
‫‪ 3 /3 /2‬ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ‬
‫ﺑﺈﺗﺒﺎﻉ ﻧﻔﺲ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺴﺎﺑﻘﺔ ﰲ ﺭﺳﻢ ﺍﳌﻀﻠﻊ ﳝﻜﻦ ﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ‪ ،‬ﻭﻟﻜﻦ ﻳﺘﻢ ﲤﻬﻴـﺪ‬
‫ﺍﳋﻄﻮﻁ ﺍﳌﻨﻜﺴﺮﺓ ﰲ ﺷﻜﻞ ﻣﻨﺤﲎ ﲝﻴﺚ ﳝﺮ ﺑﺄﻛﺜﺮ ﻋﺪﺩ ﻣﻦ ﺍﻟﻨﻘﺎﻁ‪ ،‬ﻭﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﳝﻜﻦ ﺭﺳﻢ ﺍﳌﻨﺤﲎ‬
‫ﺍﻟﺘﻜﺮﺍﺭﻱ‪ ،‬ﻭﺍﻟﺸﻜﻞ ) ‪ ( 5 -2‬ﻳﺒﲔ ﻫﺬﺍ ﺍﻟﺸﻜﻞ ‪.‬‬
‫ﺷﻜﻞ )‪(5 -2‬‬
‫ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 100‬ﺩﺟﺎﺟﺔ‬
‫ﻛﻤﺎ ﳝﻜﻦ ﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ﺑﺘﻤﺜﻴﻞ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳﻲ ﺑﺪﻻ ﻣﻦ‬
‫ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺍﳌﻄﻠﻘﺔ‪ ،‬ﻭﻣﻦ ﰒ ﻳﺄﺧﺬ ﻫﺬﺍ ﺍﳌﻨﺤﲎ ﺍﻟﺸﻜﻞ ﺭﻗﻢ ) ‪ ( 6 -2‬ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪25‬‬
‫ﺷﻜﻞ )‪(6 -2‬‬
‫ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ﻷ ﻭﺯﺍﻥ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﺪﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 100‬ﺩﺟﺎﺟﺔ‬
‫ﻭﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺃﻋﻼﻩ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ‪ ،‬ﻛﻤﺎ ﺃﻥ ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﻫﺬﺍ ﺍﳌﻨﺤﲎ ﺗﻌﱪ ﻋﻦ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‬
‫ﺍﻟﻨﺴﺒﻴﺔ‪ ،‬ﺃﻱ ﺃ‪‬ﺎ ﺗﺴﺎﻭﻱ ﺍﻟﻮﺍﺣﺪ ﺍﻟﺼﺤﻴﺢ‪ ،‬ﻭﻫﻨﺎﻙ ﺃﺷﻜﻞ ﳐﺘﻠﻔﺔ ﻟﻠﻤﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﺗﺪﻝ ﻋﻠـﻰ‬
‫ﺃﺷﻜﺎﻝ ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﻣﻦ ﺃﳘﻬﺎ ﻣ ﺎ ﻳﻠﻲ ‪:‬‬
‫‪ 3/3‬ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻟﺘﻜﺮﺍﺭﻳﺔ ﺍﳌﺘﺠﻤﻌﺔ‬
‫ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻷﺣﻴﺎﻥ ﻗﺪ ﳛﺘﺎﺝ ﺍﻟﺒﺎﺣﺚ ﺇﱃ ﻣﻌﺮﻓﺔ ﻋﺪﺩ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺍﻟﱵ ﺗﻘﻞ ﻋﻦ ﻗﻴﻤﺔ ﻣﻌﻴﻨـﺔ ﺃﻭ‬
‫ﺗﺰﻳﺪ ﻋﻦ ﻗﻴﻤﺔ ﻣﻌﻴﻨﺔ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻠﺠﺄ ﺍﻟﺒﺎﺣﺚ ﺇﱃ ﺗﻜﻮﻳﻦ ﺟﺪﺍﻭﻝ ﲡﻤﻴﻌﻴﺔ ﺻﺎﻋﺪﺓ ﺃﻭ ﻫﺎﺑﻄﺔ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻥ‬
‫ﻛﻴﻔﻴﺔ ﺗﻜﻮﻳﻦ ﻛﻞ ﻧﻮﻉ ﻣﻦ ﻫﺬﻳﻦ ﺍﻟﻨﻮﻋ ﲔ ﻋﻠﻰ ﺣﺪﺓ ‪:‬‬
‫‪ 1 /3 /3‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ‬
‫ﻟﺘﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ‪ ،‬ﻳﺘﻢ ﺣﺴﺎﺏ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ) ﻋﺪﺩ ﺍﻟﻘﻴﻢ ( ﺍﻟﱵ‬
‫ﺗﻘﻞ ﻋﻦ ﻛﻞ ﺣﺪ ﻣﻦ ﺣﺪﻭﺩ ﺍﻟﻔﺌﺎﺕ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 6 -2‬‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﺗﻮﺯﻳﻊ ‪ 40‬ﺑﻘﺮﺓ ﰲ ﻣﺰﺭﻋﺔ ﺣﺴﺐ ﻛﻤﻴﺔ ﺍﻷﻟﺒﺎﻥ ﺍﻟﱵ ﺗﻨﺘﺠﻬﺎ ﺍﻟﺒﻘﺮﺓ‬
‫ﰲ ﺍﻟﻴﻮﻡ ﺑﺎﻟﻠﺘﺮ ‪.‬‬
‫‪Sum‬‬
‫‪34-38‬‬
‫‪30-‬‬
‫‪26-‬‬
‫‪22-‬‬
‫‪18-‬‬
‫ﻛﻤﻴﺔ ﺍﻷﻟﺒﺎﻥ‬
‫‪40‬‬
‫‪4‬‬
‫‪8‬‬
‫‪15‬‬
‫‪9‬‬
‫‪4‬‬
‫ﻋﺪﺩ ﺍﻷﺑﻘﺎﺭ‬
‫‪26‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻛﻮﻥ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪.‬‬
‫‪ -2‬ﻛﻮﻥ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ‪.‬‬
‫‪ -3‬ﺍﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ‪.‬‬
‫‪ -4‬ﻣﻦ ﺍﳌﻨﺤﲎ ﺍﳌﺘﺠﻤ ﻊ ﺃﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫• ﻧﺴﺒﺔ ﺍﻷﺑﻘﺎﺭ ﺍﻟﱵ ﻳﻘﻞ ﺇﻧﺘﺎﺟﻬﺎ ﻋﻦ ‪ 28‬ﻟﺘﺮ ‪.‬‬
‫• ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 25%‬ﻣﻦ ﺍﻷﺑﻘﺎﺭ ‪.‬‬
‫ﺍﳊﻞ‬
‫• ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 50%‬ﻣﻦ ﺍﻹﻧﺘﺎﺝ ‪.‬‬
‫‪ -1‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪.‬‬
‫ﺗﻮﺯﻳﻊ ﺗﻜﺮﺍﺭﻱ ﻣﺘﺠﻤﻊ ﺻﺎﻋﺪ‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ‬
‫ﺻﺎﻋﺪ ﻧﺴﱯ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭ ﻱ‬
‫ﺃﻗﻞ ﻣﻦ‬
‫ﺻﺎﻋﺪ‬
‫ﻋﺪﺩ ﺍﻷﺑﻘﺎﺭ‬
‫ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ‬
‫ﺑﺎﻟﻠﺘﺮ‬
‫‪0.00‬‬
‫‪0‬‬
‫ﺃﻗﻞ ﻣﻦ ‪18‬‬
‫‪4‬‬
‫‪18-‬‬
‫‪0.10‬‬
‫‪4‬‬
‫ﺃﻗﻞ ﻣﻦ ‪22‬‬
‫‪9‬‬
‫‪22-‬‬
‫‪0.325‬‬
‫‪13‬‬
‫ﺃﻗﻞ ﻣﻦ ‪26‬‬
‫‪15‬‬
‫‪26-‬‬
‫‪0.70‬‬
‫‪28‬‬
‫ﺃﻗﻞ ﻣﻦ ‪30‬‬
‫‪8‬‬
‫‪30-‬‬
‫‪0.90‬‬
‫‪36‬‬
‫ﺃﻗﻞ ﻣﻦ ‪34‬‬
‫‪4‬‬
‫‪34-38‬‬
‫‪1.00‬‬
‫‪40‬‬
‫ﺃﻗﻞ ﻣﻦ ‪38‬‬
‫‪40‬‬
‫‪Sum‬‬
‫‪ -2‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍ ﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ‪ :‬ﳛﺴﺐ ﺍﻟﺘﻜﺮﺍﺭ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ﺑﻘـﺴﻤﺔ‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﻋﻠﻰ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﻌﻤﻮﺩ ﺍﻷﺧـﲑ ﰲ ﺟـﺪﻭﻝ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪.‬‬
‫‪ -3‬ﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪ :‬ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ﻫﻮ ﺍﻟﺘﻤﺜﻴﻞ‬
‫ﺍﻟﺒﻴﺎﱐ ﻟﻠﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ‪ ،‬ﺣﻴﺚ ﲤﺜﻞ ﺣﺪﻭﺩ ﺍﻟﻔﺌﺎﺕ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ‪،‬‬
‫ﻭﺍﻟﺘﻜﺮﺍﺭ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻨﺴﱯ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳﻲ‪ ،‬ﻭﻳﺘﻢ ﲤﻬﻴﺪ ﺍﳌﻨﺤﲎ ﻟﻴﻤﺮ ﺑﺎﻹﺣـﺪﺍﺛﻴﺎﺕ‪،‬‬
‫ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪27‬‬
‫• ﻧﺴﺒﺔ ﺍﻷﺑﻘﺎﺭ ﺍﻟﱵ ﻳﻘﻞ ﺇﻧﺘﺎﺟﻬﺎ ﻋﻦ ‪ 28‬ﻟﺘﺮ ﻫﻲ ‪ 0.47‬ﺗﻘﺮﻳﺒﺎ ‪.‬‬
‫• ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 25%‬ﻣﻦ ﻗﻴﻢ ﺍﻹﻧﺘﺎﺝ ﻫﻲ ‪ 25 :‬ﻟﺘﺮ ﺗﻘﺮﻳﺒﺎ ‪.‬‬
‫• ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 50%‬ﻣﻦ ﻗﻴﻢ ﺍﻹﻧﺘﺎﺝ ﻫﻲ ‪ 28.5 :‬ﻟﺘﺮ‪ ،‬ﻭﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ‬
‫ﺍﻟﻮﺳﻴﻂ‪:‬‬
‫‪28‬‬
‫‪ 2 /3 /3‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﳍﺎﺑﻂ )ﺍﻟﻨﺎﺯﻝ(‬
‫ﻟﺘﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﻨ ﺎﺯﻝ‪ ،‬ﻳﺘﻢ ﺣﺴﺎﺏ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ) ﻋﺪﺩ ﺍﻟﻘﻴﻢ ( ﺍﻟﱵ‬
‫ﺗﺴﺎﻭﻱ ﺃﻭ ﺗﺰﻳﺪ ﻋﻦ ﻛﻞ ﺣﺪ ﻣﻦ ﺣﺪﻭﺩ ﺍﻟﻔﺌﺎﺕ ‪.‬‬
‫ﻣﺜﺎﻝ ) ‪( 7 -2‬‬
‫ﺍﺳﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﰲ ﻣﺜﺎﻝ ) ‪ ، ( 6 -2‬ﻭﺃﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻛﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﻨﺎﺯﻝ ‪.‬‬
‫‪ -2‬ﺍﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﻨﺎﺯﻝ ﺍﻟﻨﺴﱯ ‪.‬‬
‫ﺍﳊﻞ ‪:‬‬
‫‪ -1‬ﺗﻜﻮﻳﻦ ﺍﻟﺘ ﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﻨﺎﺯﻝ ‪.‬‬
‫ﺗﻮﺯﻳﻊ ﺗﻜﺮﺍﺭﻱ ﻣﺘﺠﻤﻊ ﻧﺎﺯﻝ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ‬
‫ﺗﻜﺮﺍﺭ‬
‫‪1.00‬‬
‫‪40‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪18‬‬
‫‪0.90‬‬
‫‪36‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪22‬‬
‫‪9‬‬
‫‪0.675‬‬
‫‪27‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪26‬‬
‫‪15‬‬
‫‪26-‬‬
‫‪0.30‬‬
‫‪12‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪30‬‬
‫‪8‬‬
‫‪30-‬‬
‫‪0.10‬‬
‫‪4‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪34‬‬
‫‪4‬‬
‫‪34-38‬‬
‫‪0.00‬‬
‫‪0‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ ‪38‬‬
‫‪40‬‬
‫ﻧﺎﺯﻝ ﻧﺴﱯ‬
‫ﻣﺘﺠﻤﻊ ﻧﺎﺯﻝ‬
‫ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺃﻭ ﻳﺴﺎﻭﻱ‬
‫ﻋﺪﺩ ﺍﻷﺑﻘﺎﺭ‬
‫‪4‬‬
‫‪18‬‬‫‪22-‬‬
‫ﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﻨﺎﺯﻝ ‪.‬‬
‫ﺑﺎﻟﻠﺘﺮ‬
‫‪Sum‬‬
‫‪29‬‬
‫ﻣﻼﺣﻈﺎﺕ‪:‬‬
‫‪ -1‬ﳝﻜﻦ ﺭﺳﻢ ﺍﳌﻨﺤﻨﻴﺎﻥ ﰲ ﺷﻜﻞ ﺑﻴﺎﱐ ﻭﺍﺣﺪ‪ ،‬ﻭﻳﻼﺣﻆ ﺃ‪‬ﻤﺎ ﻳﺘﻘﺎﻃﻌﺎﻥ ﻋﻨﺪ ﻧﻘﻄﺔ ﺗﺴﻤﻰ ﺍﻟﻮﺳﻴﻂ‪.‬‬
‫‪ -2‬ﻳﻜﻮﻥ ﺍﺳﺘﺨﺪﺍﻣﻨﺎ ﻟﻠﻤﻨﺤﲎ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺃﻛﺜﺮ ﻭﺃﻭﻗﻊ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ‪.‬‬
‫‪ 4/3‬ﺍﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﱐ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ‬
‫ﳝﻜﻦ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳋﺎﺻﺔ ﲟﺘﻐﲑ ﻭﺻﻔﻲ ﰲ ﺷﻜﻞ ﺩﺍﺋﺮﺓ ﺑﻴﺎﻧﻴﺔ ﺃﻭ ﺃﻋﻤﺪﺓ ﺑﻴﺎﻧﻴﺔ‪ ،‬ﳝﻜﻦ ﻣﻦ‬
‫ﺧﻼﻟﻪ ﻭﺻﻒ ﻭﻣﻘﺎﺭﻧﺔ ﳎ ﻤﻮﻋﺎﺕ ﺃﻭ ﻣﺴﺘﻮﻳﺎﺕ ﻫﺬﺍ ﺍﳌﺘﻐﲑ ‪.‬‬
‫‪ 1 /4/3‬ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺒﻴﺎﻧﻴﺔ‬
‫ﻟﻌﺮﺽ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﻮﺻﻔﻲ ﰲ ﺷﻜﻞ ﺩﺍﺋﺮﺓ‪ ،‬ﻳﺘﻢ ﺗﻮﺯﻳﻊ ﺍﻟـ ‪ 360 o‬ﺩﺭﺟﺔ ﺣﺴﺐ ﺍﻟﺘﻜﺮﺍﺭ‬
‫ﺍﻟﻨﺴﱯ ‪‬ﻤﻮﻋﺎﺕ ﺍﳌﺘﻐﲑ‪ ،‬ﺣﻴﺚ ﲢﺪﺩ ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳋﺎﺻﺔ ﺑﺎ‪‬ﻤﻮﻋﺔ ﺭﻗﻢ ‪ r‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ ﻟﻠﻤﺠﻤﻮﻋﺔ ×‬
‫ﻣﺜﺎﻝ )‪(8-2‬‬
‫‪ = 360 o‬ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﺗﻮﺯﻳﻊ ﻋﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 500‬ﺃﺳﺮﺓ ﺣﺴﺐ ﺍﳌﻨﻄﻘﺔ ﺍﻟﱵ ﺗﻨﺘﻤﻲ ﺇﻟﻴﻬﺎ‪.‬‬
‫‪sum‬‬
‫ﺍﻟﻐﺮﺑﻴﺔ‬
‫ﺍﻟﻘﺼﻴﻢ‬
‫ﺍﻟﺸﺮﻗﻴﺔ‬
‫ﺍﻟﺮﻳﺎﺽ‬
‫ﺍﳌﻨﻄﻘﺔ‬
‫‪500‬‬
‫‪170‬‬
‫‪50‬‬
‫‪130‬‬
‫‪150‬‬
‫ﻋﺪﺩ ﺍﻷﺳﺮ‬
‫ﻣﺜﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺃﻋﻼﻩ ﰲ ﺷﻜﻞ ﺩﺍﺋﺮﺓ ﺑﻴﺎﻧﻴﺔ‪.‬‬
‫ﺍﳊﻞ‪:‬‬
‫‪ -1‬ﲢﺪﻳﺪ ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺨﺼﺼﺔ ﻟﻜﻞ ﻣﻨﻄﻘﺔ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ‪:‬‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ ﻟﻠﻤﻨﻄﻘﺔ × ‪ = 360 o‬ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺨﺼﺺ ﻟﻠﻤﻨﻄﻘﺔ‬
‫‪30‬‬
‫ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‬
‫ﻋﺪﺩ ﺍﻷﺳﺮ‬
‫ﺍﳌﻨﻄﻘﺔ‬
‫ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ‬
‫‪360 × 0.30 = 108 o‬‬
‫‪0.30‬‬
‫‪150‬‬
‫ﺍﻟﺮﻳﺎﺽ‬
‫‪360 × 0.26 = 93.6 o‬‬
‫‪0.26‬‬
‫‪130‬‬
‫ﺍﻟﺸﺮﻗﻴﺔ‬
‫‪360 × 0.10 = 36 o‬‬
‫‪0.10‬‬
‫‪50‬‬
‫ﺍﻟﻘﺼﻴﻢ‬
‫‪360 × 0.30 = 122.4 o‬‬
‫‪360 o‬‬
‫‪0.34‬‬
‫‪1.00‬‬
‫‪170‬‬
‫‪500‬‬
‫ﺍﻟﻐﺮﺑﻴﺔ‬
‫‪Sum‬‬
‫‪ -2‬ﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ‬
‫ﻳﺘﻢ ﺭﺳﻢ ﺩﺍﺋﺮﺓ ﻭﺗﻘﺴﻴﻤﻬﺎ ﺇﱃ ﺃﺭﺑﻊ ﺃﺟﺰﺍﺀ ﻟﻜﻞ ﻣﻨﻄﻘﺔ ﺟﺰﺀ ﻳﺘﻨﺎﺳﺐ ﻣﻊ ﻣﻘﺪﺍﺭ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺨﺼﺼﺔ‬
‫ﻟﻪ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺷﻜﻞ ﺭﻗﻢ )‪(7 -2‬‬
‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺒﻴﺎﻧﻴﺔ ﻟﻌ ﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 500‬ﺃﺳﺮﺓ ﻣﻮﺯﻋﺔ ﺣﺴﺐ ﺍﳌﻨﻄﻘﺔ‬
‫ﻭﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻋﻼﻩ ﻳﻼﺣﻆ ﺃﻥ ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﺍﻟﱵ ﺗﻨﺘﻤﻲ ﻟﻠﻤﻨﻄﻘﺔ ﺍﻟﻐﺮﺑﻴﺔ ﺣﻮﺍﱄ ‪ 34%‬ﻭﻫﻲ ﺃﻛﱪ‬
‫ﻧﺴﺒﺔ ﰲ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﺑﻴﻨﻤﺎ ﻳﻜﻮﻥ ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﰲ ﻣﻨﻄﻘﺔ ﺍﻟﻘﺼﻴﻢ ﺣﻮﺍﱄ ‪ 10%‬ﻭﻫﻲ ﺃﻗـﻞ ﻧـﺴﺒﺔ ﰲ‬
‫ﺍﻟﻌﻴﻨﺔ ‪.‬‬
‫‪31‬‬
‫ﺍﻟﻔﺼـــﻞ ﺍﻟﺜﺎﻟﺚ‬
‫ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‬
‫‪Central Tendency‬‬
‫‪ 1/3‬ﻣﻘﺪﻣﺔ‬
‫ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ ﻳﻜﻮﻥ ﺍﻟﺒﺎﺣﺚ ﰲ ﺣﺎﺟﺔ ﺇﱃ ﺣﺴﺎﺏ ﺑﻌﺾ ﺍﳌﺆﺷﺮﺍﺕ ﺍﻟﱵ ﳝﻜﻦ‬
‫ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻴﻬﺎ ﰲ ﻭﺻﻒ ﺍﻟﻈﺎﻫﺮﺓ ﻣﻦ ﺣﻴﺚ ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﺗﺘﻮﺳﻂ ﺍﻟﻘﻴﻢ ﺃﻭ ﺗﱰﻉ ﺇﻟﻴﻬﺎ ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﻣﻦ ﺣﻴﺚ‬
‫ﺍﻟﺘﻌﺮﻑ ﻋﻠﻰ ﻣﺪﻯ ﲡﺎﻧﺲ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﻳﺄ ﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ ‪ ،‬ﻭﺃﻳﻀ ﺎ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻫﻨﺎﻙ ﻗﻴﻢ ﺷﺎﺫﺓ ﺃﻡ ﻻ ‪ .‬ﻭﺍﻻﻋﺘﻤﺎﺩ‬
‫ﻋﻠﻰ ﺍﻟﻌﺮﺽ ﺍﻟﺒﻴﺎﱐ ﻭﺣﺪﺓ ﻻ ﻳﻜﻔﻰ ‪ ،‬ﻭﻟﺬﺍ ﻳﺘﻨﺎﻭﻝ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﻠﻴﻪ ﻋﺮﺽ ﺑﻌﺾ ﺍﳌﻘﺎﻳﻴﺲ‬
‫ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﻟﱵ ﳝﻜﻦ ﻣﻦ ﺧﻼﳍﺎ ﺍﻟﺘﻌﺮﻑ ﻋﻠﻰ ﺧﺼﺎﺋﺺ ﺍﻟﻈﺎﻫﺮﺓ ﳏﻞ ﺍﻟﺒﺤﺚ‪ ،‬ﻭﻛﺬﻟﻚ ﺇﻣﻜﺎﻧﻴﺔ ﻣﻘﺎﺭﻧﺔ‬
‫ﻇﺎﻫﺮﺗﲔ ﺃﻭ ﺃﻛﺜﺮ ‪ ،‬ﻭﻣﻦ ﺃﻫﻢ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ ‪ ،‬ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ﻭﺍﻟﺘﺸﺘﺖ ‪.‬‬
‫‪ 2/3‬ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‬
‫ﺗﺴﻤﻰ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ﲟﻘﺎﻳﻴﺲ ﺍﳌﻮﺿﻊ ﺃﻭ ﺍﳌﺘﻮﺳﻄﺎﺕ ‪ ،‬ﻭﻫﻰ ﺍﻟﻘﻴﻢ ﺍﻟﱴ ﺗﺘﺮﻛﺰ ﺍﻟﻘﻴﻢ‬
‫ﺣﻮﳍﺎ ‪ ،‬ﻭﻣﻦ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ ‪ ،‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ،‬ﻭﺍﳌﻨﻮﺍﻝ ‪ ،‬ﻭﺍﻟﻮﺳﻴﻂ ‪ ،‬ﻭﺍﻟﻮﺳﻂ ﺍﳍﻨﺪﺳ ﻲ ‪ ،‬ﻭﺍﻟﻮﺳﻂ‬
‫ﺍﻟﺘﻮﺍﻓﻘﻲ ‪ ،‬ﻭﺍﻟﺮﺑﺎﻋﻴﺎ ﺕ ‪ ،‬ﻭﺍﳌﺌﻴﻨﺎﺕ ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻋﺮﺽ ﻷﻫﻢ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ‬
‫‪ 1 /2 /3‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‬
‫‪Arithmetic Mean‬‬
‫ﻣﻦ ﺃﻫﻢ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ‪ ،‬ﻭﺃﻛﺜﺮﻫﺎ ﺍﺳﺘﺨﺪﺍﻣﺎ ﰲ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ ‪ ،‬ﻭﳝﻜﻦ ﺣﺴﺎﺑﻪ‬
‫ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ﻭﻏﲑ ﺍﳌﺒﻮﺑﺔ ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺃﻭﻻ‪ :‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ‬
‫ﻳﻌﺮﻑ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑﺸﻜﻞ ﻋﺎﻡ ﻋﻠﻰ ﺃﻧﻪ ﳎﻤﻮﻉ ﺍﻟﻘﻴﻢ ﻣﻘﺴﻮﻣﺎ ﻋﻠﻰ ﻋﺪﺩﻫﺎ ‪ .‬ﻓﺈﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ‬
‫‪ n‬ﻣﻦ ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪. x1 , x2 ,..., xn :‬‬
‫ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﳍﺬﻩ ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﻧﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪ x‬ﳛﺴﺐ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﻳﺪﻝ ﺍﻟﺮﻣﺰ ‪ Σ‬ﻋﻠﻰ ﺍ‪‬ﻤﻮﻉ ‪.‬‬
‫ﻣﺜـ ﺎﻝ )‪(1-3‬‬
‫‪32‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺩﺭﺟﺎﺕ ‪ 8‬ﻃﻼﺏ ﰲ ﻣ ﻘﺮﺭ ‪ 122‬ﺇﺣﺼﺎﺀ ﺗﻄﺒﻴﻘﻲ ‪.‬‬
‫‪40‬‬
‫‪36‬‬
‫‪40‬‬
‫‪35‬‬
‫‪37‬‬
‫‪42‬‬
‫‪32‬‬
‫‪34‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺇﳚﺎﺩ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﺪﺭﺟﺔ ﺍﻟﻄﺎﻟﺐ ﰲ ﺍﻻﻣﺘﺤﺎﻥ ‪.‬‬
‫ﺍﳊـﻞ‬
‫ﻹﳚﺎﺩ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺪﺭﺟﺎﺕ ﺗﻄﺒﻖ ﺍﳌﻌ ﺎﺩﻟﺔ ﺭﻗﻢ )‪ ( 1 -3‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪x1 + x2 + ... + x‬‬
‫‪n‬‬
‫=‪x‬‬
‫‪n‬‬
‫‪34 + 32 + 42 + 37 + 35 + 40 + 36 + 40 296‬‬
‫=‬
‫=‬
‫‪= 37‬‬
‫‪8‬‬
‫‪8‬‬
‫ﺃ ﻱ ﺃﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﺪﺭﺟﺔ ﺍﻟﻄﺎﻟﺐ ﰲ ﺍﺧﺘﺒﺎﺭ ﻣﻘﺮﺭ ‪ 122‬ﺇﺣﺺ ﻳﺴﺎﻭﻱ ‪ 37‬ﺩﺭﺟﺔ‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ‬
‫ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﺍﻟﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ‪ ،‬ﻻ ﳝﻜﻦ ﻣﻌﺮﻓﺘﻬﺎ ﻣﻦ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪ ،‬ﺣﻴﺚ ﺃﻥ ﻫﺬﻩ‬
‫ﺍﻟﻘﻴﻢ ﻣﻮﺿﻮﻋ ﺔ ﰲ ﺷﻜﻞ ﻓﺌﺎﺕ ‪ ،‬ﻭﻟﺬﺍ ﻳﺘﻢ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﺗﻘﻊ ﺩﺍﺧﻞ ﺣﺪﻭﺩ ﺍﻟﻔﺌﺔ‬
‫ﲟﺮﻛﺰ ﻫﺬﻩ ﺍﻟﻔﺌﺔ ‪ ،‬ﻭﻣﻦ ﰒ ﻳﺆﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺃﻥ ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺪﻳﺮﻳﺔ ﻟﻜﻞ ﻣﻔﺮﺩﺓ ﺗﻘﻊ ﰲ ﻫﺬﻩ‬
‫ﺍﻟﻔﺌﺔ ‪.‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻧﺖ ‪ k‬ﻫﻲ ﻋﺪﺩ ﺍﻟﻔﺌﺎﺕ ‪ ،‬ﻭﻛﺎﻧﺖ‬
‫‪x1 , x2 ,..., xk‬‬
‫ﻫﻲ ﻣﺮﺍﻛﺰ ﻫﺬﻩ ﺍﻟ ﻔﺌﺎﺕ‪،‬‬
‫‪ f1 , f2 ,..., fk‬ﻫﻲ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﳛﺴﺐ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻣﺜـﺎﻝ )‪(2-3‬‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﻌﺮﺽ ﺗﻮﺯﻳﻊ ‪ 40‬ﺗﻠﻤﻴﺬ ﺣﺴﺐ ﺃﻭﺯﺍ‪‬ﻢ ‪.‬‬
‫‪42-44‬‬
‫‪1‬‬
‫‪40-42‬‬
‫‪5‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺇﳚﺎﺩ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪.‬‬
‫ﺍﳊــﻞ‬
‫‪38-40‬‬
‫‪10‬‬
‫‪36-38‬‬
‫‪13‬‬
‫‪34-36‬‬
‫‪7‬‬
‫‪32-34‬‬
‫‪4‬‬
‫ﻓﺌﺎﺕ ﺍﻟﻮﺯﻥ‬
‫ﻋﺪﺩ ﺍﻟﺘﻼﻣﻴﺬ‬
‫‪33‬‬
‫ﳊﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ )‪ ( 2 -3‬ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪ -1‬ﺇﳚﺎﺩ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‬
‫‪∑f‬‬
‫‪.‬‬
‫‪ -2‬ﺣﺴﺎﺏ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ ‪. x‬‬
‫‪ -3‬ﺿﺮﺏ ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﰲ ﺍﻟﺘﻜﺮﺍﺭ ﺍﳌﻨﺎﻇﺮ ﻟﻪ )‪ ، (x f‬ﻭﺣﺴﺎﺏ ﺍ‪‬ﻤﻮﻉ ‪∑ xf‬‬
‫‪ -4‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ )‪. ( 2 -3‬‬
‫‪x f‬‬
‫‪33=132 × 4‬‬
‫‪35=245 × 7‬‬
‫‪37=481 × 13‬‬
‫‪39=390 × 10‬‬
‫‪41=205 × 5‬‬
‫‪43=43 × 1‬‬
‫‪1496‬‬
‫ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ‬
‫ﺍﻟﺘﻜﺮﺍﺭﺍﺕ‬
‫ﻓﺌﺎﺕ ﺍﻟﻮﺯﻥ‬
‫‪x‬‬
‫‪f‬‬
‫‪4‬‬
‫‪7‬‬
‫‪13‬‬
‫‪10‬‬
‫‪5‬‬
‫‪1‬‬
‫‪40‬‬
‫) ‪(C‬‬
‫)‪2=33 ÷ (32+34‬‬
‫‪35‬‬
‫‪37‬‬
‫‪39‬‬
‫‪41‬‬
‫‪43‬‬
‫‪32-34‬‬
‫‪34-36‬‬
‫‪36-38‬‬
‫‪38-40‬‬
‫‪40-42‬‬
‫‪42-44‬‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻮﺯﻥ ﺍﻟﺘﻠﻤﻴﺬ ﻫﻮ ‪:‬‬
‫‪6‬‬
‫‪1496‬‬
‫‪= 37.4 k.g‬‬
‫‪40‬‬
‫=‬
‫‪∑ xi f i‬‬
‫‪i =1‬‬
‫‪6‬‬
‫‪∑ fi‬‬
‫=‪x‬‬
‫‪i =1‬‬
‫ﺃ ﻱ ﺃﻥ ﻣﺘﻮﺳﻂ ﻭﺯﻥ ﺍﻟﺘﻠﻤﻴﺬ ﻳﺴﺎﻭﻱ ‪37.4 k.g‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‬
‫ﻳﺘﺼﻒ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑﻌﺪﺩ ﻣﻦ ﺍ ﳋﺼﺎﺋﺺ ‪ ،‬ﻭﻣﻦ ﻫﺬ ﻩ ﺍﳋﺼﺎﺋﺺ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -1‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻤﻘﺪﺍﺭ ﺍﻟﺜﺎﺑﺖ ﻳﺴﺎﻭﻯ ﺍﻟﺜﺎﺑﺖ ﻧﻔﺴﻪ ‪ ،‬ﺃ ﻱ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻴﻢ ‪ x‬ﻫﻲ ‪:‬‬
‫‪x : a , a ,..., a‬‬
‫‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻫﻮ‪:‬‬
‫ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪ ،‬ﻟﻮ ﺍﺧﺘﺮﻧﺎ ﳎﻤﻮﻋﺔ ﻣﻦ ‪ 5‬ﻃﻼﺏ ‪ ،‬ﻭﻭﺟﺪﻧﺎ ﺃﻥ ﻛﻞ ﻃﺎﻟﺐ ﻭﺯﻧﻪ ‪ 63‬ﻛﻴﻠﻮﺟﺮﺍﻡ‬
‫‪ ،‬ﻓ ﺈﻥ ﻣﺘﻮﺳﻂ ﻭﺯﻥ ﺍﻟﻄﺎﻟﺐ ﰲ ﻫﺬﻩ ﺍ‪‬ﻤﻮﻋﺔ ﻫﻮ ‪:‬‬
‫‪x = 63 + 63 + 63 + 63 + 63 = 315 = 63 k.g‬‬
‫‪5‬‬
‫‪5‬‬
‫‪ -2‬ﳎﻤﻮﻉ ﺍﳓﺮﺍﻓﺎﺕ ﺍﻟﻘﻴﻢ ﻋﻦ ﻭﺳﻄﻬﺎ ﺍﳊﺴﺎﰊ ﻳﺴﺎﻭﻯ ﺻﻔﺮﺍ ‪ ،‬ﻭﻳﻌﱪ ﻋﻦ ﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺑﺎﳌﻌﺎﺩﻟﺔ ‪.‬‬
‫ﻭﳝﻜﻦ ﺍﻟﺘﺤﻘﻖ ﻣﻦ ﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻴﺎﻧﺎﺕ ﻣﺜﺎﻝ )‪ ، ( 1 -3‬ﳒﺪ ﺃﻥ ﺩﺭﺟﺎﺕ ﺍﻟﻄﻼﺏ ﻫﻲ‬
‫‪34‬‬
‫‪ ، 34, 32, 42, 37, 35, 40, 36, 40:‬ﻭﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺪﺭﺟﺔ ﻫﻮ ‪ ، x = 37‬ﺇﺫﺍ ‪:‬‬
‫‪40‬‬
‫‪36‬‬
‫‪40‬‬
‫‪35‬‬
‫‪37‬‬
‫‪42‬‬
‫‪32‬‬
‫‪34‬‬
‫‪x‬‬
‫‪296‬‬
‫‪40-37‬‬
‫‪36-37‬‬
‫‪40-37‬‬
‫‪35-37‬‬
‫‪37-37‬‬
‫‪42-37‬‬
‫‪32-37‬‬
‫‪34-37‬‬
‫)‪( x − x‬‬
‫‪3‬‬
‫‪-1‬‬
‫‪3‬‬
‫‪-2‬‬
‫‪0‬‬
‫‪5‬‬
‫‪-5‬‬
‫‪-3‬‬
‫)‪( x − 37‬‬
‫‪0‬‬
‫ﺃ ﻱ ﺃﻥ ‪:‬‬
‫‪∑ (x − 37) = 0‬‬
‫‪ -3‬ﺇﺫﺍ ﺃﺿﻴﻒ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ ﺇﱃ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﻘﻴﻢ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﳌﻌﺪﻟﺔ ) ﺑﻌﺪ ﺍﻹﺿﺎﻓﺔ(‬
‫ﻳﺴﺎﻭﻯ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ) ﻗﺒﻞ ﺍﻹﺿﺎﻓﺔ ( ﻣﻀﺎﻓﺎ ﺇﻟﻴﻬﺎ ﻫﺬﺍ ﺍﳌﻘﺪﺍﺭ ﺍﻟﺜﺎﺑﺖ ‪ .‬ﻓﺈﺫﺍ ﻛﺎﻧﺖ‬
‫ﺍﻟﻘﻴﻢ ﻫﻲ ‪ ، x1 , x2 ,..., xn :‬ﻭﰎ ﺇﺿﺎﻓﺔ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ )‪ (a‬ﺇﱃ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﻧﺮﻣﺰ ﻟﻠﻘﻴﻢ‬
‫ﺍﳉﺪﻳﺪﺓ ﺑﺎﻟﺮﻣﺰ ‪ ، y‬ﺃ ﻱ ﺃﻥ‬
‫‪ ، y = x + a‬ﻓﺈﻥ ‪ :‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻘﻴﻢ ‪ ) y‬ﺍﻟﻘﻴﻢ ﺑﻌﺪ ﺍﻹﺿﺎﻓﺔ(‬
‫ﻫﻮ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ y‬ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ ‪ ،‬ﻭﳝﻜﻦ ﺍﻟﺘﺤﻘﻖ ﻣﻦ ﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ‬
‫ﺑﻴﺎﻧﺎﺕ ﻣﺜﺎﻝ ﺭﻗﻢ )‪. ( 1 -3‬‬
‫ﺇﺫﺍ ﻗﺮﺭ ﺍﳌﺼﺤﺢ ﺇﺿﺎﻓﺔ ‪ 5‬ﺩﺭﺟﺎﺕ ﻟﻜﻞ ﻃﺎﻟﺐ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺪﺭﺟﺎﺕ ﺍﳌﻌﺪﻟﺔ ﻳﺼﺒﺢ ﻗﻴﻤﺘﻪ‬
‫}‪ ، {(37+5)=42‬ﻭﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﺫﻟﻚ ‪.‬‬
‫‪296‬‬
‫‪336‬‬
‫‪40‬‬
‫‪40+5‬‬
‫‪36‬‬
‫‪36+5‬‬
‫‪40‬‬
‫‪40+5‬‬
‫‪35‬‬
‫‪35+5‬‬
‫‪37‬‬
‫‪37+5‬‬
‫‪42‬‬
‫‪42+5‬‬
‫‪32‬‬
‫‪32+5‬‬
‫‪34‬‬
‫‪34+5‬‬
‫‪45‬‬
‫‪41‬‬
‫‪45‬‬
‫‪40‬‬
‫‪42‬‬
‫‪47‬‬
‫‪37‬‬
‫‪39‬‬
‫ﳒﺪ ﺃﻥ ﳎﻤﻮﻉ ﺍﻟﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ ﻫﻮ ‪:‬‬
‫ﻫﻮ ‪:‬‬
‫‪∑ y = 336‬‬
‫) ‪→ ( x + 5 = 37 + 5 = 42‬‬
‫‪x‬‬
‫)‪y = ( x + 5‬‬
‫‪ ،‬ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ‬
‫‪= 42‬‬
‫‪∑ y = 336‬‬
‫‪8‬‬
‫‪n‬‬
‫=‪y‬‬
‫‪ -4‬ﺇﺫﺍ ﺿﺮﺏ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ )‪ (a‬ﰲ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﻘﻴﻢ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﳌﻌﺪﻟﺔ )ﺍﻟﻘﻴﻢ ﺍﻟﻨﺎﲡﺔ‬
‫ﺑﻌﺪ ﺍﻟﻀﺮﺏ( ﻳﺴﺎﻭﻯ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ) ﺍﻟﻘﻴﻢ ﺑﻌﺪ ﺍﻟﺘﻌﺪﻳﻞ( ﻣﻀﺮﻭﺑﺎ ﰲ ﻫﺬﺍ ﺍﳌﻘﺪﺍﺭ‬
‫ﺍﻟﺜﺎﺑﺖ ‪ .‬ﺃﻯ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻥ ‪ ، y = a x :‬ﻭﻳﻜﻮﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ ‪ y‬ﻫﻮ ‪:‬‬
‫‪35‬‬
‫ﻭﳝﻜﻦ ﻟﻠﻄﺎﻟﺐ ﺃﻥ ﻳﺘﺤﻘﻖ ﻣﻦ ﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻧﻔﺲ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪ .‬ﻓﺈﺫﺍ ﻛﺎﻥ‬
‫ﺗﺼﺤﻴﺢ ﺍﻟﺪﺭﺟﺔ ﻣﻦ ‪ ، 50‬ﻭﻗﺮﺭ ﺍﳌﺼﺤﺢ ﺃﻥ ﳚﻌﻞ ﺍﻟﺘﺼﺤﻴﺢ ﻣﻦ ‪ 100‬ﺩﺭﺟﺔ ‪ ،‬ﲟﻌﲎ ﺃﻧﻪ ﺳﻮﻑ‬
‫ﻳﻀﺮﺏ ﻛﻞ ﺩﺭﺟﺔ ﰲ ﻗﻴﻤﺔ ﺛﺎﺑﺘﺔ‬
‫‪y = a x = 2(37) = 74‬‬
‫)‪ ، (a=2‬ﻭﻳﺼﺒﺢ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺍﳉﺪﻳﺪ ﻫﻮ ‪:‬‬
‫‪ -5‬ﳎﻤﻮﻉ ﻣﺮﺑﻌﺎﺕ ﺍﳓﺮﺍﻓﺎﺕ ﺍﻟﻘﻴﻢ ﻋﻦ ﻭﺳﻄﻬﺎ ﺍﳊﺴﺎﰊ ﺃﻗﻞ ﻣﺎ ﳝﻜﻦ ‪ ،‬ﺃ ﻱ ﺃﻥ‪:‬‬
‫ﻭﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﻓﺈﻥ ‪< ∑ ( x − a ) 2 :‬‬
‫‪2‬‬
‫)‪∑ ( x − 37‬‬
‫ﳉﻤﻴﻊ ﻗﻴﻢ ‪a ≠ 37‬‬
‫ﺛﺎﻟﺜ ﺎ‪ :‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺍﳌﺮﺟﺢ‬
‫ﰲ ﺑﻌﺾ ﺍﻷﺣﻴﺎﻥ ﻳﻜﻮﻥ ﻟﻜﻞ ﻗﻴﻤﺔ ﻣﻦ ﻗﻴﻢ ﺍﳌﺘﻐﲑ ﺃﳘﻴﺔ ﻧﺴﺒﻴﺔ ﺗﺴ ﻤﻰ ﺃﻭﺯﻥ ‪ ،‬ﺃﻭ ﺗﺮﺟﻴﺤﺎﺕ ‪،‬‬
‫ﻭﻋﺪﻡ ﺃﺧﺬ ﻫﺬﻩ ﺍﻷﻭﺯﺍﻥ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﻋﻨﺪ ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ،‬ﺗﻜﻮﻥ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﻮﺳﻂ‬
‫ﺍﳊﺴﺎﰊ ﻏﲑ ﺩﻗﻴﻘﺔ ‪ ،‬ﻓﻤﺜﻼ ﻟﻮ ﺃﺧﺬﻧﺎ ﲬﺴﺔ ﻃﻼﺏ ‪ ،‬ﻭﺳﺠﻠﻨﺎ ﺩﺭﺟﺎﺕ ﻫﺆﻻﺀ ﺍﻟﻄﻼﺏ ﰲ ﻣ ﻘﺮﺭ ﺍﻹﺣﺼﺎﺀ‬
‫ﺍﻟﺘﻄﺒﻴﻘﻲ ‪ ،‬ﻭﻋﺪﺩ ﺳﺎﻋﺎﺕ ﺍﻻﺳﺘﺬﻛﺎﺭ ﰲ ﺍﻷﺳﺒﻮﻉ ‪.‬‬
‫‪sum‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪173‬‬
‫‪46‬‬
‫‪28‬‬
‫‪36‬‬
‫‪40‬‬
‫‪23‬‬
‫‪4‬‬
‫‪2‬‬
‫‪3‬‬
‫‪3‬‬
‫‪1‬‬
‫ﻣﺴﻠﺴﻞ‬
‫‪x‬‬
‫‪w‬‬
‫) ﺍﻟﺪﺭﺟﺔ(‬
‫) ﻋﺪﺩ ﺳﺎﻋﺎﺕ ﺍﻻﺳﺘﺬﻛﺎﺭ (‬
‫ﳒﺪ ﺃﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻏﲑ ﺍﳌﺮﺟﺢ ﻟﻠﺪﺭﺟﺔ ﺍﳊﺎﺻﻞ ﻋﻠﻴﻬﺎ ﺍﻟﻄﺎﻟﺐ ﻫﻲ ‪:‬‬
‫‪∑x 23+ 40+ 36+ 28+ 46 173‬‬
‫=‬
‫‪= 34.6‬‬
‫= ‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫ﻭﺇﺫﺍ ﺃﺭﺩﻧﺎ ﺃﻥ ﳓﺴﺐ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﺪﺭﺟﺎﺕ ‪x‬‬
‫=‪x‬‬
‫ﺍﳌﺮﺟﺤﺔ ﺑﻌﺪﺩ ﺳﺎﻋﺎﺕ ﺍﻻﺳﺘﺬﻛﺎﺭ ‪ ، w‬ﻳﺘﻢ ﺗﻄﺒﻴﻖ‬
‫ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪(w) = ∑∑w = 23×1+ 40× 3 + 36× 3 + 28× 2 + 46× 4‬‬
‫‪xw‬‬
‫‪1+ 3 + 3 + 2 + 4‬‬
‫‪23+120+108+ 56+184 491‬‬
‫=‬
‫=‬
‫‪= 37.769‬‬
‫‪13‬‬
‫‪13‬‬
‫ﻭﻫﺬﺍ ﺍﻟﻮﺳﻂ ﺍﳌﺮﺟﺢ ﺃﻛﺜﺮ ﺩﻗﺔ ﻣﻦ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻏﲑ ﺍﳌ ﺮﺟﺢ ‪.‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺍﳌﺮﺟﺢ ) ‪(w‬‬
‫ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪36‬‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‬
‫ﻳﺘﻤﻴﺰ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑﺎﳌﺰﺍﻳﺎ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫• ﺃﻧﻪ ﺳﻬﻞ ﺍﳊﺴﺎﺏ ‪.‬‬
‫• ﻳﺄﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﻛﻞ ﺍﻟﻘﻴﻢ ‪.‬‬
‫• ﺃﻧﻪ ﺃﻛﺜﺮ ﺍﳌﻘﺎﻳﻴﺲ ﺍﺳﺘﺨﺪﺍﻣﺎ ﻭﻓﻬﻤﺎ ‪.‬‬
‫ﻭﻣﻦ ﻋﻴﻮﺑﻪ ‪.‬‬
‫• ﺃﻧﻪ ﻳﺘﺄﺛﺮ ﺑﺎﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ﻭﺍﳌﺘﻄﺮﻓﺔ ‪.‬‬
‫• ﻳﺼﻌﺐ ﺣﺴﺎﺑﻪ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ ‪.‬‬
‫• ﻳﺼﻌ ﺐ ﺣﺴﺎﺑﻪ ﰲ ﺣﺎﻟﺔ ﺍﳉﺪﺍﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻳﺔ ﺍﳌﻔﺘﻮﺣﺔ ‪.‬‬
‫‪ 2 /2 /3‬ﺍﻟﻮﺳﻴﻂ‬
‫‪Median‬‬
‫ﻫﻮ ﺃﺣﺪ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﺄﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺭﺗﺐ ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﻳﻌﺮﻑ ﺍﻟﻮﺳﻴﻂ ﺑﺄﻧـﻪ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ﻧﺼﻒ ﻋﺪﺩ ﺍﻟﻘﻴﻢ )‪ ، ( n 2‬ﻭﻳﺰﻳﺪ ﻋﻨـﻬﺎ ﺍﻟﻨـﺼﻒ ﺍﻵﺧـﺮ )‪ ، ( n 2‬ﺃﻱ ﺃﻥ‬
‫‪ 50%‬ﻣﻦ ﺍﻟﻘﻴﻢ ﺃﻗﻞ ﻣﻨﻪ‪ 50% ،‬ﻣﻦ ﺍﻟﻘﻴﻢ ﺃﻋﻠﻰ ﻣﻨﻪ ‪ .‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻛﻴﻔﻴﺔ ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻏﲑ ﻣﺒﻮﺑﺔ ‪ ،‬ﻭﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ‪.‬‬
‫ﺃﻭﻻ‪ :‬ﺍﻟﻮﺳﻴﻂ ﻟﻠﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ‬
‫ﻟﺒﻴﺎﻥ ﻛﻴﻒ ﳝﻜﻦ ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ﻟﻠﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ ‪ ،‬ﻧﺘﺒﻊ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫• ﺗﺮﺗﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪ ﻳﺎ ‪.‬‬
‫•‬
‫•‬
‫‪ n + 1‬‬
‫‪‬‬
‫ﲢﺪﻳﺪ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ‪ ،‬ﻭﻫﻲ ‪ :‬ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ = ‪‬‬
‫‪ 2 ‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﻘﻴﻢ )‪ (n‬ﻓﺮﺩﻱ ﻓﺈﻥ ﺍﻟﻮﺳﻴﻂ ﻫﻮ ‪:‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﻘﻴﻢ )‪ (n‬ﺯﻭﺟﻲ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻴﻂ ﻳﻘﻊ ﺑﲔ ﺍﻟﻘﻴﻤﺔ ﺭﻗﻢ )‪ ، (n / 2‬ﻭﺍﻟﻘﻴﻤـﺔ ﺭﻗـﻢ‬
‫)‪ ، ((n / 2) + 1‬ﻭﻣﻦ ﰒ ﳛﺴﺐ ﺍﻟﻮﺳﻴﻂ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪37‬‬
‫ﻣﺜـﺎﻝ ) ‪( 3 -3‬‬
‫ﰎ ﺗﻘﺴﻴﻢ ﻗﻄﻌﺔ ﺃﺭﺽ ﺯﺭﺍﻋﻴﺔ ﺇﱃ ‪ 17‬ﻭﺣﺪﺓ ﲡﺮﻳﺒﻴﺔ ﻣﺘﺸﺎ‪‬ﺔ ‪ ،‬ﻭﰎ ﺯﺭﺍﻋﺘﻬﺎ ﲟﺤﺼﻮﻝ ﺍﻟﻘﻤﺢ ‪،‬‬
‫ﻭﰎ ﺍﺳﺘﺨﺪﺍﻡ ﻧﻮﻋﲔ ﻣﻦ ﺍﻟﺘﺴﻤﻴﺪ ﳘﺎ ‪ :‬ﺍﻟﻨﻮﻉ )‪ (a‬ﻭﺟﺮﺏ ﻋﻠﻰ ‪ 7‬ﻭﺣﺪﺍﺕ ﲡﺮﻳﺒﻴﺔ ‪ ،‬ﻭﺍﻟﻨﻮﻉ )‪(b‬‬
‫ﻭﺟﺮﺏ ﻋﻠﻰ ‪ 10‬ﻭﺣﺪﺍﺕ ﲡﺮﻳﺒ ﻴﺔ ‪ ،‬ﻭﺑﻌﺪ ﺍﻧﺘﻬﺎﺀ ﺍﳌﻮﺳﻢ ﺍﻟﺰﺭﺍﻋﻲ ‪ ،‬ﰎ ﺗﺴﺠﻴﻞ ﺇﻧﺘﺎﺟﻴﺔ ﺍﻟﻮﺣﺪﺓ ﺑﺎﻟﻄﻦ ‪/‬‬
‫ﻫﻜﺘﺎﺭ ‪ ،‬ﻭﻛﺎﻧﺖ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪3‬‬
‫‪2.5‬‬
‫‪4‬‬
‫‪1.5‬‬
‫‪2.3‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1.5‬‬
‫‪2.5‬‬
‫‪2‬‬
‫‪3.75‬‬
‫‪2.75 3.25‬‬
‫‪1.2‬‬
‫‪1.8‬‬
‫‪4.5‬‬
‫‪3.5‬‬
‫ﺍﻟﻨﻮﻉ )‪(a‬‬
‫ﺍﻟﻨﻮﻉ )‪(b‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﻭﺳﻴﻂ ﺍﻹﻧﺘﺎﺝ ﻟﻜﻞ ﻧﻮﻉ ﻣﻦ ﺍﻟﺴﻤﺎﺩ ﺍﳌﺴﺘﺨﺪﻡ‪ ،‬ﰒ ﻗﺎﺭﻥ ﺑﻴﻨﻬ ﺎ‪.‬‬
‫ﺍﳊـﻞ‬
‫ﺃﻭﻻ ‪ :‬ﺣﺴﺎﺏ ﻭﺳﻴﻂ ﺍﻹﻧﺘﺎﺝ ﻟﻠﻨﻮﻉ ﺍﻷﻭﻝ )‪(a‬‬
‫• ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ ‪:‬‬
‫• ﻋﺪﺩ ﺍﻟﻘﻴﻢ ﻓﺮﺩﻯ )‪( n = 7‬‬
‫• ﺇﺫﺍ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻲ ‪. ((n + 1) / 2 = (7 + 1) / 2 = 4 ) :‬‬
‫• ﻭﻳﻜﻮﻥ ﺍﻟﻮﺳﻴﻂ ﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺭﻗﻢ ‪ ، 4‬ﺃﻱ ﺃﻥ ﻭﺳﻴﻂ ﺍﻹﻧﺘﺎﺝ ﻟﻠﻨﻮﻉ ‪ a‬ﻫﻮ‪:‬‬
‫ﻃﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪Meda = 2.3‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﺣﺴﺎﺏ ﻭﺳﻴﻂ ﺍﻹﻧﺘﺎﺝ ﻟﻠﻨﻮﻉ ﺍﻟﺜﺎﱐ )‪: (b‬‬
‫• ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ ‪.‬‬
‫‪38‬‬
‫• ﻋﺪﺩ ﺍﻟﻘﻴﻢ ﺯﻭﺟﻲ )‪ ( n = 10‬ﺇﺫﺍ‬
‫• ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻲ ‪. ((n + 1) / 2 = (10 + 1) / 2 = 5.5) :‬‬
‫• ﺍﻟﻮﺳﻴﻂ = ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻤﺘﲔ ﺍﻟﻮﺍﻗﻌﺘﲔ ﰲ ﺍﳌﻨ ﺘﺼﻒ )ﺭﻗﻢ ‪. ( 6 ، 5‬‬
‫‪2.5 + 3‬‬
‫ﻃﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪= 2.75‬‬
‫‪2‬‬
‫= ‪Med b‬‬
‫ﻭﲟﻘﺎﺭﻧﺔ ﺍﻟﻨﻮﻋﲔ ﻣﻦ ﺍﻟﺴﻤﺎﺩ ‪ ،‬ﳒﺪ ﺃﻥ ﻭﺳﻴﻂ ﺇﻧﺘﺎﺟﻴﺔ ﺍﻟﻨﻮﻉ )‪ (a‬ﺃﻗﻞ ﻣﻦ ﻭﺳﻴﻂ ﺇﻧﺘﺎﺟﻴﺔ ﺍﻟﻨﻮﻉ‬
‫)‪ ، (b‬ﺃ ﻱ ﺃﻥ ‪. Med b > Med a :‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻟﻮﺳﻴﻂ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ‬
‫ﳊﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﻣﺒﻮﺑﺔ ﰲ ﺟﺪﻭﻝ ﺗﻮﺯﻳﻊ ﺗﻜﺮﺍﺭﻱ ‪ ،‬ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪.‬‬
‫•‬
‫‪‬‬
‫ﲢﺪﻳﺪ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ‪ :‬‬
‫‪‬‬
‫‪‬‬
‫‪ n   ∑ f‬‬
‫‪ =‬‬
‫‪ 2  2‬‬
‫• ﲢﺪﻳﺪ ﻓﺌﺔ ﺍﻟﻮﺳﻴﻂ ﻛﻤﺎ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ ﺻﺎﻋﺪ ﺳﺎﺑﻖ ‪f1‬‬
‫ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ )‪(n 2‬‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ ﺻﺎﻋﺪ ﻻﺣﻖ ‪f2‬‬
‫ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻔﺌﺔ ﺍﻟﻮﺳﻴﻂ‬
‫)‪( A‬‬
‫ﺍﻟﻮﺳﻴﻂ ‪Med‬‬
‫ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻔﺌﺔ ﺍﻟﻮﺳﻴﻂ‬
‫• ﻭﳛﺴﺐ ﺍﻟﻮﺳﻴﻂ ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ‪.‬‬
‫ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫‪L‬‬
‫ﻫﻲ ﻃﻮﻝ ﻓﺌﺔ ﺍﻟﻮﺳﻴﻂ ‪ ،‬ﻭﲢﺴﺐ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻃﻮﻝ ﺍﻟﻔﺌﺔ = ﺍﳊﺪ ﺍﻷﻋﻠﻰ – ﺍﳊﺪ ﺍﻷﺩﱏ‬
‫‪L = Upper - Lower‬‬
‫ﻣﺜﺎﻝ )‪( 4-3‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺗﻮﺯﻳﻊ ‪ 50‬ﻋﺠﻞ ﻣﺘﻮﺳﻂ ﺍﳊﺠﻢ ‪ ،‬ﺣﺴﺐ ﺍﺣﺘﻴﺎﺟﺎﺗﻪ ﺍﻟﻴﻮﻣﻴﺔ ﻣـﻦ ﺍﻟﻐـﺬﺍﺀ ﺍﳉـﺎﻑ‬
‫ﺑﺎﻟﻜﻴﻠﻮ ﺟﺮﺍﻡ‬
‫‪13.5 – 16.5‬‬
‫‪5‬‬
‫ ‪10.5‬‬‫‪10‬‬
‫ ‪7.5‬‬‫‪19‬‬
‫ ‪4.5‬‬‫‪12‬‬
‫ ‪1.5‬‬‫‪4‬‬
‫ﻓﺌﺎﺕ ﺍ ﻻﺣﺘﻴﺎﺟﺎﺕ ﺍﻟﻴﻮﻣﻴﺔ‬
‫ﻋﺪﺩ ﺍﻟﻌﺠﻮﻝ ‪f‬‬
‫‪39‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪ :‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ‪:‬‬
‫ﺍﳊـﻞ‬
‫ﺃ ‪ -‬ﺣﺴﺎﺑﻴﺎ‬
‫ﺏ‪ -‬ﺑﻴﺎﻧﻴﺎ‬
‫ﺃﻭﻻ ‪ :‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ﺣﺴﺎﺑﻴﺎ‬
‫• ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ‪:‬‬
‫= ‪n ∑ f = 50‬‬
‫=‬
‫‪25‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫• ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪:‬‬
‫• ﲢ ﺪﻳﺪ ﻓﺌﺔ ﺍﻟﻮﺳﻴﻂ ‪ :‬ﻭﻫﻰ ﺍﻟﻔﺌﺔ ﺍﻟﱵ ﺗﺸﻤﻞ ﻗﻴﻤﺔ ﺍﻟﻮﺳﻴﻂ ‪ ،‬ﻭﻫﻲ ﻗﻴﻤﺔ ﺃﻗﻞ ﻣﻨﻬﺎ )‪ (n / 2‬ﻣﻦ‬
‫ﺍﻟﻘﻴﻢ ‪ ،‬ﻭﳝﻜﻦ ﻣﻌﺮﻓﺘﻬﺎ ﺑﺘﺤﺪﻳﺪ ﺍﻟﺘﻜﺮﺍﺭﻳﻦ ﺍﳌﺘﺠﻤﻌﲔ ﺍﻟﺼﺎﻋﺪﻳﻦ ﺍﻟﺬﻳﻦ ﻳﻘﻊ ﺑﻴﻨﻬﻤﺎ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ‬
‫)‪ ، (n / 2‬ﻭﰱ ﺍﳉﺪﻭﻝ ﺃﻋﻼﻩ ﳒﺪ ﺃﻥ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ )‪ (25‬ﺗﻘﻊ ﺑﲔ ﺍﻟﺘﻜﺮﺍﺭﻳﻦ ﺍﳌﺘﺠﻤﻌﲔ ‪(35 ,‬‬
‫)‪ ، 16‬ﻭﻳﻜﻮﻥ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻔﺌﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻮ ﺍﳌﻨﺎﻇﺮ ﻟﻠﺘﻜﺮﺍﺭ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﺴﺎﺑﻖ ‪، 7.5‬‬
‫ﻭﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻔﺌﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻮ ﺍﳌﻨﺎﻇﺮ ﻟﻠﺘﻜﺮﺍﺭ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺍﻟﻼﺣﻖ ‪ . 10.5‬ﺃﻯ ﺃﻥ ﻓﺌﺔ‬
‫ﺍﻟﻮﺳﻴﻂ ﻫﻲ ‪:‬‬
‫)‪. (7.5-10.5‬‬
‫• ﻭﺑﺘﻄﺒﻴﻖ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻮﺳﻴﻂ ﺭﻗﻢ )‪ ( 11 -3‬ﻋﻠﻰ ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﳒﺪ ﺃﻥ ‪:‬‬
‫‪A= 7.5 , f1 = 16 , f2 = 35 , L = 10.5 − 7.5 = 3‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻴﻂ ﻗﻴﻤﺘﻪ ﻫﻲ ‪:‬‬
‫‪40‬‬
‫‪25 − 16‬‬
‫‪×3‬‬
‫‪35 − 16‬‬
‫‪× L = 7.5 +‬‬
‫‪f1‬‬
‫‪−‬‬
‫‪n‬‬
‫‪2‬‬
‫‪f 2 − f1‬‬
‫‪9‬‬
‫‪27‬‬
‫‪× 3 = 7.5 +‬‬
‫‪= 7.5 + 1.421 = 8.921 k.g‬‬
‫‪19‬‬
‫‪19‬‬
‫‪Med = A+‬‬
‫‪= 7.5 +‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ﺑﻴﺎﻧﻴﺎ‬
‫• ﲤﺜﻴﻞ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ﺑﻴﺎﻧﻴﺎ ‪.‬‬
‫• ﲢﺪﻳﺪ ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ )‪ (25‬ﻋﻠﻰ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪ .‬ﰒ ﺭﺳﻢ ﺧﻂ ﻣﺴﺘ ﻘﻴﻢ‬
‫ﺃﻓﻘﻲ ﺣﱴ ﻳﻠﻘﻰ ﺍﳌﻨﺤﲎ ﰲ ﺍﻟﻨﻘﻄﺔ )‪. (a‬‬
‫• ﺇﺳﻘﺎﻁ ﻋﻤﻮﺩ ﺭﺃﺳﻲ ﻣﻦ ﺍﻟﻨﻘﻄﺔ )‪ (a‬ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ‪.‬‬
‫• ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﺍﳋﻂ ﺍﻟﺮﺃﺳﻲ ﻣﻊ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺗﻌﻄﻰ ﻗﻴﻤﺔ ﺍﻟﻮﺳﻴﻂ ‪.‬‬
‫• ﺍﻟﻮﺳﻴﻂ ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ‪. Med = 8.6‬‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﻟﻮﺳﻴﻂ‬
‫ﻣﻦ ﻣﺰﺍﻳﺎ ﺍﻟﻮﺳﻴﻂ‬
‫‪ -1‬ﻻ ﻳﺘﺄﺛﺮ ﺑﺎﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ﺃﻭ ﺍﳌﺘﻄﺮﻓﺔ ‪.‬‬
‫‪ -2‬ﻛﻤﺎ ﺃﻧﻪ ﺳﻬﻞ ﰲ ﺍﳊﺴﺎﺏ ‪.‬‬
‫‪ -3‬ﳎﻤﻮﻉ ﻗﻴﻢ ﺍﻻﳓﺮﺍﻓﺎﺕ ﺍﳌﻄﻠﻘﺔ ﻋﻦ ﺍﻟﻮﺳﻴﻂ ﺃﻗﻞ ﻣﻦ ﳎﻤﻮﻉ ﺍﻻﳓﺮﺍﻓﺎﺕ ﺍﳌﻄﻠﻘﺔ ﻋﻦ ﺃ ﻱ ﻗﻴﻢ‬
‫ﺃﺧﺮﻯ ‪ .‬ﺃ ﻱ ﺃﻥ ‪:‬‬
‫ﻭﻣﻦ ﻋﻴﻮﺏ ﺍﻟﻮﺳﻴﻂ‬
‫‪a ≠ Med‬‬
‫‪∑ | x − Med | ≤ ∑ | x − a | ,‬‬
‫‪41‬‬
‫‪ -1‬ﺃﻧﻪ ﻻ ﻳﺄﺧﺬ ﻋﻨﺪ ﺣﺴﺎﺑﻪ ﻛﻞ ﺍﻟﻘﻴﻢ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ‪ ،‬ﻓﻬﻮ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻗﻴﻤﺔ ﺃﻭ ﻗﻴﻤ ﺘﲔ ﻓﻘﻂ ‪.‬‬
‫‪ -2‬ﻳﺼﻌﺐ ﺣﺴﺎﺑﻪ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ ﺍﳌﻘﺎﺳﺔ ﲟﻌﻴﺎﺭ ﺍﲰﻲ ‪nominal‬‬
‫‪ 3 /2 /3‬ﺍﳌﻨﻮﺍﻝ‬
‫‪Mode‬‬
‫ﻳﻌﺮﻑ ﺍﳌﻨﻮﺍﻝ ﺑﺄﻧﻪ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺜﺮ ﺷﻴﻮﻋﺎ ﺃﻭ ﺗﻜﺮﺍﺭﺍ ‪ ،‬ﻭﻳﻜﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﻪ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ‬
‫‪ ،‬ﳌﻌﺮﻓﺔ ﺍﻟﻨﻤﻂ ) ﺍﳌﺴﺘﻮﻯ ( ﺍﻟﺸﺎﺋﻊ‪ ،‬ﻭﳝﻜﻦ ﺣﺴﺎﺑﺔ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ﻭﻏﲑ ﺍﳌﺒﻮﺑﺔ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺃﻭﻻ‪ :‬ﺣﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺣﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ )ﻃﺮﻳﻘﺔ ﺍﻟﻔﺮﻭﻕ(‬
‫ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫‪ : A‬ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻔﺌﺔ ﺍﳌﻨﻮﺍﻝ ) ﺍﻟﻔﺌﺔ ﺍﳌﻨﺎﻇﺮﺓ ﻷﻛﱪ ﺗﻜﺮﺍﺭ ( ‪.‬‬
‫‪d1‬‬
‫‪d2‬‬
‫‪L‬‬
‫‪ :‬ﺍﻟﻔﺮﻕ ﺍﻷﻭﻝ = )ﺗﻜﺮﺍﺭ ﻓﺌﺔ ﺍﳌﻨﻮﺍﻝ – ﺗﻜﺮﺍﺭ ﺳﺎﺑﻖ(‬
‫‪ :‬ﺍﻟﻔﺮﻕ ﺍﻟﺜﺎﱐ = ) ﺗﻜﺮﺍﺭ ﻓﺌﺔ ﺍﳌﻨﻮﺍﻝ – ﺗﻜﺮﺍﺭ ﻻﺣﻖ(‬
‫‪ :‬ﻃﻮﻝ ﻓﺌﺔ ﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫ﻓﺌــﺔ ﺍﳌﻨﻮﺍﻝ = ﺍﻟﻔﺌﺔ ﺍﳌﻨﺎﻇﺮﺓ ﻷﻛﱪ ﺗﻜﺮﺍﺭ‬
‫ﻣﺜـﺎﻝ )‪(5-3‬‬
‫ﺍﺧﺘﲑﺕ ﻋﻴﻨﺎﺕ ﻋﺸﻮﺍﺋﻴﺔ ﻣﻦ ﻃﻼﺏ ﺑﻌﺾ ﺃﻗﺴﺎﻡ ﻛﻠﻴﺔ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ ﻭﺍﻟﺰﺭﺍﻋﺔ ‪ ،‬ﻭﰎ ﺭﺻﺪ‬
‫ﺩﺭﺟﺎﺕ ﻫﺆﻻﺀ ﺍﻟﻄﻼﺏ ﰲ ﻣﻘﺮﺭ ‪ 122‬ﺇﺣﺼﺎﺀ ﺍﻟﺘﻄﺒﻴﻘﻲ ‪ ،‬ﻭﻛﺎﻧﺖ ﺍﻟﻨﺘﺎﺋﺞ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫‪67‬‬
‫‪90‬‬
‫‪80‬‬
‫‪85‬‬
‫‪58‬‬
‫‪95‬‬
‫‪86‬‬
‫‪72‬‬
‫‪70‬‬
‫‪85‬‬
‫‪65‬‬
‫‪73‬‬
‫‪65‬‬
‫‪77‬‬
‫‪76‬‬
‫‪69‬‬
‫‪77‬‬
‫‪65‬‬
‫‪88‬‬
‫‪69‬‬
‫‪77‬‬
‫‪93‬‬
‫‪65‬‬
‫‪73‬‬
‫‪77‬‬
‫‪75‬‬
‫‪80‬‬
‫‪85‬‬
‫‪75‬‬
‫‪60‬‬
‫‪69‬‬
‫‪69‬‬
‫‪77‬‬
‫‪68‬‬
‫‪65‬‬
‫‪73‬‬
‫‪80‬‬
‫‪88‬‬
‫‪80‬‬
‫‪85‬‬
‫ﻗﺴﻢ ﻭﻗﺎﻳﺔ ﺍﻟﻨﺒﺎﺗﺎﺕ‬
‫ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ‬
‫ﻗﺴﻢ ﺍﻻﻗﺘﺼﺎﺩ‬
‫ﻗﺴﻢ ﺍﻹﻧﺘﺎﺝ ﺍﳊﻴﻮﺍﱐ‬
‫‪42‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﻣﻨﻮﺍﻝ ﺍﻟﺪﺭﺟﺎﺕ ﻟﻜﻞ ﻗﺴﻢ ﻣﻦ ﺍﻷﻗﺴﺎﻡ ‪:‬‬
‫ﺍﳊـﻞ‬
‫ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻏﲑ ﻣﺒﻮﺑﺔ ‪ ،‬ﻟﺬﺍ ﻓﺈﻥ ‪:‬‬
‫ﺍﳌﻨﻮﺍﻝ = ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺜﺮ ﺗﻜﺮﺍﺭﺍ‬
‫ﻭﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﻣﻨﻮﺍﻝ ﺍﻟﺪﺭﺟﺔ ﻟﻜﻞ ﻗﺴﻢ ﻣﻦ ﺍﻷﻗﺴﺎﻡ ‪.‬‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻮﺍﻟﻴﺔ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺜﺮ ﺗﻜﺮﺍﺭ‬
‫ﺍﳌﻨﻮﺍﻝ = ‪ 77‬ﺩﺭﺟﺔ‬
‫ﺍﻟﻘﺴﻢ‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 77‬ﺗﻜﺮﺭﺕ ‪ 4‬ﻣﺮﺍﺕ ﻗﺴﻢ ﻭﻗﺎﻳﺔ ﺍﻟﻨﺒﺎﺗﺎﺕ‬
‫ﲨﻴﻊ ﺍﻟﻘﻴﻢ ﻟﻴﺲ ﳍﺎ ﺗﻜﺮﺍﺭ‬
‫ﻻ ﻳﻮﺟﺪ ﻣﻨﻮﺍﻝ‬
‫ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 65‬ﺗﻜﺮﺭﺕ ‪3‬‬
‫ﻳﻮﺟﺪ ﻣﻨﻮﺍﻻﻥ ﳘﺎ ‪:‬‬
‫ﻣﺮﺍﺕ‬
‫ﺍﳌﻨﻮﺍﻝ ﺍﻷﻭﻝ = ‪65‬‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 80‬ﺗﻜﺮﺭﺕ ‪3‬‬
‫ﺍﳌﻨﻮﺍﻝ ﺍﻟﺜﺎﱐ = ‪80‬‬
‫ﻗﺴﻢ ﺍﻻﻗﺘﺼﺎﺩ‬
‫ﻣﺮﺍ ﺕ‬
‫ﻳ ﻮﺟﺪ ﺛﻼﺙ ﻣﻨﻮﺍﻝ ﻫ ﻲ ‪:‬‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 69‬ﺗﻜﺮﺭﺕ ‪3‬‬
‫ﺍﳌﻨﻮﺍﻝ ﺍﻷﻭﻝ = ‪69‬‬
‫ﻣﺮﺍﺕ‬
‫ﺍﳌﻨﻮﺍﻝ ﺍﻟﺜﺎﱐ = ‪73‬‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 73‬ﺗﻜﺮﺭﺕ ‪3‬‬
‫ﺍﳌﻨﻮﺍﻝ ﺍﻟﺜﺎﻟﺚ = ‪85‬‬
‫ﻣﺮﺍﺕ‬
‫ﻗﺴﻢ ﺍﻹﻧﺘﺎﺝ ﺍﳊﻴﻮﺍﱐ‬
‫ﺍﻟﺪﺭﺟﺔ ‪ 85‬ﺗﻜﺮﺭﺕ ‪3‬‬
‫ﻣﺮﺍﺕ‬
‫ﻣﺜﺎﻝ )‪(6-3‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺗ ﻮﺯﻳﻊ ‪ 30‬ﺃﺳﺮﺓ ﺣﺴﺐ ﺍﻹﻧﻔﺎﻕ ﺍﻻﺳﺘﻬﻼﻛﻲ ﺍﻟﺸﻬﺮﻱ ﳍﺎ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ ‪.‬‬
‫‪14 - 17‬‬
‫‪11 -‬‬
‫‪8-‬‬
‫‪5-‬‬
‫‪2-‬‬
‫ﻓﺌﺎﺕ ﺍﻹﻧﻔﺎﻕ‬
‫‪4‬‬
‫‪5‬‬
‫‪10‬‬
‫‪7‬‬
‫‪4‬‬
‫ﻋﺪﺩ ﺍﻷﺳﺮ ‪f‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﻣﻨﻮﺍﻝ ﺍﻹﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﻟﻸﺳﺮﺓ‪ ،‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﻃﺮﻳﻘﺔ ﺍﻟﻔﺮﻭﻕ ‪.‬‬
‫ﺍﳊﻞ‬
‫ﳊﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ﳍﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ )‪ ، ( 12 -3‬ﻭﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫• ﲢﺪﻳﺪ ﺍﻟﻔﺌﺔ ﺍﳌﻨﻮﺍﻟﻴﺔ‬
‫ﺍﻟﻔﺌﺔ ﺍﳌﻨﻮﺍﻟﻴﺔ ﻫﻲ ﺍﻟﻔﺌﺔ ﺍﳌﻨﺎﻇﺮﺓ ﻷﻛﱪ ﺗﻜﺮﺍﺭ ‪(8-11) :‬‬
‫‪43‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻔﺮﻭﻕ ‪ ، d‬ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫‪d1 = (10 − 7) = 3 d 2 = (10 − 5) = 5‬‬
‫•‬
‫ﲢﺪﻳﺪ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ﺍﳌﻨﻮﺍﻟﻴﺔ )‪ ، ( A = 8‬ﻭﻛﺬﻟﻚ ﻃﻮﻝ ﺍﻟﻔﺌﺔ )‪( L = 3‬‬
‫• ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﳋﺎﺻﺔ ﲝﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ﰱ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ‪ .‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪d1‬‬
‫‪×L‬‬
‫‪d1 + d 2‬‬
‫‪Mod = A +‬‬
‫‪3 × 3 = 8 + 1 . 125 = 9 . 125‬‬
‫‪3+5‬‬
‫‪=8+‬‬
‫‪ 3/3‬ﺍﺳﺘﺨﺪﺍﻡ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ﰲ ﲢﺪﻳﺪ ﺷﻜﻞ‬
‫ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ ﰲ ﻭﺻﻒ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﻌﱪ ﻋﻦ‬
‫ﺷﻜﻞ ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺷﻜﻞ )‪(1 -3‬‬
‫• ﻳﻜﻮﻥ ﺍﳌﻨﺤﲎ ﻣﺘﻤﺎﺛﻞ ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫ﺍﻟﻮﺳﻂ = ﺍﻟﻮﺳﻴﻂ = ﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫• ﻳﻜﻮﻥ ﺍﳌﻨﺤﲎ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ) ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﻤﲔ ( ﺇﺫﺍ ﻛﺎﻥ‪:‬‬
‫ﺍﻟﻮﺳﻂ < ﺍﻟﻮﺳﻴﻂ < ﺍﳌﻨﻮﺍﻝ‬
‫• ﻳﻜﻮﻥ ﺍﳌﻨﺤﲎ ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍ ﺀ ) ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ( ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫ﺍﻟﻮﺳﻂ > ﺍﻟﻮﺳﻴﻂ > ﺍﳌﻨﻮﺍﻝ‬
‫ﻣﺜﺎﻝ ﻋﺎﻡ )‪( 7-3‬‬
‫‪44‬‬
‫ﻗﺎﻡ ﻣﺪﻳﺮ ﻣﺮﺍﻗﺒﺔ ﺍﻹﻧﺘﺎﺝ ﺑﺴﺤﺐ ﻋﻴﻨﺔ ﻣﻦ ‪ 10‬ﻋﺒﻮﺍﺕ ﻣﻦ ﺍﳌﻴﺎﻩ ﺍﳌﻌﺒﺄﺓ ﻟﻠﺸﺮﺏ ‪ ،‬ﺫﺍﺕ ﺍﳊﺠﻢ‬
‫‪ 5‬ﻟﺘﺮ ‪ ،‬ﻭﺍﳌﻨﺘﺠﺔ ﺑﻮﺍﺳﻄﺔ ﺇﺣﺪﻯ ﺷﺮﻛﺎﺕ ﺗﻌﺒﺌﺔ ﺍﳌﻴﺎﻩ ﻟﻔﺤﺺ ﻛﻤﻴﺔ ﺍﻷﻣﻼﺡ ﺍﻟﺬﺍﺋﺒﺔ‪ ،‬ﻭﻛﺎﻧﺖ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪121‬‬
‫‪123‬‬
‫‪123‬‬
‫‪121‬‬
‫‪124 119‬‬
‫‪123‬‬
‫‪119‬‬
‫‪123‬‬
‫‪115‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪ :‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ ،‬ﻭﺍﻟﻮﺳﻴﻂ‪ ،‬ﻭﺍﳌﻨﻮﺍﻝ‪ ،‬ﰒ ﺣﺪﺩ ﺷﻜﻞ ﺍﻻﻟﺘﻮﺍﺀ ﳍﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪.‬‬
‫ﺍﳊﻞ‬
‫ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪:‬‬
‫‪1211‬‬
‫‪= 121.1‬‬
‫‪10‬‬
‫=‬
‫‪∑x‬‬
‫‪n‬‬
‫=‪x‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ‪:‬‬
‫ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ‪(n + 1) / 2 = (10 + 1) / 2 = 5.5 :‬‬
‫ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ‬
‫ﻋﺪﺩ ﺍﻟﻘﻴﻢ = ‪ ، 10‬ﻭﻫﻮ ﻋﺪﺩ ﺯﻭﺟ ﻲ ‪ .‬ﺍﻟﻮﺳﻴﻂ = ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻘﻴﻤﺘﲔ ﺭﻗﻢ ) ‪(6 , 5‬‬
‫‪= 122‬‬
‫‪244‬‬
‫‪2‬‬
‫=‬
‫‪121 + 123‬‬
‫‪2‬‬
‫= ‪Med‬‬
‫• ﺣﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ‪:‬‬
‫ﺍﳌﻨﻮﺍﻝ ﻳﺴﺎﻭﻯ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺜﺮ ﺗﻜﺮﺍﺭﺍ ‪ :‬ﺍﻟﻘﻴﻤﺔ ‪ 123‬ﺗﻜﺮﺭﺕ ﺃﻛﺜﺮ ﻣﻦ ﻏﲑﻫﺎ ‪ ،‬ﺇﺫﺍ‬
‫‪Mod = 123‬‬
‫ﻭﲟﻘﺎﺭﻧﺔ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭ ﺍﳌﻨﻮﺍﻝ ﳒﺪ ﺃﻥ ‪:‬‬
‫ﳒﺪ ﺃﻥ ‪ :‬ﺍﻟﻮﺳﻂ > ﺍﻟﻮﺳﻴﻂ > ﺍﳌﻨﻮﺍﻝ ‪ ،‬ﺇﺫﺍ ﺗﻮﺯﻳﻊ ﺑﻴﺎﻧﺎﺕ ﻛﻤﻴﺔ ﺍﻷﻣﻼﺡ ﺳﺎﻟﺒﺔ ﺍﻻﻟﺘﻮﺍﺀ‪.‬‬
‫ﻣﺜﺎﻝ )‪( 8-3‬‬
‫‪45‬‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﱄ ﻳﻌﺮﺽ ﺗﻮﺯﻳﻊ ‪ 100‬ﻋﺎﻣﻞ ﰲ ﻣﺰﺭﻋﺔ ﺣﺴﺐ ﺍﻷﺟﺮ ﺍﻟﻴﻮﻣﻲ ﺑﺎﻟﺮﻳﺎﻝ ‪.‬‬
‫‪170 - 190‬‬
‫‪150 -‬‬
‫‪130 -‬‬
‫‪110 -‬‬
‫‪90 -‬‬
‫‪70 -‬‬
‫‪50 -‬‬
‫ﺍﻷﺟﺮ‬
‫‪6‬‬
‫‪8‬‬
‫‪15‬‬
‫‪20‬‬
‫‪28‬‬
‫‪15‬‬
‫‪8‬‬
‫ﻋﺪﺩ ﺍﻟﻌﻤﺎﻝ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫• ﺑﻴﺎﻥ ﺷﻜﻞ ﺗﻮﺯﻳﻊ ﺍﻷﺟﻮﺭ ﰲ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ‪.‬‬
‫ﺍﳊﻞ‬
‫• ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫ﺃﻭﻻ ‪ :‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪x‬‬
‫‪fx‬‬
‫‪480‬‬
‫‪1200‬‬
‫‪2800‬‬
‫‪2400‬‬
‫‪2100‬‬
‫‪1280‬‬
‫‪1080‬‬
‫‪11340‬‬
‫ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ ) ‪(x‬‬
‫ﺍﻟﺘﻜﺮ ﺍﺭﺍﺕ ) ‪( f‬‬
‫‪60‬‬
‫‪80‬‬
‫‪100‬‬
‫‪120‬‬
‫‪140‬‬
‫‪160‬‬
‫‪180‬‬
‫‪8‬‬
‫‪15‬‬
‫‪28‬‬
‫‪20‬‬
‫‪15‬‬
‫‪8‬‬
‫‪6‬‬
‫‪100‬‬
‫‪11340‬‬
‫‪= 113.4 R.S‬‬
‫‪100‬‬
‫=‬
‫‪∑ fx‬‬
‫‪∑f‬‬
‫ﻓﺌﺎﺕ ﺍﻷﺟﺮ‬
‫‪50 – 70‬‬
‫‪70 – 90‬‬
‫‪90 – 110‬‬
‫‪110 - 130‬‬
‫‪130 - 150‬‬
‫‪150 – 170‬‬
‫‪170 - 190‬‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫=‪x‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﺍﻟﻮﺳﻴﻂ ‪Med‬‬
‫ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ‪(n/2 =100/2 =50) :‬‬
‫ﺗﻜﻮﻳﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ ‪.‬‬
‫ﺗﻜﺮﺍﺭ ﻣﺘﺠﻤﻊ ﺻﺎﻋﺪ‬
‫ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ‬
‫ﻣﻦ ﺍﳉﺪﻭﻝ ﺃﻋﻼﻩ ﳒﺪ ﺃﻥ ‪:‬‬
‫) ‪(50‬‬
‫ﺃﻗﻞ ﻣﻦ‬
‫‪0‬‬
‫ﺃﻗﻞ ﻣﻦ ‪50‬‬
‫‪8‬‬
‫ﺃﻗﻞ ﻣﻦ ‪70‬‬
‫‪23 ← f1‬‬
‫ﺃﻗﻞ ﻣﻦ ‪90‬‬
‫‪51 ← f1‬‬
‫ﺃﻗﻞ ﻣﻦ ‪110‬‬
‫‪71‬‬
‫ﺃﻗﻞ ﻣﻦ ‪130‬‬
‫‪86‬‬
‫ﺃﻗﻞ ﻣﻦ ‪150‬‬
‫‪94‬‬
‫ﺃﻗﻞ ﻣﻦ ‪170‬‬
‫‪100‬‬
‫ﺃﻗﻞ ﻣﻦ ‪190‬‬
‫‪46‬‬
‫‪n‬‬
‫‪= 50 , f1 = 23 , f2 = 51 , A = 90 , L = 110 − 90 = 20‬‬
‫‪2‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻴﻂ ﻗﻴﻤﺘﻪ ﻫﻰ ‪:‬‬
‫‪n‬‬
‫‪− f1‬‬
‫‪50 − 23‬‬
‫‪2‬‬
‫‪× L = 90 +‬‬
‫‪× 20‬‬
‫‪Med = A +‬‬
‫‪51 − 23‬‬
‫‪f 2 − f1‬‬
‫‪R.S‬‬
‫‪= 90 + 19.286 = 109.3‬‬
‫‪540‬‬
‫‪28‬‬
‫‪× 20 = 90 +‬‬
‫‪27‬‬
‫‪28‬‬
‫‪= 90 +‬‬
‫ﺛﺎﻟﺜﺎ ‪ :‬ﺍﳌﻨﻮﺍﻝ ‪Mod‬‬
‫ﺍﻟﻔﺌﺔ ﺍﳌﻨﻮﺍﻟ ﻴﺔ ‪ ،‬ﻫﻰ ﺍﻟﻔﺌﺔ ﺍﳌﻨﺎﻇﺮﺓ ﻷﻛﱪ ﺗﻜﺮﺍﺭ‬
‫ﺃﻛﱪ ﺗﻜﺮﺍﺭ = ‪ ، 28‬ﻭﻫﻮ ﻳﻨﺎﻇﺮ ﺍﻟﻔﺌﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ )‪. (90 - 110‬‬
‫ﺣﺴﺎﺏ ﺍﻟﻔﺮﻭﻕ ‪:‬‬
‫ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ‪A = 90 :‬‬
‫‪d 2 = 28 − 20 = 8 , d1 = 28 − 15 = 13‬‬
‫ﻃﻮﻝ ﺍﻟﻔﺌﺔ ‪L = 110 − 90 = 20 :‬‬
‫ﺇﺫﺍ ﺍﳌﻨﻮﺍﻝ ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪d1‬‬
‫‪13‬‬
‫‪260‬‬
‫‪× L = 90 +‬‬
‫‪× 20 = 90 +‬‬
‫‪= 102.4 R.S‬‬
‫‪d1 + d2‬‬
‫‪13 + 8‬‬
‫‪21‬‬
‫‪Mod = A+‬‬
‫• ﺑﻴﺎﻥ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪.‬‬
‫ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺴﺎﺑﻘﺔ ‪ ،‬ﳒﺪ ﺃﻥ ‪:‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪x = 113.4 :‬‬
‫ﺍﻟﻮﺳﻴﻂ ‪Med = 109.3 :‬‬
‫ﺃﻯ ﺃﻥ ‪ :‬ﺍﻟﻮﺳﻂ < ﺍﻟﻮﺳﻴﻂ < ﺍﳌﻨﻮﺍﻝ‬
‫ﺍﳌﻨﻮﺍﻝ ‪Mod = 1024 :‬‬
‫ﺇﺫﺍ ﺗﻮ ﺯﻳﻊ ﺑﻴﺎﻧﺎﺕ ﺍﻷﺟﻮﺭ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪ .‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ‬
‫ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪ 4/3‬ﺍﻟﺮﺑﺎﻋﻴﺎﺕ ‪Quartiles‬‬
‫ﻋﻨﺪ ﺗﻘﺴﻴﻢ ﺍﻟﻘﻴﻢ ﺇﱃ ﺃﺭﺑﻊ ﺃﺟﺰﺍﺀ ﻣﺘﺴﺎﻭﻳﺔ‪ ،‬ﻳﻮﺟﺪ ﺛﻼﺙ ﺇﺣﺼﺎﺀﺍﺕ ﺗﺮﺗﻴﱯ ﺗﺴﻤﻰ ﺑﺎﻟﺮﺑﺎﻋﻴﺎﺕ‪،‬‬
‫ﻭﻫﻲ ‪:‬‬
‫• ﺍﻟﺮﺑﻴﻊ ﺍﻷﻭﻝ ‪ :‬ﻭﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ﺭﺑﻊ ﻋﺪﺩ ﺍﻟﻘﻴﻢ‪ ،‬ﺃﻱ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 25%‬ﻣﻦ ﺍﻟﻘﻴ ﻢ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ‬
‫‪47‬‬
‫ﺑﺎﻟﺮﻣﺰ ‪. Q1‬‬
‫• ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﱐ ‪ :‬ﻭﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ﻧﺼﻒ ﻋﺪﺩ ﺍﻟﻘﻴﻢ‪ ،‬ﺃﻱ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 50%‬ﻣﻦ ﺍﻟﻘﻴﻢ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ‬
‫ﺑﺎﻟﺮﻣﺰ ‪ ، Q2‬ﻭﻣﻦ ﰒ ﻳﻌﱪ ﻫﺬﺍ ﺍﻟﺮﺑﻴﻊ ﻋﻦ ﺍﻟﻮﺳﻴﻂ ‪.‬‬
‫•‬
‫ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﻟﺚ ‪ :‬ﻭﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ ﺛﻼﺙ ﺃﺭﺑﺎﻉ ﻋﺪﺩ ﺍﻟﻘﻴﻢ‪ ،‬ﺃﻱ ﻳﻘﻞ ﻋﻨﻬﺎ ‪ 75%‬ﻣﻦ ﺍﻟﻘﻴﻢ‪،‬‬
‫ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪. Q3‬‬
‫ﻭﺍﻟﺸﻜﻞ ) ‪ ( 3 -3‬ﻳﺒﲔ ﺃﻣﺎﻛﻦ ﺍﻟﺮﺑﺎﻋﻴﺎﺕ ﺍﻟﺜﻼﺙ ‪.‬‬
‫ﺷﻜﻞ )‪(3 -3‬‬
‫ﺍﻟﺮﺑﺎﻋﻴﺎﺕ‬
‫ﻭﳊﺴﺎﺏ ﺃﻱ ﻣﻦ ﺍﻟﺮﺑﺎﻋﻴﺎﺕ ﺍﻟﺜﻼﺙ‪ ،‬ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫• ﺑﻔﺮﺽ ﺃﻥ ﻋﺪﺩ ﺍﻟﻘﻴﻢ ﻋﺪﺩﻫﺎ ‪ ، n‬ﻭﺃ‪‬ﺎ ﻣﺮﺗﺒﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫)‪X(n‬‬
‫‪n‬‬
‫)‪X(3‬‬
‫‪3‬‬
‫<‬
‫<‬
‫)‪X(2‬‬
‫‪2‬‬
‫<‬
‫ﺍﻟﻘﻴﻢ ﻣﺮﺗﺒﺔ ‪:‬‬
‫)‪X(1‬‬
‫‪1‬‬
‫‪ :‬ﺍﻟﺮﺗﺒﺔ‬
‫‪i‬‬
‫‪R = (n + 1) ×  ‬‬
‫‪ 4‬‬
‫• ﲢﺪﻳﺪ ﺭﺗﺒﺔ ﺍﻟﺮﺑﺎﻋﻲ ﺭﻗﻢ ‪: (Qi ) ، i‬‬
‫• ﺇﺫﺍ ﻛﺎﻧﺖ ‪ R‬ﻋﺪﺩﺍ ﺻﺤﻴﺤﺎ ﻓﺈﻥ ﻗﻴﻤﺔ ﺍﻟﺮﺑ ﻴﻊ ﻫﻮ ‪:‬‬
‫)‪. Q i = X(R‬‬
‫• ﺇﺫﺍ ﻛﺎﻧﺖ ‪ R‬ﻋﺪﺩ ﻛﺴﺮﻱ‪ ،‬ﻓﺈﻥ ﺍﻟﺮﺑﺎﻋﻲ ) ‪ (Qi‬ﻳﻘﻊ ﰲ ﺍﳌﺪﻯ ‪ ، X(l)< Q i < X(u) :‬ﻭﻣﻦ‬
‫ﰒ ﳛﺴﺐ ) ‪ (Qi‬ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻣﺜﺎﻝ ) ‪( 9 -3‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﺍﻟﻴﻮﻣﻲ ﻣﻦ ﺍﳊﻠﻴﺐ ﺑﺎﻟﻠﺘﺮ ﻟﻠﺒﻘﺮﺓ ﺍﻟﻮﺍﺣﺪﺓ ﻟﻌﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 10‬ﺃﺑﻘﺎﺭ ﺍﺧﺘﲑﺕ ﻣـﻦ‬
‫ﻣﺰﺭﻋﺔ ﻣﻌﻴﻨﺔ ‪:‬‬
‫‪30‬‬
‫‪27‬‬
‫‪18‬‬
‫‪20‬‬
‫‪34 29‬‬
‫‪32‬‬
‫‪29‬‬
‫‪23‬‬
‫‪25‬‬
‫ﺍﺣﺴﺐ ﺍﻟﺮﺑﺎﻋﻴﺎﺕ ﺍﻟﺜﻼﺙ ﻟﻜﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ‪ ،‬ﻭﻣﺎ ﻫﻮ ﺗﻌﻠﻴﻘﻚ؟‬
‫ﺍﳊﻞ ‪:‬‬
‫ﳊﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻴﺎﺕ ﺍﻟﺜﻼﺙ‪ ،‬ﻳﺘﻢ ﺇﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫• ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ ‪:‬‬
‫‪30.5‬‬
‫‪28‬‬
‫‪22.25‬‬
‫ﻗﻤﺔ ﺍﻟﺮﺑﻴﻊ‬
‫‪48‬‬
‫‪34‬‬
‫‪32‬‬
‫‪30‬‬
‫‪29‬‬
‫‪29‬‬
‫‪27‬‬
‫‪25‬‬
‫‪23‬‬
‫‪20‬‬
‫‪18‬‬
‫ﺍﻟﻘﻴﻢ‬
‫‪10‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫ﺍﻟﺮﺗﺒﺔ‬
‫‪5.5‬‬
‫‪8.25‬‬
‫‪2.75‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﺮﺑﻴﻊ ﺍﻷﻭﻝ ) ‪: (Q1‬‬
‫‪i‬‬
‫‪1‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑﻴﻊ ﺍﻷﻭﻝ ﻫﻲ ‪R = (n + 1) ×   = (10 + 1) ×   = 2.75 :‬‬
‫‪4‬‬
‫‪4‬‬
‫ﻳﻘﻊ ﺍﻟﺮﺑﻴﻊ ﺍﻷﻭﻝ ﺑﲔ ﺍﻟﻘﻴﻤﺘﲔ ‪ ، (20 < Q1 < 23) :‬ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 14 -3‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪l = 2, R = 2.75 , x(l ) = 20 .x(u ) = 23‬‬
‫ﺇﺫﺍ ‪:‬‬
‫•‬
‫‪Q1 = x(l ) + ( R − l ) × ( x(u ) − x(l ) ) = 20 + 0.75(23 − 20) = 22.25‬‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﱐ ) ﺍﻟﻮﺳﻴﻂ ( ‪Q2‬‬
‫‪i‬‬
‫‪2‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﱐ ﻫﻲ ‪R = (n + 1) ×   = (10 + 1) ×   = 5.5 :‬‬
‫‪4‬‬
‫‪4‬‬
‫ﻳﻘﻊ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﱐ ﺑﲔ ﺍﻟﻘﻴﻤﺘﲔ ‪ ، (27 < Q2 < 29) :‬ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 14 -3‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪l = 5, R = 5.5 , x(l ) = 27 .x(u ) = 29‬‬
‫ﺇﺫﺍ ‪:‬‬
‫•‬
‫‪Q2 = x(l ) + ( R − l ) × ( x(u ) − x(l ) ) = 27 + 0.5(29 − 27) = 28‬‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﻟﺚ ‪Q3‬‬
‫‪i‬‬
‫‪3‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﻟﺚ ﻫﻲ ‪R = (n + 1) ×   = (10 + 1) ×   = 8.25 :‬‬
‫‪4‬‬
‫‪4‬‬
‫ﻳﻘﻊ ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﻟ ﺚ ﺑﲔ ﺍﻟﻘﻴﻤﺘﲔ ‪ ، (30 < Q3 < 32) :‬ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 14 -3‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪l = 8, R = 8.25 , x( l ) = 30 .x(u ) = 32‬‬
‫ﺇﺫﺍ ‪:‬‬
‫‪Q3 = x(l ) + ( R − l ) × ( x(u ) − x(l ) ) = 30 + 0.25(32 − 30) = 30.5‬‬
‫ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺴﺎﺑﻘﺔ ﳒﺪ ﺃﻥ ‪:‬‬
‫• ‪ 25%‬ﻣﻦ ﺍﻷﺑﻘﺎﺭ ﻳﻘﻞ ﺇﻧﺘﺎﺟﻪ ﻋﻦ ‪ 22.25‬ﻟﺘﺮ ﻳﻮﻣﻴﺎ ‪.‬‬
‫• ‪ 50%‬ﻣﻦ ﺍﻷﺑﻘﺎﺭ ﻳﻘﻞ ﺇﻧﺘﺎﺟﻪ ﻋﻦ ‪ 28‬ﻟﺘﺮ ﻳﻮﻣﻴﺎ ‪.‬‬
‫• ‪ 75%‬ﻣ ﻦ ﺍﻷﺑﻘﺎﺭ ﻳﻘﻞ ﺇﻧﺘﺎﺟﻪ ﻋﻦ ‪ 30.5‬ﻟﺘﺮ ﻳﻮﻣﻴﺎ ‪.‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑﻴﻊ‬
‫‪49‬‬
‫ﲤﺎﺭﻳﻦ‬
‫ﺃﻭﻻ ‪ :‬ﺍﺳﺘﺨﺪﻡ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪ ،‬ﰒ ﺃﺟﺐ ﻋﻤﺎ ﻫﻮ ﻣﻄﻠﻮﺏ ﺑﺎﺧﺘﻴﺎﺭ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻣﻦ ﺑﲔ ﺍﻹﺟﺎﺑﺎﺕ‬
‫ﺍﻷﺭﺑﻌﺔ ‪ :‬ﻓﻴﻤﺎ ﻳﻠﻰ ﺍﻟﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﻣﻦ ﺍﳌﻴﺎﻩ ﺑﺎﻷﻟﻒ ﻛﻴﻠﻮﻣﺘﺮ ﻣﻜﻌﺐ ﻳﻮﻣﻴﺎ )‪ ، (x‬ﻟـﻌﺪﺩ ‪10‬‬
‫ﳏ ﻄﺎﺕ ﲢﻠﻴﺔ ‪.‬‬
‫‪216 210 165 90 216‬‬
‫‪-1‬‬
‫ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺍﻟﻨﻮﻉ ‪:‬‬
‫‪-2‬‬
‫‪ ∑ x‬ﻗﻴﻤﺘﻬﺎ ‪:‬‬
‫)‪ (a‬ﺍﻟﻜﻤﻰ ﺍﳌﻨﻔﺼﻞ‬
‫)‪1000 (a‬‬
‫‪107‬‬
‫)‪ (b‬ﺍﻟﻜﻤﻰ ﺍﳌﺘﺼﻞ‬
‫)‪1958 (b‬‬
‫‪291‬‬
‫‪105‬‬
‫)‪ (c‬ﺍﻟﻮﺻﻔﻰ‬
‫) ‪195.8 (c‬‬
‫‪-3‬‬
‫ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﺍﻟﱴ ﺃﻗﻞ ﻣﻨﻬﺎ ‪ 50%‬ﻣﻦ ﺍﻟﻘﻴﻢ ﺗﺴﻤﻰ ‪:‬‬
‫‪-4‬‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺜﺮ ﺗﻜﺮﺍﺭﺍ ﺗﺴﻤﻰ ‪:‬‬
‫‪-5‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰉ ﻟﻠﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﻗﻴﻤﺘﻪ ‪:‬‬
‫)‪ (a‬ﺍﻟﻮﺳﻴﻂ‬
‫)‪ (a‬ﺍﻟﻮﺳﻴﻂ‬
‫)‪216 (a‬‬
‫‪-6‬‬
‫)‪ (b‬ﺍﻟﻮﺳﻂ‬
‫)‪ (c‬ﺍﳌﻨﻮﺍﻝ‬
‫)‪ (d‬ﺍﻻﳓﺮﺍﻑ‬
‫)‪1958 (b‬‬
‫)‪195.8 (c‬‬
‫)‪213 (d‬‬
‫)‪1958 (b‬‬
‫)‪195.8 (c‬‬
‫)‪347 (d‬‬
‫)‪1958 (b‬‬
‫)‪ (b‬ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍﺀ‬
‫)‪195.8 (c‬‬
‫)‪ (c‬ﻣﻮﺟﺐ‬
‫ﺍﻻﻟﺘﻮﺍﺀ‬
‫)‪216 (d‬‬
‫)‪ (d‬ﻏﲑ ﻣﻌﺮﻭﻑ ‪.‬‬
‫ﺇﺫﺍ ﰎ ﺇﺩﺧﺎﻝ ﺗﻌﺪﻳﻞ ﻋﻠﻰ ﻫﺬﻩ ﺍﶈﻄﺎﺕ ﻟﺰﻳﺎﺩﺓ ﺍﻟﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﻟﻜﻞ ﳏﻄﺔ ‪ 50‬ﺃﻟﻒ ﻛﻴﻠﻮ ﻣﺘﺮ‬
‫ﻣﻜﻌﺐ ‪ ،‬ﻳﻜﻮﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰉ ﻟﻠﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﺑﻌﺪ ﺍﻟﺘﻄﻮﻳﺮ ﻫﻮ ‪.‬‬
‫)‪216 (a‬‬
‫‪-10‬‬
‫)‪ (b‬ﺍﻟﻮﺳﻂ‬
‫)‪ (c‬ﺍﻟﺘﺒﺎﻳﻦ‬
‫)‪ (d‬ﺍﳌﺪﻯ‬
‫ﺗﻌﺘﱪ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻄﺎ ﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ ﺃﻋﻼﻩ ﳍﺎ ﺗﻮﺯﻳﻊ‬
‫)‪ (a‬ﻣﺘﻤﺎﺛﻞ‬
‫‪-9‬‬
‫)‪216 (d‬‬
‫ﺍﻟﻮﺳﻴﻂ ﻗﻴﻤﺘﻪ‬
‫)‪213 (a‬‬
‫‪-8‬‬
‫)‪ (d‬ﺍﻟﻮﺻﻔﻰ ﺍﻟﺘﺮﺗﻴﱮ‬
‫ﺍﳌﻨﻮﺍﻝ ﻗﻴﻤﺘﻪ‬
‫)‪216 (a‬‬
‫‪-7‬‬
‫‪216‬‬
‫‪342‬‬
‫‪x:‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫‪y = 0.5 x‬‬
‫)‪216 (a‬‬
‫)‪1958 (b‬‬
‫)‪195.8 (c‬‬
‫)‪245.8 (d‬‬
‫ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰉ ﻟﻠﻘﻴﻢ ﺍﻟﱴ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ ﺍﳉﺪﻳﺪ‬
‫)‪97.9 (b‬‬
‫)‪195.8 (c‬‬
‫‪y‬‬
‫)‪245.8 (d‬‬
‫ﻫﻮ ‪:‬‬
‫‪50‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﻓﻴﻤﺎ ﻳﻠﻰ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻯ ﻟـﻌ ﺪﺩ ‪ 50‬ﻣﺰﺭﻋﺔ ﺣﺴﺐ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﲟﺤﺼﻮﻝ ﺍﻟﻄﻤﺎﻃﻢ ﺑﺎﻷﻟﻒ‬
‫ﺩﻭﱎ ‪.‬‬
‫‪19.5 – 22.5‬‬
‫‪16.5-‬‬
‫‪13.5 -‬‬
‫‪10.5 -‬‬
‫– ‪7.5‬‬
‫– ‪4.5‬‬
‫ﺍﳌﺴﺎﺣﺔ ﺑﺎﻷﻟﻒ ﺩﻭﱎ‬
‫‪2‬‬
‫‪10‬‬
‫‪15‬‬
‫‪12‬‬
‫‪8‬‬
‫‪3‬‬
‫ﻋﺪﺩ ﺍﳌﺰﺍﺭﻉ‬
‫ﺍﺳﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﺍﳉﺪﻭﻝ ﺃﻋﻼﻩ ﻟﻺﺟﺎﺑﺔ ﻋﻠﻰ ﺍﻷﺳﺌﻠﺔ ﻣﻦ )‪( 20 -11‬‬
‫‪-11‬‬
‫ﻃﻮﻝ ﺍﻟﻔﺌﺔ ﻗﻴﻤﺘﻪ‬
‫)‪2 (b‬‬
‫)‪1 (a‬‬
‫‪-12‬‬
‫ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻔﺌﺔ ﺍﻟﺮﺍﺑﻌﺔ ﻫﻮ‬
‫)‪16 (b‬‬
‫)‪14.5 (a‬‬
‫‪-13‬‬
‫ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻗﻴﻤﺘﻪ‬
‫)‪9 (a‬‬
‫‪-14‬‬
‫)‪8 (b‬‬
‫)‪0.20 (b‬‬
‫‪-15‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫‪-16‬‬
‫)‪225 (b‬‬
‫)‪225 (a‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰉ ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻯ‬
‫‪x‬‬
‫)‪13.5 (b‬‬
‫‪-17‬‬
‫ﺍﻟﻔﺌﺔ ﺍﻟﱴ ﻳﻘﻊ ﻓﻴﻬﺎ ﻗﻴﻤﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻰ ‪:‬‬
‫)‪13.5 – (a‬‬
‫)‪16.5- 19.5 (b‬‬
‫‪16.5‬‬
‫‪-18‬‬
‫ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻰ ‪:‬‬
‫)‪50 (a‬‬
‫)‪1.50 (d‬‬
‫)‪1 (c‬‬
‫)‪10 (b‬‬
‫)‪50 (c‬‬
‫)‪13.62 (c‬‬
‫)‪14 – (c‬‬
‫‪17‬‬
‫)‪25 (c‬‬
‫)‪681 (d‬‬
‫)‪681 (d‬‬
‫)‪10.5 – 13.5 (d‬‬
‫)‪1 (d‬‬
‫ﺍﻟﻮﺳﻴﻂ ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻯ ‪.‬‬
‫)‪13.9 (a‬‬
‫)‪13.5 (b‬‬
‫)‪15 (c‬‬
‫)‪12.5 (d‬‬
‫ﺍﳌﻨﻮﺍﻝ ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻯ ‪:‬‬
‫)‪14 (a‬‬
‫‪-21‬‬
‫)‪10 (c‬‬
‫)‪3 (d‬‬
‫ﻫﻰ ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ‪ f ،‬ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﻟﻔﺌﺔ ﻓﺈﻥ ‪ ∑ fx‬ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻯ‬
‫)‪8.33 (a‬‬
‫‪-20‬‬
‫) ‪15 (c‬‬
‫)‪13.5 (d‬‬
‫ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱮ ﻟﻠﻔﺌﺎﺕ ﻳﺴﺎﻭﻯ ‪:‬‬
‫)‪0.30 (a‬‬
‫‪-19‬‬
‫)‪(c‬‬
‫‪3‬‬
‫)‪5 (d‬‬
‫)‪15 (b‬‬
‫)‪(c‬‬
‫‪13.5‬‬
‫)‪14.625 (d‬‬
‫ﻣﻦ ﺍﻹﺟﺎﺑﺔ ‪ 20 ، 19 ، 16‬ﻳﻜﻮﻥ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪.‬‬
‫)‪ (a‬ﻣﻠﺘﻮﻯ ﺟﻬﺔ‬
‫)‪ (b‬ﻣﺘﻤﺎﺛﻞ‬
‫)‪ (c‬ﺳﺎﻟﺐ‬
‫)‪ (d‬ﻏﲑ ﳏﺪﺩ‬
‫‪51‬‬
‫ﺍﻹﻟﺘﻮﺍﺀ‬
‫ﺍﻟﻴﻤﲔ‬
‫ﺛﺎﻟﺜﺎ ‪ :‬ﻗﻢ ﺑﺘﺴﺠﻴ ﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺍﻟﺮﻗﻢ ﺍﳉﺎﻣﻌﻲ ‪:‬‬
‫ﺍﻹﺳﻢ ‪:‬‬
‫ﻗﻢ ﺑﺘﻈﻠﻴﻞ ﺍﻻﺧﺘﻴﺎﺭ ﺍﻟﺼﺤﻴﺢ ﻣﻦ ) ‪ ، ( 21 – 1‬ﻭﻻ ﻳﻨﻈﺮ ﻟﻺﺟﺎﺑﺔ ﺍﻟﱴ ‪‬ﺎ ﻣﺮﺑﻌﲔ ﻣﻈﻠﻠﲔ ‪:‬‬
‫ﺭﻗﻢ‬
‫ﺍﻟﺴﺆﺍﻝ‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪6‬‬
‫‪7‬‬
‫‪8‬‬
‫‪9‬‬
‫‪10‬‬
‫‪11‬‬
‫‪12‬‬
‫‪13‬‬
‫‪14‬‬
‫‪15‬‬
‫‪16‬‬
‫‪17‬‬
‫‪18‬‬
‫‪19‬‬
‫‪20‬‬
‫‪21‬‬
‫)‪(b) (a‬‬
‫)‪(c‬‬
‫)‪(d‬‬
‫‪52‬‬
‫ﺍﻟﻔﺼــــــﻞ ﺍﻟﺮﺍﺑـــﻊ‬
‫ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ‬
‫‪ 1/4‬ﻣﻘﺪﻣﺔ‬
‫ﻋﻨﺪ ﻣﻘﺎﺭﻧﺔ ﳎﻤﻮﻋﺘﲔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ ،‬ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ‪ ،‬ﺃ ﻭﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ‪،‬‬
‫ﻭﻛﺬﻟﻚ ﺑﻌﺾ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ‪ ،‬ﻣﺜﻞ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻭﺍﻟﻮﺳﻴﻂ ‪ ،‬ﻭﺍﳌﻨﻮﺍﻝ ‪ ،‬ﻭﺍﻹﺣﺼﺎﺀﺍﺕ‬
‫ﺍﻟﺘﺮﺗﻴﺒﻴﺔ ‪ ،‬ﻭﻟﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﻩ ﺍﻟﻄﺮﻕ ﻭﺣﺪﻫﺎ ﻻ ﻳ ﻜﻔﻲ ﻋﻨﺪ ﺍﳌﻘﺎﺭﻧﺔ ‪ ،‬ﻓﻘﺪ ﻳﻜﻮﻥ ﻣﻘﻴﺎﺱ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‬
‫ﻟﻠﻤﺠﻤﻮﻋﺘﲔ ﻣﺘﺴﺎﻭﻱ ‪ ،‬ﻭﺭﲟﺎ ﻳﻮﺟﺪ ﺍﺧﺘﻼﻑ ﻛﺒﲑ ﺑﲔ ﺍ‪‬ﻤﻮﻋﺘﲔ ﻣﻦ ﺣﻴﺚ ﻣﺪﻯ ﺗﻘﺎﺭﺏ ﻭﺗﺒﺎﻋﺪ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻣﻦ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ‪ ،‬ﺃﻭ ﻣﺪﻯ ﺗﺒﺎﻋﺪ ﺃﻭ ﺗﻘﺎﺭﺏ ﺍﻟﻘﻴﻢ ﻋﻦ ﻣﻘﻴﺎﺱ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ‪.‬‬
‫ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ﳎﻤﻮﻋﺘﲔ ﻣﻦ ﺍﻟﻄﻼﺏ ‪ ،‬ﻭﻛﺎﻥ ﺩﺭﺟﺎﺕ ﺍ‪‬ﻤﻮﻋﺘﲔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪88‬‬
‫‪67‬‬
‫‪85‬‬
‫‪81‬‬
‫‪78‬‬
‫‪70‬‬
‫‪63‬‬
‫‪77‬‬
‫‪74‬‬
‫‪75‬‬
‫‪78‬‬
‫‪77‬‬
‫‪78‬‬
‫‪73‬‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ‬
‫ﻟﻮ ﻗﻤﻨﺎ ﲝﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻜﻞ ﳎﻤﻮﻋﺔ ‪ ،‬ﳒﺪ ﺃﻥ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻜ ﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎﻭﻱ ‪76‬‬
‫ﺩﺭﺟﺔ ‪ ،‬ﻭﻣﻊ ﺫﻟﻚ ﺩﺭﺟﺎﺕ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻛﺜﺮ ﲡﺎﻧﺴﺎ ﻣﻦ ﺩﺭﺟﺎﺕ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ ‪ .‬ﻣﻦ ﺃﺟﻞ ﺫﻟﻚ ﳉﺄ‬
‫ﺍﻹﺣﺼﺎﺋﻴﻮﻥ ﺇﱃ ﺍﺳﺘﺨﺪﺍﻡ ﻣﻘﺎﻳﻴﺲ ﺃﺧﺮﻯ ﻟﻘﻴﺎﺱ ﻣﺪﻯ ﲡﺎﻧﺲ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﺃﻭ ﻣﺪﻯ ﺍﻧ ﺘﺸﺎﺭ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺣﻮﻝ‬
‫ﻣﻘﻴﺎﺱ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‪ ،‬ﻭﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﰲ ﺍﳌﻘﺎﺭﻧﺔ ﺑﲔ ﳎﻤﻮﻋﺘﲔ ﺃﻭ ﺃﻛﺜﺮ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﻣﻦ ﻫﺬﻩ‬
‫ﺍﳌﻘﺎﻳﻴﺲ ‪ ،‬ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ ‪ ،‬ﻭﺍﻻﻟﺘﻮﺍﺀ ‪ ،‬ﻭﺍﻟﺘﻔﺮﻃﺢ ‪ ،‬ﻭﺳﻮﻑ ﻧﺮﻛﺰ ﰲ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻋﻠﻰ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ ‪.‬‬
‫‪ 2/4‬ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ‬
‫‪Dispersion Measurements‬‬
‫ﻣﻦ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ‪ :‬ﺍﳌﺪﻯ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ‪ ،‬ﻭﺍﻟﺘﺒﺎﻳﻦ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ‬
‫ﺍﳌﻌﻴﺎﺭﻱ ‪.‬‬
‫‪ 1/2/4‬اﻟﻤﺪى‬
‫‪Rang‬‬
‫ﻫﻮ ﺃﺑﺴﻂ ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ ‪ ،‬ﻭﳛﺴﺐ ﺍﳌﺪﻯ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫ﻭﺃﻣﺎ ﺍﳌﺪﻯ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ﻟﻪ ﺃﻛﺜﺮ ﻣﻦ ﺻﻴﻐﺔ‪ ،‬ﻭﻣﻨ ﻬﺎ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪53‬‬
‫ﻣﺜــﺎﻝ )‪(1-4‬‬
‫ﰎ ﺯﺭﺍﻋﺔ ‪ 9‬ﻭﺣﺪﺍﺕ ﲡﺮﻳﺒﻴﺔ ﲟﺤﺼﻮﻝ ﺍﻟﻘﻤﺢ ‪ ،‬ﻭﰎ ﺗﺴﻤﻴﺪﻫﺎ ﺑﻨﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻷﲰﺪﺓ ﺍﻟﻔﺴﻔﻮﺭﻳﺔ‬
‫‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻧﺎﺕ ﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﻣﻦ ﺍﻟﻘﻤﺢ ﺑﺎﻟﻄﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪.‬‬
‫‪5.03‬‬
‫‪4.63‬‬
‫‪5.08‬‬
‫‪5.18‬‬
‫‪5.18‬‬
‫‪5.29‬‬
‫‪5.4‬‬
‫‪6.21‬‬
‫‪4.8‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﺍﳌﺪﻯ ‪.‬‬
‫ﺍﳊـﻞ‬
‫ﺍﳌﺪﻯ = ﺃﻛﱪ ﻗﺮﺍﺀﺓ – ﺃﻗﻞ ﻗﺮﺍﺀﺓ‬
‫ﺃﻛﱪ ﻗﺮﺍﺀﺓ = ‪6.21‬‬
‫ﺃﻗﻞ ﻗﺮﺍﺀﺓ = ‪4.63‬‬
‫ﺇﺫﺍ ﺍﳌﺪﻯ ﻫﻮ ‪:‬‬
‫‪Rang=Max-Min=6.21-4.63 =1.58‬‬
‫ﺍﳌﺪﻯ ﻳﺴﺎﻭﻱ ‪ 1.58‬ﻃﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪.‬‬
‫ﻣﺜـﺎﻝ )‪(2-4‬‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﺗﻮﺯﻳﻊ ‪ 60‬ﻣﺰﺭﻋﺔ ﺣﺴﺐ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﺑﺎﻟﺬﺭﺓ ﺑﺎﻷﻟﻒ ﺩﻭﱎ ‪.‬‬
‫‪40-45‬‬
‫‪35-40‬‬
‫‪30-35‬‬
‫‪25-30‬‬
‫‪20-25‬‬
‫‪15-20‬‬
‫ﺍﳌﺴﺎﺣﺔ‬
‫‪3‬‬
‫‪12‬‬
‫‪18‬‬
‫‪15‬‬
‫‪9‬‬
‫‪3‬‬
‫ﻋﺪﺩ ﺍﳌﺰﺍﺭﻉ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﺍﳌﺪﻯ ﻟﻠﻤﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﺑﺎﻟﺬﺭﺓ ‪.‬‬
‫ﺍﳊـﻞ‬
‫ﺍﳌﺪﻯ = ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﺍﻷﺧﲑﺓ – ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﺍﻷﻭﱃ‬
‫ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﺍﻷﺧﲑﺓ ‪(40+45)/2=85/2=42.5 :‬‬
‫ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ﺍﻷ ﻭﱃ ‪(15+20)/2=35/2=17.5 :‬‬
‫‪Rang = 42.5 − 17.5 = 25‬‬
‫ﺇﺫﺍ‬
‫ﺃ ﻱ ﺃﻥ ﺍﳌﺪﻯ ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻱ ‪ 25‬ﺩﻭﱎ‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﳌﺪﻯ‬
‫ﻣﻦ ﻣﺰﺍﻳﺎ ﺍﳌﺪﻯ‬
‫‪ -1‬ﺃﻧﻪ ﺑﺴﻴﻂ ﻭﺳﻬﻞ ﺍﳊﺴﺎﺏ‬
‫‪ -2‬ﻳﻜﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﻪ ﻋﻨﺪ ﺍﻹﻋﻼﻥ ﻋﻦ ﺣﺎﻻﺕ ﺍﻟﻄﻘﺲ‪ ،‬ﻭ ﺍﳌﻨﺎﺥ ﺍﳉﻮﻱ‪ ،‬ﻣﺜﻞ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ‪،‬‬
‫ﻭﺍﻟﺮﻃﻮﺑﺔ ‪ ،‬ﻭﺍﻟﻀﻐﻂ ﺍﳉﻮﻱ ‪.‬‬
‫‪ -3‬ﻳﺴﺘﺨﺪﻡ ﰲ ﻣﺮﺍﻗﺒﺔ ﺍﳉﻮﺩﺓ ‪.‬‬
‫‪ -2‬ﻭﻣﻦ ﻋﻴﻮﺑﻪ‬
‫‪54‬‬
‫• ﺃﻧﻪ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻗﻴﻤﺘﲔ ﻓﻘﻂ ‪ ،‬ﻭﻻ ﻳﺄﺧﺬ ﲨﻴﻊ ﺍﻟﻘﻴﻢ ﰲ ﺍﳊﺴﺒﺎﻥ ‪.‬‬
‫• ﻳﺘﺄﺛﺮ ﺑﺎﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ‪.‬‬
‫‪ 2/2/4‬ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ‬
‫)‪Quartile Deviation (Q‬‬
‫ﻳﻌﺘﻤﺪ ﺍﳌﺪﻯ ﻋﻠﻰ ﻗﻴﻤﺘﲔ ﻣﺘﻄﺮﻓﺘﲔ ‪ ،‬ﳘﺎ ﺃﺻﻐﺮ ﻗﺮﺍﺀﺓ ‪ ،‬ﻭﺃﻛﱪ ﻗﺮﺍﺀﺓ ‪ ،‬ﻓﺈﺫﺍ ﻛ ﺎﻥ ﻫﻨﺎﻙ ﻗﻴﻢ‬
‫ﺷﺎﺫﺓ‪ ،‬ﺗﺮﺗﺐ ﻋﻠﻰ ﺍﺳﺘﺨﺪﺍﻣﻪ ﻛﻤﻘﻴﺎﺱ ﻟﻠﺘﺸﺘﺖ ﻧﺘﺎﺋﺞ ﻏﲑ ﺩﻗﻴﻘﺔ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺫﻟﻚ ﳉﺄ ﺍﻹﺣﺼﺎﺋﻴﻮﻥ‪ ،‬ﺇﱃ‬
‫ﺍﺳﺘﺨﺪﺍﻡ ﻣﻘﻴﺎﺱ ﻟﻠﺘﺸﺘﺖ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻧﺼﻒ ﻋﺪﺩ ﺍﻟﻘﻴﻢ ﺍﻟﻮﺳﻄﻰ‪ ،‬ﻭﻳﻬﻤﻞ ﻧﺼﻒ ﻋﺪﺩ ﺍﻟﻘﻴﻢ ﺍﳌﺘﻄﺮﻓﺔ‪ ،‬ﻭﻟﺬﺍ‬
‫ﻻ ﻳﺘﺄﺛﺮ ﻫﺬﺍ ﺍﳌﻘﻴﺎﺱ ﺑﻮﺟﻮﺩ ﻗﻴﻢ ﺷﺎﺫﺓ ‪ ،‬ﻭﻳﺴﻤﻰ ﻫﺬﺍ ﺍﳌﻘﻴﺎﺱ ﺑﺎﻻﳓﺮﺍﻑ ﺍﻟﺮﺑ ﻴﻌﻲ )‪ ، (Q‬ﻭﳛﺴﺐ ﺍﻻﳓﺮﺍﻑ‬
‫ﺍﻟﺮﺑﻴﻌﻲ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ Q 1‬ﻫﻮ ﺍﻟﺮﺑ ﻴ ﻊ ﺍﻷﻭﻝ ‪ Q 3 ،‬ﻫﻮ ﺍﻟﺮﺑﻴ ﻊ ﺍﻟﺜﺎﻟﺚ ‪ ،‬ﻭﻗﺪ ﺑﻴﻨﺎ ﰲ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ ﻛﻴﻒ ﳝﻜﻦ ﺣﺴﺎﺏ‬
‫ﻫﺬﺍﻥ ﺍﻟﺮﺑﺎﻋﻴﺎﻥ ‪ ،‬ﻭﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ ﺃﻋﻼﻩ ‪ ،‬ﻳﻌ ﺮﻑ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ﺑ ﻨﺼﻒ ﺍﳌﺪﻯ ﺍﻟﺮﺑﻴﻌﻲ ‪ ،‬ﺃ ﻱ ﺃﻥ ‪:‬‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌ ﻲ = ﻧﺼﻒ ﺍﳌﺪﻯ ﺍﻟﺮﺑﻴﻌﻲ‬
‫ﻣﺜــﺎﻝ ) ‪( 3 -4‬‬
‫ﺍﺳﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﻣﺜﺎﻝ ) ‪ ، ( 1 -4‬ﰒ ﺍﺣﺴﺐ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ﻟﻜﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﻣﻦ ﺍﻟﻘﻤﺢ ‪.‬‬
‫ﺍﳊـﻞ‬
‫• ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ‬
‫•‬
‫‪6.21‬‬
‫‪5.4‬‬
‫‪5.29‬‬
‫‪5.18‬‬
‫‪5.18‬‬
‫‪5.08‬‬
‫‪5.03‬‬
‫‪4.8‬‬
‫‪4.63‬‬
‫ﺍﻹﻧﺘﺎﺝ‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫ﺍﻟﺮﺗﺒﺔ‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑ ﻴﻊ ﺍﻷﻭﻝ ‪Q 1‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑ ﻴ ﻊ ﺍﻷﻭﻝ ‪:‬‬
‫‪1‬‬
‫‪4‬‬
‫‪. (n + 1)  = (9 + 1)(0.25) = 2.5‬‬
‫‪x(l ) = x(2) = 4.8 , x(u ) = x(3) = 5.03 , R = 2.5 l = 2 , R − l = 0.5‬‬
‫‪,‬‬
‫ﺇﺫﺍ‬
‫) ) ‪Q1 = x(l ) + (r − l )( x(u ) − x(l‬‬
‫‪= 4.8 + 0.5(5.03 − 4.8) = 4.915‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻟﺜﺎﻟﺚ ) ‪(Q 3‬‬
‫‪55‬‬
‫‪3‬‬
‫‪(n + 1)  = (9 + 1)(0.75) = 7.5‬‬
‫‪4‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻟﺜﺎﻟﺚ ‪:‬‬
‫‪x(l ) = x(7) = 5.29 , x(u ) = x(8) = 5.4 , R = 7.5 l = 7 , R − l = 0.5‬‬
‫‪,‬‬
‫ﺇﺫﺍ‬
‫) ) ‪Q3 = x(l ) + ( R − l )( x(u) − x(l‬‬
‫‪= 5.29 + 0.5(5.4 − 5.29) = 5.345‬‬
‫• ﺣﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ‬
‫‪Q − Q1 5.345 − 4.915‬‬
‫=‬
‫‪= 0.215‬‬
‫‪Q= 3‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ﻗﻴﻤﺘﻪ ﺗﺴﺎﻭﻱ ‪ 0.215‬ﻃﻦ ‪ /‬ﻫﻜﺘﺎﺭ ‪.‬‬
‫ﻣﺜــﺎﻝ ) ‪( 4 -4‬‬
‫ﺍﺳﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﻣﺜﺎﻝ ﺭﻗﻢ ) ‪ ( 2 -4‬ﰲ ﺣﺴ ﺎ ﺏ ﻧﺼﻒ ﺍﳌﺪﻯ ﺍﻟﺮﺑﻴﻌﻲ ‪.‬‬
‫ﺍﳊـــﻞ ‪:‬‬
‫ﻋﻨﺪ ﺣﺴﺎﺏ ﺍﻟﺮﺑﻴﻊ ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﻟﺚ ﻳﺘﺒﻊ ﻧﻔﺲ ﺍﻷﺳﻠﻮﺏ ﺍﳌﺴﺘﺨﺪﻡ ﰲ ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ‪.‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﳌ ﺘﺠﻤﻊ ﺍﻟﺼﺎﻋﺪ‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﻭﻝ ) ‪(Q 1‬‬
‫ﺭﺗﺒﺔ ﺍﻟﺮﺑ ﻴﻌﻲ ﺍﻷﻭﻝ ‪:‬‬
‫‪n(1/4)= 60(0.25)= 15‬‬
‫‪f = 15 , f1 = 12 , f 2 = 27 , A= 25 , L = 5‬‬
‫‪f − f1‬‬
‫‪L‬‬
‫‪f 2 − f1‬‬
‫ﺇﺫﺍ‬
‫‪Q1 = A +‬‬
‫‪= 25 + 15 − 12 ( 5 ) = 25 + 3 ( 5 ) = 26‬‬
‫‪15‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻟﺜﺎﻟﺚ ) ‪(Q 3‬‬
‫‪27 − 12‬‬
‫‪56‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻟﺜﺎﻟﺚ ‪:‬‬
‫‪f = 45 , f1 = 45 , f 2 = 57 , A = 35 , L = 5‬‬
‫‪n(3/4)= 60(0.75)= 45‬‬
‫ﺇﺫﺍ‬
‫‪f − f1‬‬
‫‪L‬‬
‫‪f 2 − f1‬‬
‫‪Q3 = A +‬‬
‫)‪(0‬‬
‫‪= 35 + 45 − 45 (5 ) = 35 +‬‬
‫‪( 5) = 35‬‬
‫• ﻧﺼﻒ ﺍﳌﺪﻯ ﺍﻟﺮﺑﻴﻌﻲ ‪.‬‬
‫‪57 − 45‬‬
‫‪15‬‬
‫‪Q − Q1 35 − 26‬‬
‫‪Q= 3‬‬
‫=‬
‫‪= 4.5‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ﻟﻠﻤﺴﺎﺣﺔ ‪ 4.5‬ﺃﻟﻒ ﺩﻭﱎ ‪.‬‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ‬
‫ﻣﻦ ﻣﺰﺍﻳﺎ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ‪ ،‬ﻳﻔﻀﻞ ﺍﺳﺘﺨﺪﺍﻣﻪ ﻛﻤﻘﻴ ﺎﺱ ﻟﻠﺘﺸﺘﺖ ﰲ ﺣﺎﻟﺔ ﻭﺟﻮﺩ ﻗﻴﻢ ﺷﺎﺫﺓ ‪ ،‬ﻛﻤﺎ‬
‫ﺃﻧﻪ ﺑﺴﻴﻂ ﻭﺳﻬﻞ ﰲ ﺍﳊﺴﺎﺏ ‪ .‬ﻭﻣﻦ ﻋﻴﻮﺑﻪ ‪ ،‬ﺃﻧﻪ ﻻ ﻳﺄﺧﺬ ﻛﻞ ﺍﻟﻘﻴﻢ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ‪.‬‬
‫‪ 3/2/4‬ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ‬
‫)‪Mean Deviation (MD‬‬
‫ﻫﻮ ﺃﺣﺪ ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ‪ ،‬ﻭ ﻳﻌﱪ ﻋﻨ ﻪ ﲟﺘ ﻮﺳﻂ ﺍﻻﳓﺮﺍﻓﺎﺕ ﺍﳌﻄﻠﻘﺔ ﻟﻠﻘﻴﻢ ﻋﻦ ﻭﺳﻄﻬﺎ ﺍﳊـﺴﺎﰊ ‪،‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻧﺖ ‪ x1, x2 ,..., xn‬ﻫﻲ ﺍﻟﻘﺮﺍﺀﺍ ﺕ ﺍﻟﱵ ﰎ ﺃﺧﺬﻫﺎ ﻋﻦ ﻇﺎﻫﺮﺓ ﻣﻌﻴﻨﺔ ‪ ،‬ﻭﻛﺎﻥ ) ‪x = ∑ x n‬‬
‫( ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﳍﺬﻩ ﺍﻟﻘﺮﺍﺀﺍﺕ‪ ،‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ )‪ (MD‬ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻫﺬﻩ ﺍﻟﺼﻴﻐﺔ ﺗﺴﺘﺨﺪﻡ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻏﲑ ﺍﳌﺒﻮﺑﺔ ‪.‬‬
‫ﻣﺜـﺎﻝ ) ‪( 5 -4‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻄﺎﻗﺔ ﺍﻟ ﺘﺼﺪﻳﺮﻳﺔ ﳋﻤ ﺲ ﳏﻄﺎﺕ ﻟﺘﺤﻠﻴﺔ ﺍﳌﻴﺎﻩ ﺑﺎﳌﻠﻴﻮﻥ ﻣﺘﺮ ﻣﻜﻌﺐ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪4 5 2 10 7‬‬
‫ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﻟﻠﻄﺎﻗﺔ ﺍﻟﺘﺼﺪﻳﺮﻳﺔ‬
‫ﺍﳊـﻞ‬
‫ﳊﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪( 4 -4‬‬
‫• ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪:‬‬
‫‪x‬‬
‫‪x = ∑ = 28 = 5.6‬‬
‫‪n‬‬
‫‪5‬‬
‫ﻭﻳﺘﻢ ﺗﻜﻮﻳﻦ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪57‬‬
‫ﺍﻟﻄﺎﻗﺔ‬
‫ﺍﻻﳓﺮﺍﻓﺎﺕ‬
‫ﺍﻻﳓﺮﺍﻓ ﺎﺕ ﺍﳌﻄﻠﻘﺔ‬
‫ﺍﻟﺘﺼﺪﻳﺮﻳﺔ‬
‫‪x − 5.6‬‬
‫)‪(x − x ) = (x − 5.6‬‬
‫‪x‬‬
‫‪1.6‬‬
‫‪0.6‬‬
‫‪3.6‬‬
‫‪4.4‬‬
‫‪1.4‬‬
‫‪11.6‬‬
‫‪4 - 5.6 = -1.6‬‬
‫‪5 - 5.6 = -0.6‬‬
‫‪2 - 5.6 = -3.6‬‬
‫‪10 - 5.6 = 4.4‬‬
‫‪7 - 5.6 = 1.4‬‬
‫‪0‬‬
‫‪4‬‬
‫‪5‬‬
‫‪2‬‬
‫‪10‬‬
‫‪7‬‬
‫‪Sum‬‬
‫• ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﻗﻴﻤﺘﻪ ﻫﻲ ‪:‬‬
‫‪x − x 11 .6‬‬
‫∑ = ‪MD‬‬
‫=‬
‫) ﻣﻠﻴﻮﻥ ﻣﺘﺮ ﻣﻜﻌﺐ( ‪= 2 .32‬‬
‫‪n‬‬
‫‪5‬‬
‫ﻭ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ ‪ ،‬ﳛﺴﺐ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ f‬ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﻟﻔﺌﺔ ‪ x ،‬ﻫﻮ ﻣﺮﻛﺰ ﺍﻟﻔﺌﺔ ‪x ،‬‬
‫ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪.‬‬
‫ﻣﺜـﺎﻝ ) ‪( 6 -4‬‬
‫ﻳﺒﲔ ﺍﳉﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﱄ ﺗﻮﺯﻳﻊ ‪ 40‬ﺃﺳﺮﺓ ﺣﺴﺐ ﺍﻹﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ ‪.‬‬
‫‪14 – 17‬‬
‫‪11 – 14‬‬
‫‪8 - 11‬‬
‫‪5-8‬‬
‫‪2-5‬‬
‫ﺍﻹﻧﻔﺎﻕ‬
‫‪8‬‬
‫‪10‬‬
‫‪13‬‬
‫‪8‬‬
‫‪1‬‬
‫ﻋﺪﺩ ﺍﻷﺳﺮﺓ‬
‫ﺃﻭﺟﺪ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ‪.‬‬
‫ﺍﳊـــــﻞ‬
‫ﳊﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ‪ ،‬ﻳﺘﻢ ﺗﻄ ﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ، ( 5 -4‬ﻭﻳﺘﺒﻊ ﺍﻵﰐ‬
‫• ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﳊﺴﺎﺏ ﻣﻜﻮﻧﺎﺕ ﺍﳌﻌﺎﺩﻟﺔ ‪:‬‬
‫ﺍﻟﻮﺳﻂ‬
‫‪x− x f‬‬
‫‪x− x‬‬
‫‪7.2‬‬
‫‪33.6‬‬
‫‪15.6‬‬
‫‪18‬‬
‫‪38.4‬‬
‫‪112.8‬‬
‫‪7.2‬‬
‫‪4.2‬‬
‫‪1.2‬‬
‫‪1.8‬‬
‫‪4.8‬‬
‫ﻣﺮﻛﺰ‬
‫ﺍﳊﺴﺎﰊ‬
‫‪x f‬‬
‫‪x‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﻫﻮ ‪:‬‬
‫‪x‬‬
‫∑ =‪x‬‬
‫‪n‬‬
‫‪= 10.7‬‬
‫‪428‬‬
‫‪40‬‬
‫=‬
‫‪3.5‬‬
‫‪52‬‬
‫‪123.5‬‬
‫‪125‬‬
‫‪124‬‬
‫‪428‬‬
‫ﺍﻟﻔﺌﺔ‬
‫ﻋﺪﺩ‬
‫ﺍﻷﺳﺮ‬
‫‪x‬‬
‫‪f‬‬
‫‪3.5‬‬
‫‪6.5‬‬
‫‪9.5‬‬
‫‪12.5‬‬
‫‪15.5‬‬
‫‪1‬‬
‫‪8‬‬
‫‪13‬‬
‫‪10‬‬
‫‪8‬‬
‫‪40‬‬
‫ﺣﺪﻭﺩ‬
‫ﺍﻹﻧ ﻔﺎﻕ‬
‫‪2-5‬‬
‫‪5-8‬‬
‫‪8-11‬‬
‫‪11-14‬‬
‫‪14-17‬‬
‫‪sum‬‬
‫‪58‬‬
‫‪∑ x − x f 112 . 8‬‬
‫=‬
‫‪= 2 . 82‬‬
‫‪n‬‬
‫‪40‬‬
‫= ‪MD‬‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﻫﻮ ‪ 2.82‬ﺃﻟﻒ ﺭﻳﺎﻝ ‪.‬‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ‬
‫ﻣﻦ ﻣﺰﺍﻳﺎ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ﺃﻧﻪ ﻳﺄﺧﺬ ﻛﻞ ﺍﻟﻘﻴﻢ ﰲ ﺍﻻﻋﺘﺒﺎﺭ‪ ،‬ﻭﻟﻜﻦ ﻳﻌﺎﺏ ﻋﻠﻴﻪ ﻣﺎ ﻳﻠﻲ‪:‬‬
‫• ﻳﺘﺄﺛﺮ ﺑﺎﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ‪.‬‬
‫• ﻳﺼﻌﺐ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻪ ﺭﻳﺎﺿﻴﺎ ‪.‬‬
‫‪ 4/2/4‬ﺍﻟﺘﺒﺎﻳﻦ‬
‫‪Variance‬‬
‫ﻫﻮ ﺃﺣﺪ ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ ‪ ،‬ﻭﺃﻛﺜﺮﻫﺎ ﺍﺳﺘﺨﺪﺍﻣ ﺎ ﰲ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ ‪ ،‬ﻭﻳﻌﱪ ﻋـﻦ ﻣﺘﻮﺳـﻂ‬
‫ﻣﺮﺑﻌﺎﺕ ﺍﳓﺮﺍﻓﺎﺕ ﺍﻟﻘﻴﻢ ﻋﻦ ﻭﺳﻄﻬﺎ ﺍﳊﺴﺎﰊ ‪.‬‬
‫ﺃﻭﻻ‪ :‬ﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍ‪‬ﺘﻤﻊ ) ‪( σ 2‬‬
‫ﺇﺫﺍ ﺗﻮﺍﻓﺮ ﻟﺪﻳﻨﺎ ﻗﺮﺍﺀﺍﺕ ﻋﻦ ﻛﻞ ﻣﻔﺮﺩﺍﺕ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻭﻟﺘﻜﻦ‪x1, x2 ,..., xN :‬‬
‫‪ ،‬ﻓﺈﻥ ﺍﻟﺘﺒـﺎﻳﻦ‬
‫ﰲ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪ ) σ 2‬ﺳﻴﺠﻤﺎ ( ﳛﺴﺐ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ µ‬ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﰲ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﺃﻯ ﺃﻥ ‪µ = ∑ x N :‬‬
‫‪.‬‬
‫ﻣﺜـ ﺎﻝ ) ‪( 7 -4‬‬
‫ﻣﺼﻨﻊ ﻟﺘﻌﺒﺌﺔ ﺍﳌﻮﺍﺩ ﺍﻟﻐﺬﺍﺋﻴﺔ ‪ ،‬ﻳﻌﻤﻞ ﺑﻪ ‪ 15‬ﻋﺎﻣﻞ ‪ ،‬ﻭﻛﺎﻧﺖ ﻋﺪﺩ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﳍﺆﻻﺀ ﺍﻟﻌﻤ ﺎﻝ‬
‫ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪10‬‬
‫‪12‬‬
‫‪11‬‬
‫‪6‬‬
‫‪14‬‬
‫‪13‬‬
‫‪10‬‬
‫‪8‬‬
‫‪6‬‬
‫‪9‬‬
‫‪12‬‬
‫‪7‬‬
‫‪14‬‬
‫‪13‬‬
‫‪5‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﰎ ﲨﻌﻬﺎ ﻋﻦ ﻛﻞ ﻣﻔﺮﺩﺍﺕ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻓﺄﻭﺟﺪ ﺍﻟﺘﺒﺎﻳﻦ ﻟﻌﺪﺩ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ‪.‬‬
‫ﺍﳊـﻞ‬
‫•‬
‫ﳊﺴﺎﺏ ﺗﺒﺎﻳﻦ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪.( 6 -4‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﰲ ﺍ‪‬ﺘﻤﻊ ‪µ‬‬
‫‪1‬‬
‫‪∑x‬‬
‫‪N‬‬
‫‪(150) = 10‬‬
‫‪1‬‬
‫‪15‬‬
‫= )‪(5 + 13 + +7 + ... + 12 + 10‬‬
‫‪1‬‬
‫‪15‬‬
‫=‪µ‬‬
‫=‬
‫‪59‬‬
‫•‬
‫ﺣﺴﺎﺏ ﻣﺮﺑﻌﺎﺕ ﺍﻻﳓﺮﺍﻓﺎﺕ ‪∑ ( x − µ ) 2‬‬
‫ﲟﺎ ﺃﻥ ‪:‬‬
‫‪∑ ( x − µ ) 2 = 130‬‬
‫ﺇﺫﺍ ﺗﺒﺎﻳﻦ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﻟﻠﻌﻤﺎﻝ ﰲ ﺍﳌﺼﻨﻊ ﻫﻮ ‪:‬‬
‫‪2 130‬‬
‫(‬
‫‪x‬‬
‫‪−‬‬
‫‪u‬‬
‫)‬
‫∑‬
‫‪2‬‬
‫= ‪σ‬‬
‫=‬
‫‪= 8.67‬‬
‫‪N‬‬
‫‪15‬‬
‫‪( x − µ)2‬‬
‫)‪(x − µ‬‬
‫‪25‬‬
‫‪9‬‬
‫‪9‬‬
‫‪16‬‬
‫‪4‬‬
‫‪1‬‬
‫‪16‬‬
‫‪4‬‬
‫‪0‬‬
‫‪9‬‬
‫‪16‬‬
‫‪16‬‬
‫‪1‬‬
‫‪4‬‬
‫‪0‬‬
‫‪130‬‬
‫‪5-10 = -5‬‬
‫‪3‬‬
‫‪-3‬‬
‫‪4‬‬
‫‪2‬‬
‫‪-1‬‬
‫‪-4‬‬
‫‪-2‬‬
‫‪0‬‬
‫‪3‬‬
‫‪4‬‬
‫‪-4‬‬
‫‪1‬‬
‫‪2‬‬
‫‪0‬‬
‫‪0‬‬
‫ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ‬
‫‪x‬‬
‫‪5‬‬
‫‪13‬‬
‫‪7‬‬
‫‪14‬‬
‫‪12‬‬
‫‪9‬‬
‫‪6‬‬
‫‪8‬‬
‫‪10‬‬
‫‪13‬‬
‫‪14‬‬
‫‪6‬‬
‫‪11‬‬
‫‪12‬‬
‫‪10‬‬
‫‪150‬‬
‫ﻭﳝﻜﻦ ﺗﺒﺴﻴﻂ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 6 -4‬ﰲ ﺻﻮﺭﺓ ﺃﺧﺮﻯ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﳝﻜﻦ ﻓﻚ ﺍ‪‬ﻤﻮﻉ ‪∑ ( x − µ ) 2‬‬
‫ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪2‬‬
‫‪ 2‬‬
‫‪∑ ( x − µ ) 2 = ∑  x − 2 xµ + µ ‬‬
‫‪‬‬
‫‪‬‬
‫‪= ∑ x2 − 2µ ∑ x + ∑ µ 2‬‬
‫‪= ∑ x2 − 2 Nµ 2 + Nµ 2‬‬
‫‪= ∑ x2 − Nµ 2‬‬
‫ﻭ ﻣﻦ ﰒ ﻳﻜﺘﺐ ﺗﺒﺎﻳﻦ ﺍ‪‬ﺘﻤﻊ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪x2 − Nµ 2 1‬‬
‫∑‬
‫‪2‬‬
‫= ‪σ‬‬
‫‪= ∑ x2 − µ 2‬‬
‫‪N‬‬
‫‪N‬‬
‫‪60‬‬
‫ﺇﺫﺍ ﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍ‪‬ﺘﻤﻊ ﳝﻜﻦ ﺻﻴﺎﻏﺘﻪ ﻛﺎﻟﺘﺎﱄ ‪.‬‬
‫ﻭﺑﺎﻟﺘﻄﺒﻴﻖ ﻋﻠﻰ ﺍﳌﺜﺎﻝ )‪ ، (7 -4‬ﳒﺪ ﺃﻥ ﺃﻧﻨﺎ ﳓﺘﺎﺝ ﺇﱃ ﺍ‪‬ﻤﻮﻋﲔ ‪∑ x , ∑ x2 :‬‬
‫‪ ،‬ﻭﻳﺘﻢ ﻋﻤﻞ ﺍﻵﰐ‬
‫‪:‬‬
‫ﺳﻨﻮﺍﺕ‬
‫‪x2‬‬
‫‪x‬‬
‫‪∑ x = 150 , ∑ x2 = 1630‬‬
‫‪1‬‬
‫‪1‬‬
‫‪∑ x = (150) = 10‬‬
‫‪N‬‬
‫‪15‬‬
‫ﺇﺫﺍ ﺍﻟﺘﺒﺎﻳﻦ ﻫﻮ‬
‫ﺍﳋﱪﺓ‬
‫=‪µ‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2‬‬
‫‪∑x −µ‬‬
‫‪N‬‬
‫‪1‬‬
‫‪1630 − 10 2 = 108 .67 − 100 = 8 . 67‬‬
‫=‬
‫‪15‬‬
‫ﻭﻫﻲ ﻧﻔﺲ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﱵ ﰎ ﺍﳊﺼﻮﻝ ﻋﻠﻴﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺼﻴﻐﺔ )‪. ( 6 -4‬‬
‫= ‪σ2‬‬
‫‪25‬‬
‫‪169‬‬
‫‪49‬‬
‫‪196‬‬
‫‪144‬‬
‫‪81‬‬
‫‪36‬‬
‫‪64‬‬
‫‪100‬‬
‫‪169‬‬
‫‪196‬‬
‫‪36‬‬
‫‪121‬‬
‫‪144‬‬
‫‪100‬‬
‫‪5‬‬
‫‪13‬‬
‫‪7‬‬
‫‪14‬‬
‫‪12‬‬
‫‪9‬‬
‫‪6‬‬
‫‪8‬‬
‫‪10‬‬
‫‪13‬‬
‫‪14‬‬
‫‪6‬‬
‫‪11‬‬
‫‪12‬‬
‫‪10‬‬
‫‪1630‬‬
‫‪150‬‬
‫ﺛﺎﻧﻴﺎ‪ :‬ﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍﻟﻌﻴﻨﺔ ) ‪( s‬‬
‫‪2‬‬
‫ﰲ ﻛﺜﲑ ﻣﻦ ﺍﳊﺎﻻﺕ ﻳﻜﻮﻥ ﺗﺒﺎﻳﻦ ﺍ‪‬ﺘﻤﻊ ‪σ 2‬‬
‫ﻏﲑ ﻣﻌﻠﻮﻡ‪ ،‬ﻭ ﻋﻨﺪﺋﺬ ﻳﺘﻢ ﺳﺤﺐ ﻋﻴﻨﺔ ﻣﻦ ﻫـﺬﺍ‬
‫ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻭ ﳛ ﺴﺐ ﺍﻟﺘﺒﺎﻳﻦ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻴﻨﺔ ﻛﺘﻘﺪﻳﺮ ﻟﺘﺒﺎﻳﻦ ﺍ‪‬ﺘﻤﻊ ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﻗﺮﺍﺀﺍﺕ ﻋﻴﻨﺔ ﻋـﺸﻮﺍﺋﻴﺔ‬
‫ﺣﺠﻤﻬﺎ ‪ n‬ﻫﻲ ‪x1 , x2 ,..., xn ،‬‬
‫‪ ،‬ﻓﺈﻥ ﺗﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪ s2‬ﻫﻮ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ x‬ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻘﺮﺍﺀﺍﺕ ﺍ ﻟﻌﻴﻨﺔ ‪ ،‬ﺃ ﻱ ﺃﻥ ‪x = ∑ x n :‬‬
‫ﺍﳌﺒﲔ ﺑﺎﳌﻌﺎﺩﻟﺔ ) ‪ ( 8 -4‬ﻫﻮ ﺍﻟﺘﻘﺪﻳﺮ ﻏﲑ ﺍﳌﺘﺤﻴﺰ ﻟﺘﺒﺎﻳﻦ ﺍ‪‬ﺘﻤﻊ ‪.‬‬
‫‪ ،‬ﻭﺗﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ‬
‫‪61‬‬
‫ﻣﺜـﺎﻝ ) ‪( 8 -4‬‬
‫ﰲ ﺍﳌﺜﺎﻝ ) ‪ ( 7 -4‬ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﺇﺫﺍ ﰎ ﺳﺤﺐ ﻋﻴﻨﺔ ﻣﻦ ﻋﻤﺎﻝ ﺍﳌﺼﻨﻊ ﺣﺠﻤﻬﺎ ‪ 5‬ﻋﻤﺎﻝ ‪ ،‬ﻭﺳﺠﻞ ﻋﺪﺩ‬
‫ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ‪ ،‬ﻭﻛﺎﻧﺖ ﻛﺎﻟﺘﺎﱄ ‪.‬‬
‫‪9‬‬
‫‪10‬‬
‫‪5‬‬
‫‪13‬‬
‫‪8‬‬
‫ﺍﺣﺴﺐ ﺗﺒﺎﻳﻦ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍﻟﻌﻴﻨﺔ ‪.‬‬
‫ﺍﳊــﻞ‬
‫ﳊﺴﺎﺏ ﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍﻟﻌﻴﻨﺔ ﻳﺘﻢ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ، ( 8 -4‬ﻭﻳﺘﺒﻊ ﺍﻵﰐ ‪:‬‬
‫• ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﰲ ﺍﻟﻌﻴﻨﺔ ‪:‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪x = ∑ x = (8 + 13 + 10 + 5 + 9) = (45) = 9‬‬
‫‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫• ﺣﺴﺎﺏ ﻣﺮﺑﻌﺎﺕ ﺍﻻﳓﺮﺍﻓﺎﺕ‬
‫‪(x − x )2‬‬
‫∑‬
‫ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ‪x‬‬
‫‪45‬‬
‫‪9‬‬
‫‪5‬‬
‫‪10‬‬
‫‪13‬‬
‫‪8‬‬
‫‪0‬‬
‫‪0‬‬
‫‪-4‬‬
‫‪1‬‬
‫‪4‬‬
‫‪-1‬‬
‫) ‪(x − x‬‬
‫‪34‬‬
‫‪0‬‬
‫‪16‬‬
‫‪1‬‬
‫‪16‬‬
‫‪1‬‬
‫‪( x − x )2‬‬
‫ﺃ ﻱ ﺃﻥ ‪:‬‬
‫‪(x − x )2 = 34‬‬
‫∑ ‪،‬‬
‫• ﺇﺫﺍ ﺗﺒﺎﻳﻦ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍﻟﻌﻴﻨﺔ ﻗﻴﻤﺘﻪ ﻫﻲ ‪:‬‬
‫‪2‬‬
‫(‬
‫‪x‬‬
‫‪−‬‬
‫‪x‬‬
‫)‬
‫∑‬
‫= ‪s‬‬
‫=‬
‫‪n −1‬‬
‫‪34‬‬
‫‪34‬‬
‫=‬
‫‪= 8 .5‬‬
‫)‪( 5 − 1‬‬
‫‪4‬‬
‫• ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﳝﻜﻦ ﺍﻟﻘﻮﻝ ﺑﺄﻥ ﺗﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ ‪ ، 8.5‬ﻭﻫﻮ ﰲ ﻧﻔﺲ ﺍﻟ ﻮﻗﺖ ﺗﻘﺪﻳﺮ ﻏﲑ ﻣﺘﺤﻴﺰ ﻟﺘﺒﺎﻳﻦ ﺍ‪‬ﺘﻤﻊ‬
‫‪.‬‬
‫‪2‬‬
‫ﺗﺒﺴﻴﻂ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳊﺴﺎﺑﻴﺔ‬
‫ﳝﻜﻦ ﺗﺒﺴﻴﻂ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺮﻳﺎﺿﻴﺔ ﻟﺘﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ ﺍﳌﻮﺿﺤﺔ ﺑﺎﳌﻌﺎﺩﻟﺔ ) ‪ ( 8 -4‬ﺇﱃ ﺻﻴﻐﺔ ﺳﻬﻠﺔ ﳝﻜـﻦ‬
‫ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻬﺎ‪ ،‬ﻭﺧﺎﺻﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ ﲢﺘﻮﻱ ﻋﻠﻰ ﻗﻴﻢ ﻛﺴﺮﻳﺔ ‪ ،‬ﻭﻻﺳﺘ ﻨﺘﺎﺝ ﻫﺬﻩ ﺍﻟﺼﻴﻐﺔ ﻳﺘﻢ ﺇﺗﺒـﺎﻉ‬
‫ﺍﻵﰐ ‪.‬‬
‫ﳝﻜﻦ ﻓﻚ ﺍ ‪‬ﻤﻮﻉ ‪∑ ( x − x) 2‬‬
‫ﻛﺎﻟﺘﺎ ﱄ ‪:‬‬
‫‪62‬‬
‫‪2‬‬
‫‪ 2‬‬
‫‪∑ ( x − x) 2 = ∑  x − 2 xx + x ‬‬
‫‪‬‬
‫‪‬‬
‫‪= ∑ x2 − 2 x∑ x + ∑ x 2‬‬
‫‪= ∑ x2 − 2nx 2 + nx 2‬‬
‫‪= ∑ x2 − nx 2‬‬
‫ﻭﻳﻜﺘﺐ ﺗﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪1 ‬‬
‫‪2‬‬
‫‪2‬‬
‫‪ ∑ x − nx ‬‬
‫‪‬‬
‫‪n −1‬‬
‫= ‪s2‬‬
‫ﺇﺫﺍ ﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍﻟﻌﻴﻨﺔ ﳝﻜﻦ ﺻﻴﺎﻏﺘﻪ ﻛﺎﻟﺘﺎﱄ ‪.‬‬
‫ﻛﻤﺎ ﳝﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 9 -4‬ﺗﺄﺧﺬ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﻭﺑﺎﻟﺘﻄﺒﻴﻖ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺍﳌ ﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪45‬‬
‫‪9‬‬
‫‪5‬‬
‫‪10‬‬
‫‪13‬‬
‫‪8‬‬
‫‪439‬‬
‫‪81‬‬
‫‪25‬‬
‫‪100‬‬
‫‪169‬‬
‫‪64‬‬
‫ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ‪x‬‬
‫‪x2‬‬
‫• ﺗﺒﺎﻳﻦ ﺍﻟﻌﻴﻨﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 9 -4‬ﻫﻮ ‪:‬‬
‫‪ ∑ x2 − nx 2 ‬‬
‫‪‬‬
‫‪‬‬
‫‪1‬‬
‫‪n −1‬‬
‫‪‬‬
‫‪1 ‬‬
‫‪2  1 (34 ) = 8 . 5‬‬
‫= ‪ 439 − 5 ( 9 ) ‬‬
‫‪‬‬
‫‪5 −1‬‬
‫‪4‬‬
‫= ‪s2‬‬
‫=‬
‫• ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 10 -4‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪2‬‬
‫‪1 ‬‬
‫‪2 − ( ∑ x) ‬‬
‫‪x‬‬
‫∑‬
‫‪n −1‬‬
‫‪n ‬‬
‫‪‬‬
‫‪ 1‬‬
‫‪ = (439 − 405 ) = 1 (34 ) = 8 .5‬‬
‫‪ 4‬‬
‫‪4‬‬
‫‪‬‬
‫= ‪s2‬‬
‫‪‬‬
‫‪1 ‬‬
‫‪( 45 ) 2‬‬
‫=‬
‫‪439 −‬‬
‫‪5 −1‬‬
‫‪5‬‬
‫‪‬‬
‫‪63‬‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫‪Standard Deviation‬‬
‫ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺘﺒﺎﻳﻦ ﻛﻤﻘﻴﺎﺱ ﻣﻦ ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ‪ ،‬ﳒﺪ ﺃﻧﻪ ﻳﻌﺘﻤﺪ ﻋﻠـﻲ ﳎﻤـﻮﻉ ﻣﺮﺑﻌـﺎﺕ‬
‫ﺍﻻﳓﺮﺍﻓﺎﺕ‪ ،‬ﻭﻣﻦ ﰒ ﻻ ﻳﺘﻤﺸﻰ ﻫﺬﺍ ﺍﳌﻘﻴﺎﺱ ﻣﻊ ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ ﺍﳌﺘﻐﲑ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ ‪ ،‬ﻓﻔﻲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪،‬‬
‫ﳒﺪ ﺃﻥ ﺗﺒﺎﻳﻦ ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍﻟﻌﻴﻨﺔ ‪ ، 8.5‬ﻓﻠﻴﺲ ﻣﻦ ﺍ ﳌﻨﻄﻖ ﻋﻨﺪ ﺗﻔﺴﲑ ﻫﺬﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺃﻥ ﻧﻘﻮﻝ ‪ " ،‬ﺗﺒﺎﻳﻦ‬
‫ﺳﻨﻮﺍﺕ ﺍﳋﱪﺓ ﻫﻮ ‪ 8.5‬ﺳﻨﺔ ﺗﺮﺑﻴﻊ " ‪ ،‬ﻷﻥ ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ ﺍﳌﺘﻐﲑ ﻫﻮ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺫﻟﻚ ﳉـﺄ‬
‫ﺍﻹﺣﺼﺎﺋﻴﲔ ﺇﱃ ﻣﻘﻴﺎﺱ ﻣﻨﻄﻘﻲ ﻳﺄﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺍﳉﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﻟﻠﺘﺒﺎﻳﻦ ‪ ،‬ﻟﻜﻲ ﻳﻨﺎﺳﺐ ﻭﺣﺪﺍﺕ ﻗﻴـﺎﺱ‬
‫ﺍﳌﺘﻐﲑ‪ ،‬ﻭﻫﺬﺍ ﺍﳌﻘﻴﺎﺱ ﻫﻮ ﺍﻻﳓﺮ ﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ‪.‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ‪ ،‬ﻫﻮ ﺍﳉﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﺍﳌﻮﺟﺐ ﻟﻠﺘﺒﺎﻳﻦ ‪ ،‬ﺃ ﻱ ﺃﻥ ‪:‬‬
‫ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪:‬‬
‫• ﰲ ﻣﺜﺎﻝ ) ‪ ( 7 -4‬ﳒﺪ ﺃﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﺴﻨﻮﺍﺕ ﺍﳋﱪﺓ ﻟﻌﻤﺎﻝ ﺍﳌﺼﻨﻊ ) ﺍ‪‬ﺘﻤﻊ ( ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ‬
‫) ‪ ( σ‬ﻫﻮ ‪:‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2‬‬
‫‪∑x −µ‬‬
‫‪N‬‬
‫‪8 .67 = 2 . 94‬‬
‫‪1‬‬
‫= ‪1630 − 10 2‬‬
‫‪15‬‬
‫= ‪σ‬‬
‫=‬
‫ﰲ ﻫﺬ ﻩ ﺍﳊﺎﻟﺔ ‪ ،‬ﻳﻜﻮﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﺴﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍ‪‬ﺘﻤﻊ ﻫﻮ ‪ 2.94‬ﺳﻨﺔ ‪.‬‬
‫•‬
‫ﰲ ﻣﺜﺎﻝ )‪ ( 8 -4‬ﳒﺪ ﺃﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﺴﻨﻮﺍﺕ ﺍﳋﱪﺓ ﻟﻌﻤﺎﻝ ﺍﻟﻌﻴﻨﺔ ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪s‬‬
‫‪ ،‬ﻫﻮ‬
‫‪:‬‬
‫‪1  2 (∑ x) 2 ‬‬
‫=‪s‬‬
‫‪∑x −‬‬
‫‪n ‬‬
‫‪n −1 ‬‬
‫‪‬‬
‫‪‬‬
‫‪1 ‬‬
‫‪(45) 2 ‬‬
‫‪1‬‬
‫‪1‬‬
‫‪439‬‬
‫‪405‬‬
‫‪439‬‬
‫‪−‬‬
‫=‬
‫‪−‬‬
‫=‬
‫(‬
‫)‬
‫‪(34) = 2.92‬‬
‫‪5 −1‬‬
‫‪5 ‬‬
‫‪4‬‬
‫‪4‬‬
‫‪‬‬
‫ﺃ ﻱ ﺃﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﺴﻨﻮﺍﺕ ﺍﳋﱪﺓ ﰲ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪ 2.92‬ﺳﻨﺔ ‪.‬‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺒﻮﺑﺔ‬
‫=‬
‫‪‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻈﺎﻫﺮﺓ ‪ ،‬ﻣﺒﻮﺑﺔ ﰲ ﺟﺪﻭﻝ ﺗﻮﺯﻳﻊ ﺗﻜﺮﺍﺭﻱ ‪ ،‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﳛﺴﺐ‬
‫ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫‪64‬‬
‫ﺣﻴﺚ ﺃﻥ‬
‫‪f‬‬
‫ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﻟﻔﺌﺔ ‪،‬‬
‫‪x‬‬
‫ﻫﻮ ﻣﺮ ﻛﺰ ﺍﻟﻔﺌﺔ ‪،‬‬
‫‪ x‬ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ )‪(∑ xf n‬‬
‫ﻫﻲ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ) ‪ ، (n = ∑ f‬ﻭﺍﳌﻘﺪﺍﺭ ﺍﻟﺬﻱ ﲢﺖ ﺍﳉﺬﺭ ﻳﻌﱪ ﻋﻦ ﺍﻟﺘﺒﺎﻳﻦ )‬
‫‪2‬‬
‫‪،‬‬
‫‪n‬‬
‫‪. (s‬‬
‫ﻣﺜـﺎﻝ ) ‪( 9 -4‬‬
‫ﰲ ﺑﻴﺎﻧﺎﺕ ﻣﺜﺎﻝ ) ‪ ، ( 6 -4‬ﺍﺣﺴﺐ ﺍﻻﳓ ﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﻟﻸﺳﺮﺓ ‪ ،‬ﰒ ﻗﺎﺭﻥ ﺑـﲔ‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﻟﻸﺳﺮﺓ ‪.‬‬
‫ﺍﳊـــــﻞ‬
‫ﳊﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ‪ ،‬ﺗﺴﺘﺨﺪﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗـﻢ ) ‪ ، ( 12 -4‬ﻭﺳﻮﻑ ﻧﻄﺒﻖ‬
‫ﺍﻟﺼﻴﻐﺔ ﺍﻟﺜﺎﻧﻴﺔ ‪ ،‬ﻭﻟﺬﺍ ﻧﻜﻮﻥ ﺟﺪﻭﻝ ﳊﺴﺎﺏ ﺍ‪‬ﻤﻮﻋﲔ ‪. ∑ xf , ∑ x2 f :‬‬
‫‪n = ∑ f = 40‬‬
‫‪∑ xf = 428‬‬
‫‪∑ x2 f = 5008‬‬
‫ﻣﺮﻛﺰ‬
‫‪x2 f‬‬
‫‪xf‬‬
‫ﺍﻟﻔﺌﺔ ‪x‬‬
‫ﻋﺪﺩ‬
‫ﺍﻷﺳﺮ‬
‫ﺍﻹﻧﻔﺎﻕ‬
‫‪f‬‬
‫‪12.25‬‬
‫‪3.5‬‬
‫‪3.5‬‬
‫‪1‬‬
‫‪2-5‬‬
‫‪338‬‬
‫‪52‬‬
‫‪6.5‬‬
‫‪8‬‬
‫‪5-8‬‬
‫‪9.5‬‬
‫‪13‬‬
‫‪8-11‬‬
‫‪1562.5‬‬
‫‪125‬‬
‫‪12.5‬‬
‫‪10‬‬
‫‪11-14‬‬
‫‪1922‬‬
‫‪124‬‬
‫‪15.5‬‬
‫‪8‬‬
‫‪14-17‬‬
‫‪5008‬‬
‫‪428‬‬
‫‪40‬‬
‫‪sum‬‬
‫‪123.5 1173.25‬‬
‫ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ‪ ،‬ﳒﺪ ﺃﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻗﻴﻤﺘﻪ ﻫﻲ ‪:‬‬
‫‪65‬‬
‫‪)2‬‬
‫‪( xf‬‬
‫∑ ‪∑ x2 f −‬‬
‫‪n‬‬
‫‪5008 − 4579 . 6‬‬
‫=‬
‫‪39‬‬
‫‪n −1‬‬
‫=‪s‬‬
‫‪( 428 ) 2‬‬
‫‪5008 −‬‬
‫‪40‬‬
‫=‬
‫‪10 . 984615‬‬
‫=‬
‫‪= 3 . 314‬‬
‫‪40 − 1‬‬
‫ﺃ ﻱ ﺃﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ‪ 3.314‬ﺃﻟﻒ ﺭﻳﺎﻝ ‪ ،‬ﻭﻭ ﻓﻘﺎ ﳍﺬﺍ ﺍﳌﻘﻴـﺎﺱ ‪ ،‬ﻓـﺈﻥ‬
‫ﺗﺸﺘﺖ ﺑﻴﺎﻧﺎﺕ ﺍﻹﻧﻔﺎﻕ ﺃﻛﱪ ﻣﻦ ﺗﺸﺘﺖ ﺑﻴﺎﻧﺎﺕ ﺍﻹﻧﻔﺎﻕ ﻭﻓﻘﺎ ﳌﻘﻴﺎﺱ ﺍﻻﳓﺮﺍﻑ ﺍﳌﺘﻮﺳﻂ )‪. (2.88‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ‪ ،‬ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺃﻭﻻ ‪ :‬ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻤﻘﺪﺍﺭ ﺍﻟﺜﺎﺑﺖ ﻳﺴﺎﻭﻱ ﺻﻔﺮﺍ ‪ ،‬ﺃ ﻱ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ﺍﻟﻘﺮﺍﺀﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪a, a, a, …,a‬‬
‫‪ x:‬ﺣﻴﺚ ﺃﻥ ‪ a‬ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ ﻓﺈﻥ ‪ ، s x = 0 :‬ﺣﻴﺚ ﺃﻥ ‪s x‬‬
‫ﺗﻌﱪ ﻋﻦ ﺍﻻﳓـﺮﺍﻑ‬
‫ﺍﳌﻌﻴﺎﺭﻱ ﻟﻘﻴﻢ ‪. x‬‬
‫• ﺛﺎﻧﻴﺎ ‪ :‬ﺇﺫﺍ ﺃﺿﻴﻒ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ ﺇﱃ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﻗﻴﻢ ﺍﳌﻔﺮﺩﺍﺕ ‪ ،‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ‬
‫) ﺍﻟﻘﻴﻢ ﺑﻌﺪ ﺍﻹﺿﺎﻓﺔ ( ﺗﺴﺎﻭﻱ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ) ﺍﻟﻘﻴﻢ ﺑﻌﺪ ﺍﻹﺿﺎﻓﺔ ( ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻧـﺖ‬
‫ﺍﻟﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ﻫﻲ ‪ ، x1 , x2 ,..., xn‬ﻭﰎ ﺇﺿﺎﻓﺔ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ ‪ a‬ﺇﱃ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﻗﻴﻢ ‪x‬‬
‫ﺍﻻﳓﺮﺍ ﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﳉ ﺪﻳـﺪﺓ ‪ ( y = x + a ) : x1 + a , x2 + a ,..., xn + a :‬ﻫـﻲ ‪:‬‬
‫‪: s y = sx‬‬
‫‪ ،‬ﻓﺈﻥ‬
‫ﻣﺜـﺎﻝ ) ‪( 10 -4‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﺗﻄﺒﻴﻖ ﺑﺮﻧﺎﻣﺞ ﻏﺬﺍﺋﻲ ﻣﻌﲔ ﻟﻠﺘﺴﻤﲔ ﻟﻔﺘﺮﺓ ﺯﻣﻨﻴﺔ ﳏﺪﺩﺓ ﺳﻮﻑ ﻳﺰﻳﺪ ﻣﻦ ﻭﺯﻥ‬
‫ﺍﻟﺪﺟﺎﺟﺔ ‪ 0.5‬ﻛﻴﻠﻮﺟﺮﺍﻡ ‪ ،‬ﺳﺤﺒﺖ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺎ ﻣﻦ ﻣﺰﺭﻋﺔ ﺩﺟﺎﺝ ﺣﺠﻤﻬﺎ ‪ 5‬ﺩﺟﺎﺟﺎﺕ ‪ ،‬ﻭﻛﺎﻧﺖ ﺃﻭﺯﺍ‪ ‬ﺎ‬
‫ﻛﺎﻟﺘﺎﱄ ‪. 1 , 1.75 , 2 , 1.25 , 2.5 :‬‬
‫‪ -1‬ﺍﺣﺴﺐ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻮﺯﻥ ﺍﻟﺪﺟﺎﺟﺔ ‪.‬‬
‫‪ -2‬ﺇﺫﺍ ﻃﺒﻖ ﺍﻟﱪﻧﺎﻣﺞ ﺍﻟﻐﺬﺍﺋﻲ ﺍﳌﺸﺎﺭ ﺇﻟﻴﻪ‪ ،‬ﻣﺎ ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻮﺯﻥ ﺍﻟﺪﺟﺎﺟﺔ ﰲ ﻫـﺬﻩ‬
‫ﺍﻟﻌﻴﻨﺔ؟‬
‫ﺍﳊـــــﻞ‬
‫‪ -1‬ﺣﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻮﺯﻥ ﻗﺒﻞ ﺗﻄﺒﻴﻖ ﺍﻟﱪﻧﺎﻣﺞ ‪.‬‬
‫‪n=5‬‬
‫‪∑ x = 8.5‬‬
‫‪x2‬‬
‫‪x‬‬
‫‪1‬‬
‫‪1‬‬
‫‪66‬‬
‫‪3.0625‬‬
‫‪1.75‬‬
‫‪4‬‬
‫‪2‬‬
‫‪1.5625‬‬
‫‪1.25‬‬
‫‪6.25‬‬
‫‪2.5‬‬
‫‪15.875‬‬
‫‪8.5‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻮﺯﻥ ﻗﺒﻞ ﺍﻟﱪﻧﺎﻣﺞ ﰲ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪:‬‬
‫‪2‬‬
‫) ‪2 − (∑ x‬‬
‫‪x‬‬
‫∑‬
‫‪n‬‬
‫‪n −1‬‬
‫‪= 0 . 534‬‬
‫‪15 . 875 − 14 . 45‬‬
‫‪5‬‬
‫=‬
‫‪(8 .5 ) 2‬‬
‫‪5‬‬
‫‪= 3 . 314‬‬
‫‪15 . 875 −‬‬
‫‪5‬‬
‫‪10 . 984615‬‬
‫= ‪sx‬‬
‫=‬
‫=‬
‫‪ -2‬ﺣﺴ ﺎ ﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻮﺯﻥ ﺍﻟﺪﺟﺎﺟﺔ ﺑﻌﺪ ﺗﻄﺒﻴﻖ ﺍﻟﱪ ﻧﺎﻣﺞ ‪.‬‬
‫ﻛﻞ ﺩﺟﺎﺟﺔ ﺑﻌﺪ ﺗﻄﺒﻴﻖ ﺍﻟﱪﻧﺎﻣﺞ‪ ،‬ﻣﻦ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﺗﺰﻳﺪ ‪ 0.5‬ﻛﻴﻠﻮﺟﺮﺍﻡ ‪ ،‬ﻭﻫﺬﺍ ﻣﻌﻨﺎﻩ ﺃﻥ ﺍﻟﻮﺯﻥ‬
‫ﺑﻌﺪ ﺍﻟﱪﻧﺎﻣﺞ ﻫﻮ ‪y = x + 0.5 :‬‬
‫‪ ،‬ﻭﻳﻜﻮﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻮﺯﻥ ﺍﳉﺪﻳﺪ ﻣـﺴﺎﻭﻳﺎ‬
‫ﺃﻳﻀﺎ ﻟﻼﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ‪ ،‬ﺃﻯ ﺃﻥ ‪:‬‬
‫‪s y = s x = 0.534‬‬
‫ﺍﻻﳓ ﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻮﺯﻥ ﺑﻌﺪ ﺗﻄﺒﻴﻖ ﺍﻟﱪﻧﺎﻣﺞ ﻳﺴﺎﻭﻱ ‪ 0.534‬ﻛﻴﻠﻮﺟﺮﺍﻡ ‪.‬‬
‫• ﺛﺎﻟﺜﺎ ‪ :‬ﺇﺫﺍ ﺿﺮﺏ ﻛﻞ ﻗﻴﻤﺔ ﻣﻦ ﻗﻴﻢ ﺍﳌﻔﺮﺩﺍﺕ ﰲ ﻣﻘﺪﺍﺭ ﺛﺎﺑﺖ ‪ ،‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ‬
‫ﻫﻲ ﺍﻟﻘﻴﻢ‬
‫‪ ،‬ﻳﺴﺎﻭﻱ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ﻣﻀﺮﻭﺑﺎ ﰲ ﺍﻟﺜﺎﺑﺖ ‪ ،‬ﺃﻯ ﺃﻥ ﺇﺫﺍ ﻛﺎﻥ ﻗﻴﻢ ‪x‬‬
‫ﺍﻷﺻﻠﻴﺔ ‪ ،‬ﻭﻛﺎﻧﺖ ﺍﻟﻘﻴﻢ ﺍﳉﺪﻳﺪﺓ ﻫـﻲ ‪ ، y = a x :‬ﺣﻴـﺚ ﺃﻥ ‪ a‬ﻣﻘـﺪﺍﺭ ﺛﺎﺑـﺖ ‪ ،‬ﻓـﺈﻥ ‪:‬‬
‫‪. s y = a sx‬‬
‫ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﺪﺭﺟﺎﺕ ﻋﻴﻨﺔ ﻣﻦ ﺍﻟﻄﻼﺏ ﻫﻲ ‪ 4‬ﺩﺭﺟﺎﺕ ‪ ،‬ﻭﺇﺫﺍ ﻛﺎﻥ‬
‫ﺍﻟﺘﺼﺤﻴﺢ ﻣﻦ ‪ 50‬ﺩﺭﺟﺔ ‪ ،‬ﻭ ﻳﺮﺍﺩ ﺗﻌﺪﻳﻞ ﺍﻟﺪﺭﺟﺔ ﻟﻴﻜﻮﻥ ﺍﻟﺘﺼﺤﻴﺢ ﻣﻦ ‪ 100‬ﺩﺭﺟﺔ‪ ،‬ﻭﻣﻌﲎ ﻳﺘﻢ ﺿﺮﺏ‬
‫ﻛﻞ ﺩﺭﺟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺎﺕ ﺍﻷﺻﻠﻴﺔ ﰲ ‪ ، 2‬ﻭﻣﻦ ﰒ ﳛﺴﺐ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﺪﺭﺟﺎﺕ ﺍﳌﻌﺪﻟﺔ ﻛﺎﻟﺘﺎﱄ‬
‫‪.‬‬
‫‪y = 2x‬‬
‫‪s y = 2s x = 2( 4) = 8‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﺪﺭﺟﺎﺕ ﺍﳌﻌﺪﻟﺔ ‪ 8‬ﺩﺭﺟﺎﺕ ‪.‬‬
‫• ﺭﺍﺑﻌﺎ‪ :‬ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ﺍﻟﺘﻮﻟﻴﻔﺔ ﺍﳋﻄﻴﺔ ‪ ، y = a x + b :‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﲑ ‪y‬‬
‫ﻫـﻮ‬
‫‪67‬‬
‫ﺃﻳﻀﺎ ‪s y = a s x :‬‬
‫‪ ،‬ﻭﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﻟﻮ ﺃﺿﺎ ﻑ ﺍﳌﺼﺤﺢ ﻟﻜﻞ ﻃﺎﻟﺐ ‪ 5‬ﺩﺭﺟﺎﺕ ﺑﻌﺪ ﺗﻌـﺪﻳﻞ‬
‫ﺍﻟﺪﺭﺟﺔ ﻣﻦ ‪ ، 100‬ﺃﻯ ﺃﻥ ﺍﻟﺪﺭﺟﺔ ﺍﳉﺪﻳﺪﺓ ﻫﻲ ‪y = 2 x + 5 :‬‬
‫‪y = 2x + 5‬‬
‫‪s y = 2s x = 2( 4) = 8‬‬
‫ﻣﺰﺍﻳﺎ ﻭﻋﻴﻮﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫ﻣﻦ ﻣﺰﺍﻳﺎ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫‪ -1‬ﺃﻧﻪ ﺃﻛﺜﺮ ﻣﻘﺎﻳﻴﺲ ﺍﻟﺘﺸﺘﺖ ﺍﺳﺘﺨﺪﺍﻣﺎ ‪.‬‬
‫‪ -2‬ﻳﺴﻬﻞ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻪ ﺭﻳﺎﺿﻴﺎ ‪.‬‬
‫‪ -3‬ﻳﺄﺧﺬ ﻛﻞ ﺍﻟﻘﻴﻢ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ‪.‬‬
‫ﻭﻣﻦ ﻋﻴﻮﺑﻪ ‪ ،‬ﺃﻧﻪ ﻳﺘﺄﺛﺮ ﺑﺎﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ‪.‬‬
‫‪ ،‬ﻓﺈﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻫﻮ ‪:‬‬
‫‪68‬‬
‫ﺍﻟﻔﺼـــﻞ ﺍﳋﺎﻣﺲ‬
‫ﺑﻌﺾ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻷﺧﺮﻯ ﻟﻮﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫‪ 1/5‬ﻣﻘﺪﻣــﺔ‬
‫ﻋﻨﺪ ﲤﺜﻴﻞ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻈﺎﻫﺮﺓ ﰲ ﺷﻜﻞ ﻣﻨﺤﲏ ﺗﻜﺮﺍﺭﻱ ‪ ،‬ﻓﺈﻥ ﻫﺬﺍ ﺍﳌﻨﺤﲏ ﻳﺄﺧﺬ ﺃﺷﻜﺎﻻ ﳐﺘﻠﻔﺔ ‪ ،‬ﻓﻘﺪ‬
‫ﻳﻜﻮﻥ ﻫﺬﺍ ﺍﳌﻨﺤﲎ ﻣﺘﻤﺎﺛﻞ ﲟﻌﲎ ﺃﻥ ﻟﻪ ﻗﻤﺔ ﰲ ﺍﳌﻨﺘﺼﻒ ‪ ،‬ﻭﻟﻮ ﺃﺳﻘﻄﻨﺎ ﻋﻤﻮﺩﺍ ﻣﻦ ﻗﻤﺘﻪ ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻷﻓﻘ ﻲ‬
‫ﻟﺸﻄﺮﻩ ﻧﺼﻔﲔ ﻣﺘﻤﺎﺛﻠﲔ ‪ ،‬ﻣﺜﻞ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪.‬‬
‫ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ) ﻣﻨﺤﲎ ﻣﺘﻤﺎﺛﻞ (‬
‫ﻭﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺍﻟﺸﻜﻞ ﻣﺘﻤﺎﺛﻞ ‪ ،‬ﻓﺈﻥ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ ﻛﻠﻬﻢ ﻳﻘﻌﻮﻥ ﻋﻠﻰ ﻧﻘﻄﺔ ﻭﺍﺣﺪﺓ ‪،‬‬
‫ﻭﻟﻜﻦ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﳊﺎﻻﺕ ﻳﻜﻮﻥ ﻫﻨﺎﻙ ﻗﻴﻢ ﻛﺒﲑﺓ ﰲ ﺍﻟﺒﻴ ﺎﻧﺎﺕ ﲡﺬﺏ ﺇﻟﻴﻬﺎ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ،‬ﻭﻫﺬﺍ ﻣﻌﻨﺎﻩ‬
‫ﺃﻥ ﺍﳌﻨﺤﲎ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺳﻮﻑ ﻳﻜﻮﻥ ﻟﻪ ﺫﻳﻞ ﺟﻬﺔ ﺍﻟﻴﻤﲔ ‪ ،‬ﻣﺸﲑﺍ ﺑﻮﺟﻮﺩ ﺍﻟﺘﻮﺍﺀ ﺟﻬﺔ ﺍﻟـﻴﻤﲔ ‪ ،‬ﻭﻛـﺬﻟﻚ‬
‫ﺍﻟﻌﻜﺲ ﻟﻮ ﺃﻥ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪‬ﺎ ﻗﻴﻢ ﺻﻐﲑﺓ ‪ ،‬ﻓﺈ‪‬ﺎ ﲡﺬﺏ ﺍﻟﻮﺳﻂ ﺇﻟﻴﻬﺎ ‪ ،‬ﻭﻳﺪﻝ ﺍﳌﻨﺤﲏ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻋﻠﻰ ﻭﺟـﻮﺩ‬
‫ﺍﻟﺘﻮﺍﺀ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ‪ ،‬ﻛﻤﺎ ﳝﻜﻦ ﻣﻦ ﺧﻼ ﻝ ﺍﻟﺸﻜﻞ ﺍﻟﺒﻴﺎﱐ ﻣﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻨﺒـﺴﻂ‪ ،‬ﺃﻭ‬
‫ﻣﺪﺑﺐ‪ ،‬ﻭ ﻫﺬﺍ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﺒﻴﺎﻧﻴﺔ ‪ ،‬ﺇﻻ ﺃﻥ ﻫﻨﺎﻙ ﻣﻘﺎﻳﻴﺲ ﻛﺜﲑﺓ ﻟﻮﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺗﻌﺘﻤﺪ ﰲ ﺣﺴﺎ‪‬ﺎ ﻋﻠـﻰ‬
‫ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ﻭﺍﻟﺘﺸﺘﺖ ﻣﻌﺎ‪ ،‬ﻭﻣﻨﻬﺎ ﻣﻘﺎﻳﻴﺲ ﺍﻻﻟﺘﻮﺍﺀ ‪ ،‬ﻭﺍﻟﺘﻔﺮﻃﺢ‪ ،‬ﻭﺑﻌﺾ ﺍﳌﻘـﺎﻳﻴﺲ ﺍﻷﺧـﺮﻯ‬
‫ﺳﻮﻑ ﻳﺘﻢ ﻋﺮﺿﻬﺎ ﻓﻴﻤ ﺎ ﺑﻌﺪ ‪.‬‬
‫‪ 2/5‬ﻣﻘﺎﻳﻴﺲ ﺍﻻﻟﺘﻮﺍﺀ‬
‫‪Skewness‬‬
‫ﻫﻨﺎﻙ ﻃﺮﻕ ﻛﺜﲑﺓ ﻟﻘﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ ﻭﻣﻨﻬﺎ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ 1/2/5‬ﻃﺮﻳﻘﺔ "ﺑﲑﺳﻮﻥ ‪ "Person‬ﰲ ﻗﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ‬
‫ﺗﺄﺧﺬ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ‪ ،‬ﰲ ﺣﺎﻟﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﻗﺮﻳﺐ ﻣﻦ ﺍﻟﺘﻤﺎﺛﻞ ﻭﻟﻴﺲ ﺷﺪﻳﺪ ﺍﻻﻟﺘﻮﺍ ﺀ ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ ﻫﻲ ‪( 1 -5) :‬‬
‫ﻭﻣﻦ ﰒ ﻓﺈﻥ ﻃﺮﻳﻘﺔ " ﺑﲑﺳﻮﻥ " ﰲ ﻗﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ ‪ ،‬ﺗﺘﺤﺪﺩ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫‪69‬‬
‫ﺣﻴﺚ ﺃﻥ ‪) α‬ﺃﻟﻔﺎ( ﻫﻮ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ " ﻟﺒﲑﺳﻮﻥ"‪ x ،‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ Med ،‬ﻫﻮ ﺍﻟﻮﺳﻴﻂ‪S ،‬‬
‫ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‪ ،‬ﻭﳝﻜﻦ ﻣﻦ ﺧﻼﻝ ﺍﻹ ﺷﺎﺭﺓ ﺍﻟﱵ ﻳﺄﺧﺬﻫﺎ ﻫﺬﺍ ﺍﳌﻌﺎﻣﻞ ﺍﳊﻜﻢ ﻋﻠﻰ ﺷﻜﻞ ﺍﻻﻟﺘﻮﺍﺀ‪ ،‬ﻛﻤﺎ‬
‫ﻳﻠﻲ ‪:‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ) ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ = ﺍﻟﻮﺳﻴﻂ ( ﻛﺎﻥ ﻗﻴﻤﺔ ﺍﳌﻌﺎﻣﻞ )‪ ، (α = 0‬ﻭﻳﺪﻝ ﺫﻟﻚ ﻋﻠﻰ ﺃﻥ ﻣـﻨﺤﲎ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻣﺘﻤﺎﺛﻞ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ) ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ < ﺍﻟﻮﺳﻴﻂ ( ﻛﺎﻥ ﻗﻴﻤﺔ ﺍﳌﻌﺎﻣﻞ )‪ ، (α > 0‬ﻭﻳﺪﻝ ﺫﻟﻚ ﻋﻠﻰ ﺃﻥ ﻣـﻨﺤﲎ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﻤﲔ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ) ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ > ﺍﻟﻮﺳﻴﻂ ( ﻛﺎﻥ ﻗﻴﻤﺔ ﺍﳌﻌﺎﻣﻞ )‪ ، (α < 0‬ﻭﻳﺪﻝ ﺫﻟﻚ ﻋﻠﻰ ﺃﻥ ﻣـﻨﺤﲎ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ‪.‬‬
‫ﺷﻜﻞ )‪(1 -5‬‬
‫ﺃﺷﻜﺎﻝ ﺍﻟﺘﻮﺍﺀ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫‪ 2/2/5‬ﻃﺮﻳﻘﺔ "ﺍﳌﺌﲔ" ﰲ ﻗﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ‬
‫ﺍﳌﺌﲔ ﻳﻨﺘﺞ ﻣﻦ ﺗﺮﺗﻴﺐ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺗﺼﺎﻋﺪﻳﺎ‪ ،‬ﰒ ﺗﻘﺴﻴﻤﻬﺎ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺇﱃ ‪ 100‬ﺟﺰﺀ‪ ،‬ﻳﻔﺼﻞ ﺑﻴﻨﻬﺎ ﻗﻴﻢ‬
‫ﺗﺴﻤﻰ ﺍﳌﺌﲔ‪ ،‬ﻭﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ ﻳﻌﺮﻑ ﺍﳌﺌﲔ ‪ 15‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ) ‪ ( v15‬ﻋﻠﻰ ﺃﻧﻪ ﺍﻟ ﻘﻴﻤﺔ ﺍﻟﱵ ﻳﻘﻞ ﻋﻨﻬﺎ‬
‫‪ 15%‬ﻣﻦ ﺍﻟﻘﻴﻢ‪ ،‬ﻭﳊﺴﺎﺏ ﻗﻴﻤﺔ ﺍﳌﺌﲔ ‪ ، p‬ﻭﻧﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ) ‪ ، (v p‬ﻳﺘﺒﻊ ﻧﻔﺲ ﺍﻟﻔﻜـﺮﺓ ﺍﳌـﺴﺘﺨﺪﻣﺔ ﰲ‬
‫ﺣﺴﺎﺏ ﺍﻟﺮﺑﻴﻊ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺗﺮﺗﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ ‪:‬‬
‫•‬
‫•‬
‫)‪x(1) < x( 2) < ... < x( n‬‬
‫‪ p ‬‬
‫ﺭﺗﺒﺔ ﺍﳌﺌﲔ ‪:‬‬
‫‪‬‬
‫‪ 100 ‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺮﺗﺒﺔ ‪ R‬ﻋﺪﺩ ﺻﺤﻴﺢ ﻓﺈﻥ ) )‪.( v15 = x( R‬‬
‫‪. R = (n + 1)‬‬
‫• ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺮﺗﺒﺔ ‪ R‬ﻋﺪﺩ ﻛﺴﺮﻱ ﻓﺈﻥ ﻗﻴﻤﺔ ﺍﳌﺌﲔ ) ‪ (v p‬ﲢﺴﺐ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭ ﺗﻌﺘﻤﺪ ﻓﻜﺮﺓ ﺍﳌﺌﲔ ﰲ ﻗﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ ﻋﻠﻰ ﻣﺪ ﻯ ﻗﺮﺏ ﺍﳌﺌﲔ ‪ ، v p‬ﻭﺍﳌﺌﲔ ‪ ، v100 − p‬ﻣﻦ ﺍﳌﺌﲔ ‪، v50‬‬
‫ﻭﻛﻤﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪ ،‬ﻋﻨﺪ ﻗﻴﺎﺱ ﺍﻻﻟﺘﻮﺍﺀ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﺌﲔ ‪ ، 20‬ﻭﺍﳌﺌﲔ ‪ ، 80‬ﻳﻼﺣﻆ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ﺍﻟﺘـﺎﱄ‬
‫‪70‬‬
‫ﺣﺎﻻﺕ ﺍﻻﻟﺘﻮﺍﺀ ‪:‬‬
‫ﺷﻜﻞ )‪(2 -5‬‬
‫ﻭﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻋﻼﻩ ﻳﻼﺣﻆ ﺍﻵﰐ ‪:‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v80‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﻳﺴﺎﻭﻱ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v20‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﻛـﺎﻥ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﻣﺘﻤﺎﺛﻼ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v80‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﺃﻛﱪ ﻣﻦ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v20‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﻛـﺎﻥ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v80‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﺃﻗﻞ ﻣﻦ ﺑﻌﺪ ﺍﳌﺌﲔ ) ‪ (v20‬ﻋﻦ ﺍﳌﺌﲔ ) ‪ (v50‬ﻛـﺎﻥ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫ﻭﺑﺸﻜﻞ ﻋﺎﻡ ﳝﻜﻦ ﺍﳊﻜﻢ ﻋﻠﻰ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﳌﺌﻴﲏ ‪ ،‬ﻭﻳﺄﺧﺬ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ v p < v50 < v100 − p :‬ﻭﻳﻔﻀﻞ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﳌﻌﺎﻣﻞ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﱵ ﲢﺘﻮﻱ ﻋﻠـﻰ‬
‫ﻗﻴﻢ ﺷﺎﺫﺓ ‪ ،‬ﻭﺃﻳﻀﺎ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﱵ ﻻ ﻧﻌﺮﻑ ﳍﺎ ﺗﻮﺯﻳﻊ ﳏﺪﺩ‪ ،‬ﻭﻋﻨﺪﻣﺎ ﻧﺴﺘﺨﺪﻡ ﺍﳌﺌﲔ ‪25‬‬
‫ﺍﳌﺌﲔ ‪ ( v75 = Q ) 75‬ﳓﺼﻞ ﻋﻠﻰ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﻟﺮﺑﻴﻌﻲ ‪ ،‬ﻭﻫﻮ ‪:‬‬
‫‪3‬‬
‫ﻣﺜـﺎﻝ ) ‪( 1 -5‬‬
‫ﻛﺎﻧﺖ ﺩﺭﺟﺎﺕ ‪ 8‬ﻃﻼﺏ ﰲ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﻨﻬﺎﺋﻲ ﰲ ﻣﻘﺮﺭ ‪ 122‬ﺇﺣﺺ ‪ ،‬ﻛﺎﻟﺘﺎﱄ ‪.‬‬
‫‪58‬‬
‫‪74‬‬
‫‪91‬‬
‫‪80‬‬
‫‪78‬‬
‫‪52‬‬
‫‪85‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪ -1 :‬ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺑﻄﺮﻳﻘﺔ " ﺑﲑﺳﻮﻥ " ‪.‬‬
‫‪ -2‬ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﻟﺮﺑﻴﻌﻲ ‪.‬‬
‫ﺍﳊــﻞ‬
‫‪ -1‬ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺑﻄﺮﻳﻘﺔ " ﺑﲑﺳﻮﻥ " ‪.‬‬
‫‪66‬‬
‫) ‪= Q1‬‬
‫‪، ( v25‬‬
‫‪71‬‬
‫ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻳﺘﻢ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ ) ‪ ( 2 -5‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ‪:‬‬
‫‪∑ x = 584 , ∑ x2 = 43890‬‬
‫ﻭﻳﻜﻮﻥ ‪:‬‬
‫‪x2‬‬
‫‪x‬‬
‫‪x = ∑ = 584 = 73‬‬
‫‪n‬‬
‫‪8‬‬
‫‪2‬‬
‫‪x2 − (∑ x)2 n‬‬
‫∑ =‪s‬‬
‫‪= 43890 − (584) 8‬‬
‫‪8 −1‬‬
‫‪n −1‬‬
‫‪= 1258 = 179 .71428 = 13.406‬‬
‫‪7‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻮﺳﻴﻂ ‪:‬‬
‫ﻣﻮﻗﻊ ﺍﻟﻮﺳﻴﻂ ‪(n+ 1)/2= (8+ 1)/2= 4.5 :‬‬
‫‪91‬‬
‫‪8‬‬
‫‪80 85‬‬
‫‪6‬‬
‫‪7‬‬
‫‪6.75‬‬
‫‪74‬‬
‫‪4‬‬
‫‪78‬‬
‫‪5‬‬
‫‪4.5‬‬
‫‪58 66‬‬
‫‪2‬‬
‫‪3‬‬
‫‪2.25‬‬
‫‪52‬‬
‫‪1‬‬
‫‪Med = 74 + 0.5(78 − 74) = 76‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ " ﺑﲑﺳﻮﻥ "‬
‫‪= −0.67‬‬
‫)‪3(73 − 76‬‬
‫‪13.406‬‬
‫= ) ‪s.c = 3( x − Med‬‬
‫‪S‬‬
‫ﺇﺫﺍ ﻣﻨﺤﲎ ﺗﻮﺯﻳﻊ ﺩﺭﺟﺎﺕ ﺍﻟﻄﻼﺏ ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ‪.‬‬
‫‪ -2‬ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﻟﺮﺑﻴﻌﻲ ‪.‬‬
‫ﳊﺴﺎﺏ ﻣ ﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﻟﺮﺑﻴﻌﻲ ‪ ،‬ﻳﺘﻢ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗﻢ ) ‪.( 5 -5‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﺮﺑ ﻴ ﻊ ﺍﻷﺩﱏ ‪.‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ‪(n+ 1)/4= (8+ 1)(1/4)= 2.25 :‬‬
‫ﺇﺫﺍ‬
‫ﺍﻟﺪﺭﺟﺔ‬
‫‪x‬‬
‫‪4356‬‬
‫‪66‬‬
‫‪7225‬‬
‫‪85‬‬
‫‪2704‬‬
‫‪52‬‬
‫‪6084‬‬
‫‪78‬‬
‫‪6400‬‬
‫‪80‬‬
‫‪8281‬‬
‫‪91‬‬
‫‪5476‬‬
‫‪74‬‬
‫‪3364‬‬
‫‪58‬‬
‫‪43890‬‬
‫‪584‬‬
‫‪72‬‬
‫‪Q1 = 58 + (2.25 − 2)(66 − 58) = 60‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﻋﻠﻰ ‪.‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ‪(n+ 1)/(3/4)= (8+ 1) (3/4)= 6.75 :‬‬
‫ﺇﺫﺍ‬
‫‪Q3 = 80 + (6.75 − 6)(85 − 80) = 83.75‬‬
‫• ﺍﻟﻮﺳﻴﻂ ) ﺍﻟﺮﺑﻴﻊ ﺍﻟﺜﺎﱐ (‬
‫‪Med (Q2 ) = 76‬‬
‫ﺇﺫﺍ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺍﻟﺮﺑﻴﻌﻲ ﻫﻮ ‪:‬‬
‫) ‪(Q3 − Q2 ) − (Q2 − Q1 ) (83 .75 − 76 ) − (76 − 60‬‬
‫= ‪αq‬‬
‫=‬
‫) ‪(83 .75 − 60‬‬
‫) ‪(Q3 − Q1‬‬
‫ﺇﺫﺍ ﺗﻮﺯﻳﻊ ﺩﺭﺟﺎﺕ ﺍﻟﻄﻼﺏ ﻣﻠﺘﻮﻱ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ‪.‬‬
‫‪ 3/5‬ﺍﻟﺘﻔﺮﻃﺢ‬
‫‪− 8 .25‬‬
‫‪= − 0 .35‬‬
‫‪23 .75‬‬
‫=‬
‫‪Kurtosis‬‬
‫ﻋﻨﺪ ﲤﺜﻴﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﰲ ﺷﻜﻞ ﻣﻨﺤﲎ ﺗﻜﺮﺍﺭﻱ ‪ ،‬ﻗﺪ ﻳﻜﻮﻥ ﻫﺬﺍ ﺍﳌـﻨﺤﲎ ﻣﻨﺒـﺴﻂ ‪ ،‬ﺃﻭ‬
‫ﻣﺪﺑﺐ ‪ ،‬ﻓﻌ ﻨﺪﻣﺎ ﻳﺘﺮﻛﺰ ﻋﺪﺩ ﺃﻛﱪ ﻣﻦ ﺍﻟﻘﻴﻢ ﺑﺎﻟﻘﺮﺏ ﻣﻦ ﻣﻨﺘﺼﻒ ﺍﳌﻨﺤﲎ‪ ،‬ﻭﻳﻘﻞ ﰲ ﻃﺮﻓﻴ ﻪ ‪ ،‬ﻳﻜﻮﻥ ﺍﳌﻨﺤﲎ‬
‫ﻣﺪﺑﺒﺎ ‪ ،‬ﻭﻋﻨﺪﻣﺎ ﻳﺘﺮﻛﺰ ﻋﺪﺩ ﺃﻛﱪ ﻋﻠﻰ ﻃﺮﰲ ﺍﳌﻨﺤﲎ ‪ ،‬ﻭﻳﻘﻞ ﺑﺎﻟﻘﺮﺏ ﻣﻦ ﺍﳌﻨﺘﺼﻒ ﻳﻜﻮﻥ ﺍﳌﻨﺤﲎ ﻣﻔﺮﻃﺤﺎ ‪،‬‬
‫ﺃﻭ ﻣﻨﺒﺴﻄﺎ‪ ،‬ﻭﻳﻈﻬﺮ ﺫﻟﻚ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﻣﻨﺤﲎ ﻣﺪﺑﺐ‬
‫ﻣﻨﺤﲎ ﻣﻔﺮﻃﺢ‬
‫ﻭ ﳝﻜﻦ ﻗﻴ ﺎﺱ ﺍﻟﺘﻔﺮﻃﺢ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻋﺪﺩ ﻣﻦ ﺍﻟﻄﺮﻕ‪ ،‬ﻭﻣﻨﻬﺎ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ ‪ ،‬ﺣﻴﺚ ﳛﺴﺐ ﻣﻌﺎﻣﻞ‬
‫ﺍﻟﺘﻔﺮﻃﺢ )‪ (K‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪73‬‬
‫ﺣﻴﺚ ﺃﻥ ﺍﳌﻘﺪﺍﺭ ‪ ∑ ( x − x) 4 n‬ﻫﻮ ﺍﻟﻌﺰﻡ ﺍﻟﺮﺍﺑﻊ ﺣﻮﻝ ﺍﻟﻮﺳـﻂ ‪s ،‬‬
‫ﻫـﻮ ﺍﻻﳓـﺮﺍﻑ‬
‫ﺍﳌﻌﻴﺎﺭﻱ ‪ .‬ﻭﻣﻌﺎﻣﻞ ﺍﻟﺘﻔﺮﻃﺢ ﰲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﻳﺴﺎﻭﻱ ‪ ، 3‬ﻭﻣﻦ ﰒ ﳝﻜﻦ ﻭﺻﻒ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﻣـﻦ‬
‫ﺣﻴﺚ ﺍﻟﺘﻔﺮﻃﺢ ‪ ،‬ﻭﺍﻟﺘﺪﺑﺐ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ‪ k=3‬ﻛﺎﻥ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻌﺘﺪﻻ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ‪ k>3‬ﻛﺎﻥ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﻣﺪﺑﺒﺎ ‪.‬‬
‫• ﺇﺫﺍ ﻛﺎﻥ ‪ k<3‬ﻛﺎﻥ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻨﺒﺴﻄ ﺎ ) ﻣﻔﺮﻃﺤﺎ ( ‪.‬‬
‫ﻭﺑﺎﻟﺘﻄﺒﻴﻖ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺜﺎﻝ ﺭﻗﻢ ) ‪ ( 1 -5‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪584‬‬
‫‪58‬‬
‫‪74‬‬
‫‪80‬‬
‫‪91‬‬
‫‪x = 73‬‬
‫‪52‬‬
‫‪78‬‬
‫‪85‬‬
‫‪66‬‬
‫‪0‬‬
‫‪-15‬‬
‫‪1‬‬
‫‪18‬‬
‫‪7‬‬
‫‪5‬‬
‫‪-21‬‬
‫‪12‬‬
‫‪-7‬‬
‫‪1258‬‬
‫‪225‬‬
‫‪1‬‬
‫‪324‬‬
‫‪49‬‬
‫‪25‬‬
‫‪441‬‬
‫‪144‬‬
‫‪49‬‬
‫‪376246‬‬
‫‪50625‬‬
‫‪1‬‬
‫‪104976‬‬
‫‪2401‬‬
‫‪625‬‬
‫‪194481‬‬
‫‪20736‬‬
‫‪2401‬‬
‫‪x‬‬
‫)‪( x − x‬‬
‫‪( x − x) 2‬‬
‫‪( x − x) 4‬‬
‫ﻭﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺃﻋﻼﻩ ﳒﺪ ﺃﻥ ‪:‬‬
‫‪Σ( x − x ) 2‬‬
‫‪1258‬‬
‫=‬
‫‪= 13.406‬‬
‫‪n −1‬‬
‫‪7‬‬
‫‪1‬‬
‫‪1‬‬
‫‪( x − x) 2 = (376246) = 47030.75‬‬
‫∑‬
‫‪n‬‬
‫‪8‬‬
‫=‪s‬‬
‫ﺇﺫﺍ ﻣﻌﺎﻣﻞ ﺍﻟﺘﻔﺮﻃﺢ ﻫﻮ ‪:‬‬
‫‪47030.75‬‬
‫‪47030.75‬‬
‫=‬
‫‪= 1.456‬‬
‫‪4‬‬
‫)‪(13.406‬‬
‫)‪(32299.58‬‬
‫=‪K‬‬
‫ﺇﺫﺍ ﺷﻜﻞ ﺗﻮﺯﻳﻊ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺪﺭﺟﺎﺕ ﻣﻔﺮﻃﺢ ‪.‬‬
‫‪ 4/5‬ﻣﻘﺎﻳﻴﺲ ﺃﺧﺮﻯ ﻟﻮﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ‬
‫ﻫﻨﺎﻙ ﻣﻘﺎﻳﻴﺲ ﺃﺧﺮﻯ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﰲ ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ ،‬ﻣﻦ ﺣﻴﺚ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ‪،‬‬
‫ﻭﻣﺪﻯ ﺍﻧﺘﺸﺎﺭﻫﺎ‪ ،‬ﻭﻣﻦ ﻫﺬﻩ ﺍﳌﻘﺎﻳﻴﺲ ‪ ،‬ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ 1/4/5‬ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ‬
‫‪Variation Coefficient‬‬
‫ﺃﺣﺪ ﻣﻘﺎﻳﻴﺲ ﺍﳌﺴﺘﺨﺪﻣﺔ ﻟﻘﻴﺎﺱ ﺩﺭﺟﺔ ﺍﻟﺘﺸﺘﺖ‪ ،‬ﻭﻓﻴﻪ ﳛﺴﺐ ﻗﻴﻤﺔ ﺍﻟﺘﺸﺘﺖ ﻛﻨﺴﺒﺔ ﻣﺌﻮﻳﺔ ﻣﻦ ﻗﻴﻤﺔ‬
‫ﻣﻘﻴﺎﺱ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻔﻀﻞ ﺍﺳﺘﺨﺪﺍﻡ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﻋﻨﺪ ﻣﻘﺎﺭﻧﺔ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺑﻴﺎﻧﺎﺕ‬
‫ﳎﻤﻮﻋﺘﲔ ﺃﻭ ﺃﻛﺜﺮ ﳐﺘﻠﻔﺔ ﳍﺎ ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ ﳐﺘﻠﻔﺔ‪ ،‬ﺑﺪﻻ ﻣﻦ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ‪ ،‬ﺃﻭ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ‪،‬‬
‫‪74‬‬
‫ﻷﻥ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺍﻟﺘﻐﲑﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ ﰲ ﺍﻟﻘﻴﻢ ﻋﻦ ﻣﻘﻴﺎﺱ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ ‪ ،‬ﺑﻴﻨﻤﺎ ﻳﻌﺘﻤﺪ‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺃﻭ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ﻋﻠﻰ ﺍﻟﺘﻐﲑﺍﺕ ﺍﳌﻄﻠﻘﺔ ﻟﻠﻘﻴﻢ‪ ،‬ﻓﻌﻨﺪ ﻣﻘﺎﺭﻧﺔ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺑﻴﺎﻧﺎﺕ‬
‫ﺍﻷﻃﻮﺍﻝ ﺑﺎﻟﺴﻨﺘﻤﺘﺮ‪ ،‬ﻭ ﺑﺒﻴﺎﻧﺎﺕ ﺍﻷﻭﺯﺍﻥ ﺑﺎﻟﻜﻴﻠﻮﺟﺮﺍﻡ‪ ،‬ﻻ ﳝﻜﻦ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﰲ ﻫﺬﻩ‬
‫ﺍﳌﻘﺎﺭﻧﺔ‪ ،‬ﻭﺇﳕﺎ ﻳﺴﺘﺨﺪﻡ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻄﻠﻖ ﻋﻠﻴﻪ ﲟﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨ ﺴﱯ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻌﺾ‬
‫ﻫﺬﻩ ﺍﳌﻌﺎﻣﻼﺕ‪.‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ‬
‫ﻭﳛﺴﺐ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﺮﺑﻴﻌﻲ‬
‫ﻭﳛﺴﺐ ﻫﺬﺍ ﺍﳌﻌﺎﻣﻞ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻣﺜﺎﻝ )‪( 2 -5‬‬
‫ﰎ ﺍﺧﺘﻴﺎﺭ ﳎﻤﻮﻋﺘﲔ ﻣﻦ ﺍﻷﻏﻨﺎﻡ ﺍﻟﻨﺎﻣﻴﺔ ﰲ ﺃﺣﺪ ﺍﳌﺰﺍﺭﻉ‪ ،‬ﻭﰎ ﺍ ﺳﺘﺨﺪﺍﻡ ﻋﻠﻴﻘﺔ ﻣﻌﻴﻨﺔ ﻟﺘﺴﻤﲔ‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ‪ ،‬ﺑﻴﻨﻤﺎ ﰎ ﺍﺳﺘﺨﺪﺍﻡ ﻋﻠﻴﻘﺔ ﺃﺧﺮﻯ ﻟﺘﺴﻤﲔ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ ‪ ،‬ﻭﺑﻌﺪ ﻓﺘﺮﺓ ﺯﻣﻨﻴﺔ ﰎ ﲨﻊ ﺑﻴﺎﻧﺎﺕ‬
‫ﻋﻦ ﺃﻭﺯﺍﻥ ﺍ‪‬ﻤﻮﻋﺘﲔ ﺑﺎﻟﻜﻴﻠﻮﺟﺮﺍﻡ ‪ ،‬ﻭﰎ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻟﺘﺎﻟﻴﺔ ‪.‬‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ‬
‫‪198‬‬
‫‪173‬‬
‫‪25‬‬
‫‪23‬‬
‫ﺍﳌﻘﺎﻳﻴﺲ‬
‫=‪x‬‬
‫=‪s‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ﻣﻘﺎﺭﻧﺔ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺍ‪‬ﻤﻮﻋﺘﲔ‪:‬‬
‫ﺍﳊـــﻞ ‪:‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ ﻟﻠﻤﺠﻤﻮﻋﺔ ﺍﻷﻭﱃ‪:‬‬
‫‪23 ×100 = 13.3%‬‬
‫‪v.c1 = s ×100 = 173‬‬
‫‪x‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ ﻟﻠﻤﺠﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ ‪:‬‬
‫‪25 ×100 = 12.8%‬‬
‫‪v.c2 = s ×100 = 195‬‬
‫‪x‬‬
‫‪75‬‬
‫ﻳﻼﺣﻆ ﺃﻥ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺃﻭﺯﺍﻥ ﺍ‪ ‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻗﻞ ﻣﻦ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺃﻭﺯﺍﻥ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ ‪.‬‬
‫‪ 2/4/5‬ﺗﻘﺪﻳﺮ ﻣﺪﻯ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫ﳝﻜﻦ ﻗﻴﺎﺱ ﺩﺭﺟﺔ ﺗﺸﺘﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺧﻼﻝ ﺗﻘﺪﻳﺮ ﺍﳌﺪﻯ ﺍﻟﺬﻱ ﻳﻘﻊ ﺩﺍﺧﻠﻪ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴـﺎﺭﻱ‬
‫ﻭﻫﻮ ‪:‬‬
‫ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺪﻯ ﺍﻟﺬﻱ ﻳﻘﻊ ﻓﻴﻪ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺻﻐﲑ ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﺃﻥ ﺗﺸﺘﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺻﻐﲑ‪،‬‬
‫ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺪﻯ ﻛﺒﲑ ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﻭﺟﻮﺩ ﺗﺸﺘﺖ ﻛﺒﲑ ﰲ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻭﺇﺫﺍ ﻭﻗﻊ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺧﺎﺭﺝ‬
‫ﺍﳌﺪﻯ ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﻭﺟﻮﺩ ﻗﻴﻢ ﺷﺎﺫﺓ ‪.‬‬
‫‪ 3/4/5‬ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ‬
‫‪Standardized degree‬‬
‫ﺗﻘﻴﺲ ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻘﻴﻤﺔ ﻣﻌﻴﻨﺔ ﻋﺪﺩ ﻭﺣﺪﺍﺕ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺍﻟﱵ ﺗﺰﻳﺪ ‪‬ﺎ ﺗﻘﻞ ‪‬ﺎ ﻫﺬﻩ‬
‫ﺍﻟﻘﻴﻤﺔ ﻋﻦ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻥ ‪ ، x1 , x2 ,..., xn‬ﻫﻲ ﻗﻴﻢ ﺍﳌﺸﺎﻫﺪﺍﺕ‪ ،‬ﻭﻋﺪﺩﻫﺎ ‪ ، n‬ﻭﻛﺎﻥ ‪x‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﳍﺬﻩ ﺍﻟﻘﻴﻢ‪ s ،‬ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‪ ،‬ﻓﺈﻥ ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻠﻘﻴﻤـﺔ ‪ ، x‬ﻭﻳﺮﻣـﺰ ﳍـﺎ‬
‫ﺑﺎﻟﺮﻣﺰ ‪ ، z‬ﲢﺴﺐ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻫﻮ‬
‫ﻭﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﻩ ﺍﻟﺪﺭﺟﺔ ﰲ ﻣﻘﺎﺭﻧﺔ ﻗﻴﻤﺘﲔ ﺃﻭ ﺃﻛﺜﺮ ﳐﺘﻠﻔﺔ ﻣﻦ ﺣﻴﺚ ﻭﺣﺪﺍﺕ ﺍﻟﻘﻴﺎﺱ ‪.‬‬
‫ﻣﺜــﺎﻝ ) ‪( 3 -5‬‬
‫ﰲ ﺍﳌﺜﺎﻝ ) ‪ ( 2 -5‬ﺍﻟﺴﺎﺑﻖ ﺇﺫﺍ ﰎ ﺍﺧﺘﻴﺎﺭ ﺃﺣﺪ ﺍﻷﻏﻨﺎﻡ ﻣﻦ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ ﺑﻌﺪ ﺗﻄﺒﻴﻖ ﺍﻟﱪﻧـﺎﻣﺞ ‪،‬‬
‫ﻭﻭﺟﺪ ﺃﻥ ﻭﺯﻧﻪ ‪ 178‬ﻛﻴﻠﻮﺟﺮﺍﻡ‪ ،‬ﻭﺑﺎﳌﺜﻞ ﺃﺣﺪ ﺍﻷﻏﻨﺎﻡ ﻣﻦ ﺍ‪‬ﻤﻮﻋـﺔ ﺍﻟﺜﺎﻧﻴـﺔ‪ ،‬ﻭﻭﺟـﺪ ﺃﻥ ﻭﺯﻧـﻪ ‪180‬‬
‫ﻛﻴﻠﻮﺟﺮﺍﻡ ‪ ،‬ﻗﺎﺭﻥ ﺑﲔ ﻫﺬﻳﻦ ﺍﻟﻘﻴﻤﺘﲔ ﻣﻦ ﺣﻴﺚ ﺃﳘﻴﺔ ﻛﻞ ﻣﻨﻬﺎ ﰲ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﱵ ﺗﻨﺘﻤﻲ ﺇﻟﻴﻬﺎ ‪.‬‬
‫ﺍﳊــﻞ‬
‫ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺘﺎﺣﺔ ﻋﻦ ﻛﻞ ﻣﻦ ﺍ‪‬ﻤﻮﻋﺘﲔ ﻫﻲ‪:‬‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟ ﺜﺎﻧﻴﺔ‬
‫ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ‬
‫‪198‬‬
‫‪173‬‬
‫‪25‬‬
‫‪23‬‬
‫=‪x‬‬
‫=‪s‬‬
‫‪76‬‬
‫‪180‬‬
‫ﺍﻟﻘﻴﻤ ﺔ ‪.‬‬
‫‪178‬‬
‫ﻟ ﻠﻤﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﻮﺣﺪﺗﲔ ﻣﻦ ﺣﻴﺚ ﺃ ﳘﻴﺔ ﻭﺯﻥ ﻛﻞ ﻣﻨﻬﺎ ﰲ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﱵ ﺗ ﻨﺘﻤﻲ ﺇﻟﻴﻬﺎ‪ ،‬ﻳـﺘﻢ ﺣـﺴﺎﺏ‬
‫ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻮﺯﻥ ﻛﻞ ﻣﻨﻬﺎ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪. ( 10 -5‬‬
‫• ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻮﺯﻥ ﺍﻟﻮﺣﺪﺓ ﺍﳌﺴﺤﻮﺑﺔ ﻣﻦ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻷﻭﱃ ) ‪ ( 178 Kg.‬ﻫﻲ ‪:‬‬
‫‪= 0 . 22‬‬
‫‪178 − 173‬‬
‫‪23‬‬
‫=‬
‫‪x− x‬‬
‫‪s‬‬
‫= ‪z‬‬
‫• ﺍﻟﺪﺭﺟﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻮﺯﻥ ﺍﻟﻮﺣﺪﺓ ﺍﳌﺴﺤﻮﺑﺔ ﻣﻦ ﺍ‪‬ﻤﻮﻋﺔ ﺍﻟﺜﺎﻧﻴﺔ ) ‪ ( 180 Kg.‬ﻫﻲ ‪:‬‬
‫‪= − 0 . 75‬‬
‫‪180 − 198‬‬
‫‪25‬‬
‫=‬
‫‪x− x‬‬
‫‪s‬‬
‫= ‪z‬‬
‫• ﳒﺪ ﺃﻥ ﺍﻟﻮﺯﻥ ‪ 178‬ﻛﻴﻠﻮﺟﺮﺍﻡ ﻳﺰﻳﺪ ﻋﻦ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑـ ‪ 0.22‬ﺍﳓﺮﺍﻑ ﻣﻌﻴﺎﺭ ﻱ ‪ ،‬ﺑﻴﻨﻤﺎ ﳒﺪ ﺃﻥ‬
‫ﺍﻟﻮﺯﻥ ‪ 180‬ﻛﻴﻠﻮﺟﺮﺍﻡ ﻳﻘﻞ ﻋﻦ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﺑـ ‪ 0.75‬ﺍﳓﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ ‪ .‬ﻭﻣﻦ ﰒ ﺍﻟﻮﺯﻥ ﺍﻷﻭﻝ‬
‫ﺃﳘﻴﺘﻪ ﺍﻟﻨﺴﺒﻴﺔ ﺃﻋﻠﻰ ﻣﻦ ﺍﻟﻮﺯﻥ ﺍﻟﺜﺎﱐ ‪.‬‬
‫‪ 4/4/5‬ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﻌﻤﻠﻴﺔ‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪ ، x1 , x2 ,..., xn :‬ﻭﻛـﺎﻥ ‪x‬‬
‫ﺍﳌﺸﺎﻫﺪﺍﺕ‪ s ،‬ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﳍﺎ ‪ ،‬ﻳﻜﻮﻥ ﻣﻨﺤﲎ ﺗﻮﺯﻳﻊ ﻫﺬﻩ ﺍﳌﺸﺎﻫﺪﺍﺕ ﻣﺘﻤﺎﺛﻞ‪ ،‬ﺇﺫﺍ ﲢﻘﻖ ﺍﻵﰐ ‪:‬‬
‫• ‪ 68%‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ ﻗﻴﻢ ﻫﺬﻩ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﺘﺮﺍﻭﺡ ﺑﲔ ‪. x ± s‬‬
‫• ‪ 95%‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ ﻗﻴﻢ ﻫﺬﻩ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﺘﺮﺍﻭﺡ ﺑﲔ ‪. x ± 2s‬‬
‫• ‪ 99%‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ ﻗﻴﻢ ﻫﺬﻩ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﺘﺮﺍﻭﺡ ﺑﲔ ‪. x ± 3s‬‬
‫ﻫـﻮ ﺍﻟﻮﺳـﻂ ﺍﳊـﺴﺎﰊ ﳍـﺬﻩ‬
‫ﻭﳝﻜﻦ ﺑﻴﺎﻥ ﺫﻟﻚ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(3 -5‬‬
‫ﺷﻜﻞ ﺗﻮﺯﻳﻊ ﺍﻟﻘﻴﻢ ﻃﺒﻘﺎ ﻟﻠﻘﺎﻋﺪﺓ ﺍﻟﻌﻤﻠﻴﺔ‬
‫‪ 5/4/4‬ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﻨﻈﺮﻳﺔ‬
‫ﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻘﺎﻋﺪﺓ ﺑﻘﺎﻋﺪﺓ " ﺗﺸﻴﺒﺸﻴﻒ " ‪ ،‬ﻭﻓﻜﺮﺓ ﻫﺬﻩ ﺍﻟﻘﺎﻋﺪﺓ ‪ :‬ﰲ ﺃﻯ ﺗﻮﺯﻳﻊ ﻣﻦ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ‬
‫ﺍﻟﻨﻈﺮﻳﺔ ‪ ،‬ﻓﺈﻧﻪ ﻋﻠﻰ ﺍﻷﻗﻞ ‪ (1 − 1 k 2 ) %‬ﻣﻦ ﻗﻴﻢ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﻘﻊ ﰲ ﺍﳌﺪﻯ ‪. k > 1 ، x ± ks‬‬
‫ﻭﻃﺒﻘﺎ ﳍﺬﻩ ﺍﻟﻘﺎﻋﺪﺓ‪ ،‬ﻓﺈﻧﻪ ﻋﻠﻰ ﺍﻷﻗﻞ ‪ 75%‬ﻣﻦ ﻗﻴﻢ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﻘﻊ ﰲ ﺍﳌﺪﻯ ‪ ، x ± 2s‬ﻋﻠﻰ‬
‫ﺍﻷﻗﻞ ‪ 89%‬ﻣﻦ ﻗﻴﻢ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺗﻘﻊ ﰲ ﺍﳌﺪﻯ ‪. x ± 3s‬‬
‫‪77‬‬
‫‪ 6/4/5‬ﺷﻜﻞ "ﺑﻮﻛﺲ"‬
‫‪Box Plot‬‬
‫ﺷﻜﻞ " ﺑﻮﻛﺲ " ﺍﻟﺒﻴﺎﱐ ﻫﻮ ﺻﻨﺪﻭﻕ ﻳﺸﺒﻪ ﺍﳌﺴﺘﻄﻴﻞ‪ ،‬ﺑﺪﺍﻳﺔ ﺣﺎﻓﺘﻪ ﺍﻟﻴﺴﺮﻯ ﻫﻮ ﺍﻟﺮﺑ ﻴ ﻊ ﺍﻷﻭﻝ ‪Q 1‬‬
‫ﻭ‪‬ﺎﻳﺔ ﺣﺎﻓﺘﻪ ﺍﻟﻴﻤﲎ ﻫﻮ ﺍﻟﺮﺑ ﻴ ﻊ ﺍﻟﺜﺎﻟﺚ ‪ ، Q 3‬ﻭﻳﻘﺴﻢ ﺍﻟﺮﺑﻴ ﻊ ﺍﻟﺜﺎﱐ ) ﺍﻟﻮﺳﻴﻂ ( ‪ Med‬ﺍﳌﺴﺘﻄﻴﻞ ﺇﱃ ﺟﺰﺃﻳﻦ‪،‬‬
‫ﻭﳜﺮﺝ ﻣﻦ ﻛﻞ ﺣﺎﻓﺔ ﻣﻦ ﺣﺎﻓﺘﻴﻪ ﺷﻌﲑﺓ‪ ،‬ﻭﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﺭﲰﺔ " ﺑﻮﻛﺲ " ﺍﻟﺒﻴﺎﱐ‪:‬‬
‫ﺷﻜﻞ )‪(4 -5‬‬
‫ﺭﲰﺔ ﺑﻮﻛﺲ ﺍﻟﺒﻴﺎﱐ‬
‫ﻭ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺷﻜﻞ " ﺑﻮﻛﺲ " ﺍﻟﺒﻴﺎﱐ ‪ ،‬ﺃﻋﻼﻩ ﰲ ﻭﺻﻒ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﻦ ﺣﻴﺚ ﺍﻵﰐ‪:‬‬
‫‪ -1‬ﻣﻦ ﺣﻴﺚ ﺍﻟﺘﻤﺎﺛﻞ ‪ :‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻮﺳﻴﻂ ‪ Med‬ﻳﻘﻊ ﰲ ﺍﳌﻨﺘﺼﻒ ﻋﻠﻰ ﺑﻌﺪ ﻣﺘﺴﺎﻭﻱ ﻣ ﻦ ﺍﻟﺮﺑﺎﻋﻴﲔ ‪Q 3 ,‬‬
‫‪ Q 1‬ﻛﺎﻥ ﺍﻟﺘﻮﺯﻳﻊ ﻣﺘﻤﺎﺛﻼ ‪ ،‬ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻮﺳﻴﻂ ‪ Med‬ﺃﻗﺮﺏ ﺇﱃ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﻭﻝ ‪ Q 1‬ﻣﻦ ﺍﻟﺮﺑﺎﻋﻲ‬
‫ﺍﻟﺜﺎﻟﺚ ‪ Q 3‬ﻛﺎﻥ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪ ،‬ﻭﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻮﺳﻴﻂ ‪ Med‬ﺃﻗﺮﺏ ﺇﱃ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻟﺜﺎﻟﺚ‬
‫‪ Q 3‬ﻣﻦ ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﻭﻝ ‪ Q 1‬ﻛﺎﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪ .‬ﻭﻳﻈﻬﺮ ﺫﺍﻟﻚ ﻛﻤﺎ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(5 -5‬‬
‫ﻭﺻﻒ ﺷﻜﻞ ﺍﻻﻟﺘﻮﺍﺀ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺭﲰﺔ ﺑﻮﻛﺲ ﺍﻟﺒﻴﺎﱐ‬
‫‪ -2‬ﻣﻦ ﺣﻴﺚ ﺗﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ ‪ :‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺼﻨﺪﻭﻕ ‪ Box‬ﺿﻴﻖ ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﺗﺮﻛﺰ ﻧﺴﺒﺔ ﻛﺒﲑﺓ ﻣﻦ‬
‫ﺍﻟﺒﻴﺎﻧﺎﺕ ﺣﻮﻝ ﺍﻟﻮﺳﻴﻂ‪ ،‬ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺼﻨﺪﻭﻕ ﻭﺍﺳﻊ ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﺍﳔﻔﺎﺽ ﻧﺴﺒﺔ ﺗﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺣﻮﻝ‬
‫ﺍﻟﻮﺳﻴﻂ ‪ ،‬ﻭﺍﻟﺸﻜﻞ ﺍﻟﺘﺎ ﱄ ﻳﺒﲔ ﺫﻟﻚ‪.‬‬
‫ﺷﻜﻞ )‪(6 -5‬‬
‫ﻭﺻﻒ ﺩﺭﺟﺔ ﺗﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺭﲰﺔ ﺑﻮﻛﺲ ﺍﻟﺒﻴﺎﱐ‬
‫‪ -3‬ﻣﻦ ﺣﻴﺚ ﻭﺟﻮﺩ ﻗﻴﻢ ﺷﺎﺫﺓ ‪ :‬ﺇﺫﺍ ﻭﻗﻌﺖ ﻗﻴﻢ ﺑﻌﺾ ﺍﳌﺸﺎﻫﺪﺍﺕ ﺧﺎﺭﺝ ﺍﳊﺪﻳﻦ ﺍﻷﺩﱏ ﻭﺍﻷﻋﻠﻰ ﺍﻟﺸﺎﺫ ‪،‬‬
‫‪78‬‬
‫ﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﻘﻴﻢ ﺷﺎﺫﺓ ‪ ،‬ﻭﺗﻈﻬﺮ ﻫﺬﻩ ﺍﻟﻘﻴﻢ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ﰲ ﺷﻜﻞ ﳒﻮﻡ )*( ‪ ،‬ﻭﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ﻳﺒﲔ‬
‫ﻃﺮﻳﻘﺔ ﻋﺮ ﺽ ﺍﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ﺍﻟﺪﻧﻴﺎ ﻭﺍﻟﻌﻠﻴﺎ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ‪.‬‬
‫ﺷﻜﻞ )‪(7 -5‬‬
‫ﲢﺪﻳﺪ ﺍﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺭﲰﺔ ﺑﻮﻛﺲ ﺍﻟﺒﻴﺎﱐ‬
‫ﻃﺮﻳﻘﺔ ﺣﺴﺎﺏ ﺣﺪﻱ ﺍﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ‬
‫ﳊﺴﺎﺏ ﺍﳊﺪﻳﻦ ﺍﻷﻋﻠﻰ ﻭﺍﻷﺩﱏ ﻟﻠﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ‪ ،‬ﻳﺘﺒﻊ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫• ﺣﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﺎﻋﻲ‪:‬‬
‫‪Q = (Q 3 -Q1 )/2‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍ ﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ )‪ ، (Low‬ﻭﻫﻮ‪Low = Q1 -3Q :‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ )‪ ، (Upp‬ﻭﻫﻮ‪UPP = Q 3+ 3Q :‬‬
‫ﻭﺇﺫﺍ ﻭﻗﻌﺖ ﻗﻴﻢ ﺧﺎﺭﺝ ﺍﳊﺪﻳﻦ ﺗﻌﺘﱪ ﻫﺬﻩ ﺍﻟ ﻘﻴﻢ ﻣﻦ ﺍﻟﻘﻴﻢ ﺍﻟ ﺸﺎﺫﺓ‪.‬‬
‫ﻣﺜـــﺎﻝ)‪(4-5‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺍﻹﻧﻔﺎﻕ ﺍﻻﺳﺘﻬﻼﻛﻲ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﻟﻌﻴﻨﺔ ﺣﺠﻤﻬﺎ ‪ 12‬ﺃﺳﺮﺓ‪:‬‬
‫‪2‬‬
‫‪7‬‬
‫‪8‬‬
‫‪6‬‬
‫‪11‬‬
‫‪5‬‬
‫‪10‬‬
‫‪9‬‬
‫‪3‬‬
‫‪18‬‬
‫‪10‬‬
‫‪6‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ‪:‬‬
‫‪ -1‬ﺭﺳﻢ ﺷﻜﻞ " ﺑﻮﻛﺲ" ﺍﻟﺒﻴﺎﱐ‬
‫‪ -2‬ﺍﻛﺘﺐ ﲢﻠﻴﻞ ﻭﺻﻔﻲ ﳍ ﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ‪.‬‬
‫ﺍﳊــــﻞ‬
‫‪ -1‬ﺭﺳﻢ ﺷﻜﻞ " ﺑﻮﻛﺲ ﺍﻟﺒﻴﺎﱐ "‬
‫• ﺗﺮﺗﻴﺐ ﺍﻟﻘﻴﻢ ﺗﺼﺎﻋﺪﻳﺎ ‪.‬‬
‫‪18‬‬
‫‪11‬‬
‫‪10‬‬
‫‪10‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪6‬‬
‫• ﲢﺪﻳﺪ ﺃﻗﻞ ﻭﺃﻋﻠﻰ ﺇﻧﻔﺎﻕ ﺍﺳﺘﻬﻼﻛﻲ‪ ،‬ﻭﺣﺴﺎﺏ ﺍﻟﺮﺑﺎﻋﻴﺎﺕ‪:‬‬
‫‪Max = 18‬‬
‫‪Min = 2‬‬
‫ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﺩﱏ ‪: Q 1‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ‪(n+ 1)(1/4)= (13/4)= 3.25‬‬
‫ﺇﺫﺍ ﻗﻴﻤﺔ ‪ Q1‬ﻫﻲ‪Q1 = 5 + 0.25(6 − 5) = 5.25 :‬‬
‫ﺍﻟﻮﺳﻴﻂ ‪: Med‬‬
‫‪5‬‬
‫‪3‬‬
‫‪2‬‬
‫‪79‬‬
‫ﻣﻮﻗﻊ ﺍﻟﻮﺳﻴﻂ ‪(n+ 1)(1/2)= (13/2)= 6.5‬‬
‫ﺇﺫﺍ ﻗﻴﻤﺔ ‪ Med‬ﻫﻲ ‪Med = 7 + 0.5(8 − 7) = 7.5 :‬‬
‫ﺍﻟﺮﺑﺎﻋﻲ ﺍﻷﻋﻠﻰ ‪: Q 3‬‬
‫ﻣﻮﻗﻊ ﺍﻟﺮﺑﺎﻋﻲ ‪(n+1)(3/4)=(13)(3/4)=9.75‬‬
‫ﺇﺫﺍ ﻗﻴﻤﺔ ‪ Q3‬ﻫﻲ‪Q3 = 10 + 0.75(10 − 10) = 10 :‬‬
‫• ﺣﺴﺎﺏ ﺍﳊﺪﻳﻦ ﺍﻷﻋﻠﻰ ﻭﺍﻷﺩﱏ ﺍﻟﺸﺎﺫ ‪.‬‬
‫ﺍﻻﳓﺮﺍﻑ ﺍﻟﺮﺑﻴﻌﻲ ‪Q = (10 − 5.25) / 2 = 2.375 :‬‬
‫ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ‪:‬‬
‫‪Low = Q1 − 3Q = 5.25 − 3(2.375) = −1.875‬‬
‫ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ‪:‬‬
‫‪Upp = Q3 + 3Q = 10 + 3(2.375) = 17.125‬‬
‫• ﺭﺳﻢ ﺷﻜﻞ " ﺑﻮﻛ ﺲ"‬
‫‪ -2‬ﲢﻠﻴﻞ ﻭﺻﻔﻲ ﻣﻦ ﺧﻼﻝ ﺍﻟﺸﻜﻞ ﺃﻋﻼﻩ‪:‬‬
‫• ﺩﺭﺟﺔ ﺍﻟﺘﻤﺎﺛﻞ ‪ :‬ﺍﻟﺘﻮﺯﻳﻊ ﻗﺮﻳﺐ ﺟﺪﺍ ﻣﻦ ﺍﻟﺘﻤﺎﺛﻞ ﻟﻮﻗﻮﻉ ﺍﻟﻮﺳﻴﻂ ﰲ ﺍﳌﻨﺘﺼﻒ ‪.‬‬
‫• ﺗﺮﻛﺰ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ :‬ﺣﻮﺍﱄ ‪ 60%‬ﻣﻦ ﺍﻟﻘﻴﻢ ﺗﺘﺮﻛﺰ ﺣﻮﻝ ﺍﻟﻮﺳﻴﻂ‪.‬‬
‫• ﺍﻟﻘﻴﻢ ﺍﻟﺸﺎﺫﺓ ‪ :‬ﺗﻮﺟﺪ ﻗﻴﻤﺔ ﺷﺎﺫﺓ ﻋﻠﻴﺎ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ‪.18‬‬
‫ﻭﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺷﻜﻞ " ﺑﻮﻛﺲ " ﺍﻟﺒﻴﺎﱐ ﳌﻘﺎﺭﻧﺔ ﳎﻤﻮﻋﺘ ﲔ ﺃﻭ ﺃﻛﺜﺮ ‪.‬‬
‫‪80‬‬
‫ﺍﻟﻔﺼــــﻞ ﺍﻟﺴﺎﺩﺱ‬
‫ﺍﻻﺭﺗﺒﺎﻁ ﻭﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ‬
‫‪ 1/6‬ﻣﻘـــﺪﻣﺔ‬
‫ﰲ ﺍﻟﻔﺼ ﻮﻝ ﺍﻟﺜﻼﺙ ﺍﻟﺴﺎﺑﻘﺔ ﰎ ﻋﺮﺽ ﺑﻌﺾ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻟﻮﺻﻔﻴﺔ‪ ،‬ﻣﺜﻞ ﻣﻘﺎﻳﻴﺲ ﺍﻟﱰﻋﺔ ﺍﳌﺮﻛﺰﻳﺔ‪،‬‬
‫ﻭﺍﻟﺘﺸﺘﺖ‪ ،‬ﻭﻣﻘﺎﻳﻴﺲ ﺍﻻﻟﺘﻮﺍﺀ ﻭﺍﻟﺘﻔﺮﻃﺢ‪ ،‬ﻭﻏﲑﻫﺎ ﻣﻦ ﺍﳌﻘﺎﻳﻴﺲ ﺍﻷﺧﺮﻯ ﻭﺍﻟﱵ ﳝﻜﻦ ﻣﻦ ﺧﻼﳍﺎ ﻭﺻﻒ ﺷﻜﻞ‬
‫ﺗﻮﺯﻳﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﱵ ﰎ ﲨﻌﻬﺎ ﻋﻦ ﻣﺘﻐﲑ ﻭﺍﺣﺪ‪ ،‬ﻭﻧﻨﺘﻘﻞ ﻣﻦ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﺇﱃ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﻣﺘﻐﲑﻳﻦ‬
‫ﺃﻭ ﺃﻛﺜﺮ‪ ،‬ﻭﻳﺘﻨﺎﻭﻝ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﺩﺭﺍﺳﺔ ﻭﲢﻠﻴﻞ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻣﺘﻐﲑﻳﻦ‪ ،‬ﻭﺫﻟﻚ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻌﺾ ﻃﺮﻕ ﺍﻟﺘﺤﻠﻴﻞ‬
‫ﺍﻹﺣﺼﺎﺋﻲ ﻣﺜﻞ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ ‪ ،‬ﻭﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻫﺘﻤﺎﻡ ﺍﻟﺒﺎﺣﺚ ﻫﻮ ﺩﺭﺍﺳﺔ ﺍﻟﻌﻼﻗﺔ ﺑﲔ‬
‫ﻣﺘﻐﲑﻳﻦ ﺍﺳﺘﺨﺪﻡ ﻟﺬﻟﻚ ﺃﺳﻠﻮﺏ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ‪ ،‬ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﻫﺘﻤﺎﻣﻪ ﺑﺪﺭﺍﺳﺔ ﺃﺛﺮ ﺃﺣﺪ ﺍﳌﺘﻐﲑﻳﻦ ﻋﻠﻰ ﺍﻵﺧﺮ‬
‫ﺍﺳﺘﺨﺪﻡ ﻟﺬﻟﻚ ﺃﺳﻠﻮﺏ ﲢﻠﻴﻞ ﺍﻻﳓﺪﺍﺭ‪ ،‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ‪:‬‬
‫‪ -1‬ﺍﻹﻧﻔﺎﻕ‪ ،‬ﻭﺍﻟﺪﺧﻞ ﺍﻟﻌﺎﺋﻠﻲ‪.‬‬
‫‪ -2‬ﺳﻌﺮ ﺍﻟﺴﻠﻌﺔ‪ ،‬ﻭﺍﻟﻜﻤﻴﺔ ﺍﳌﻄﻠﻮﺑﺔ ﻣﻨﻬﺎ‪.‬‬
‫‪ -3‬ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﺘﺨﺰﻳﻦ ﺍﳋﺒﺰ‪ ،‬ﻭﻋﻤﻖ ﻃﺮﺍﻭﺓ ﺍﳋﺒﺰ‪.‬‬
‫‪ -4‬ﺗﻘﺪﻳﺮﺍﺕ ﺍﻟﻄﻼﺏ ﰲ ﻣﻘﺮﺭ ﺍﻹﺣﺼﺎﺀ‪ ،‬ﻭﺗﻘﺪﻳﺮﺍ‪‬ﻢ ﰲ ﻣﻘﺮﺭ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ‪.‬‬
‫‪ -5‬ﻛﻤﻴﺎﺕ ﺍﻟﺴﻤﺎﺩ ﺍﳌﺴﺘﺨﺪﻣﺔ‪ ،‬ﻭﻛﻤﻴﺔ ﺍﻹﻧﺘﺎﺝ ﻣﻦ ﳏﺼﻮﻝ ﻣﻌﲔ ﰎ ﺗﺴﻤﻴﺪﻩ ‪‬ﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺴﻤﺎﺩ‪.‬‬
‫‪ -6‬ﻋﺪﺩ ﻣﺮﺍﺕ ﳑﺎﺭﺳﺔ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻟﺮﻳﺎﺿﺔ ﺍﻟﺒﺪﻧﻴﺔ‪ ،‬ﻭﻣﺴﺘﻮﻯ ﺍﻟﻜﻠﺴﺘﺮﻭﻝ ﰲ ﺍﻟﺪﻡ‪.‬‬
‫‪ -7‬ﻭﺯﻥ ﺍﳉﺴﻢ‪ ،‬ﻭﺿﻐﻂ ﺍﻟﺪﻡ‪.‬‬
‫ﻭﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ﰲ ﺍ‪‬ﺎﻝ ﺍﻟﺘﻄﺒﻴﻘﻲ ﻛﺜﲑﺓ‪ ،‬ﻓﺈﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ﺍﳌﺘﻐﲑﻳﻦ )‪( y , x‬‬
‫‪ ،‬ﻭﰎ ﲨﻊ ﺑﻴﺎﻧﺎﺕ‬
‫ﻋﻦ ﺃﺯﻭﺍﺝ ﻗﻴﻢ ﻫﺬﻳﻦ ﺍﳌﺘﻐﲑﻳﻦ‪ ،‬ﻭﰎ ﲤﺜﻴﻠﻬﺎ ﺑﻴﺎﻧﻴﺎ ﻓﻴﻤﺎ ﻳﺴﻤﻰ ﺑﺸﻜﻞ ﺍﻻﻧﺘﺸﺎﺭ‪ ،‬ﻓﺈﻥ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻨﻬﺎ ﺗﺄﺧﺬ‬
‫ﺃﺷﻜﺎﻻ ﳐﺘﻠﻔﺔ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(1 -6‬‬
‫ﺷﻜﻞ ﺍﻻﻧﺘﺸﺎﺭ ﻟﺒﻴﺎﻥ ﻧﻮﻉ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ‪y , x‬‬
‫‪ 2/6‬ﺍﻻﺭﺗﺒﺎﻁ ﺍﳋﻄﻰ ﺍﻟﺒﺴﻴﻂ‬
‫‪Simple Correlation‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺮﺽ ﻣﻦ ﺍﻟﺘﺤﻠﻴﻞ ﻫﻮ ﲢﺪﻳﺪ ﻧﻮﻉ ﻭﻗﻮﺓ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻣﺘﻐﲑﻳﻦ ‪ ،‬ﻳﺴﺘﺨﺪﻡ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ‬
‫‪ ،‬ﻭﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺮﺽ ﻫﻮ ﺩﺭﺍﺳﺔ ﻭﲢﻠﻴﻞ ﺃﺛﺮ ﺃﺣﺪ ﺍﳌﺘﻐﲑﻳﻦ ﻋﻠﻰ ﺍﻵﺧﺮ ‪ ،‬ﻳﺴﺘﺨﺪﻡ ﲢﻠﻴﻞ ﺍﻻﳓﺪﺍﺭ ‪ ،‬ﻭﰲ‬
‫‪81‬‬
‫ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻳﺘﻢ ﻋﺮﺽ ﺃﺳﻠﻮﺏ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ‪ ،‬ﺃﻱ ﰲ ﺣﺎﻟﺔ ﺍﻓﺘﺮﺍﺽ ﺃﻥ ﺍﻟﻌﻼﻗﺔ ﺑﲔ‬
‫ﺍﳌﺘﻐﲑﻳﻦ ﺗﺄﺧﺬ ﺍﻟﺸﻜﻞ ﺍﳋﻄﻲ ‪ ،‬ﻭﺳﻮﻑ ﳚﺮﻯ ﺣﺴﺎﺑﻪ ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ ‪ ،‬ﻭﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻮﺻﻔﻴﺔ‬
‫ﺍﳌﻘﺎﺳﺔ ﲟﻌﻴﺎﺭ ﺗﺮﺗﻴﱯ ‪.‬‬
‫‪ 1/2/6‬ﺍﻟﻐﺮﺽ ﻣﻦ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺍﳋﻄﻰ ﺍﻟﺒﺴﻴﻂ‬
‫ﺍﻟﻐﺮﺽ ﻣﻦ ﲢﻠﻴﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ ﻫﻮ ﲢﺪﻳﺪ ﻧﻮﻉ ﻭﻗﻮﺓ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻣﺘﻐﲑﻳﻦ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻪ ﰲ‬
‫ﺣﺎﻟﺔ ﺍ‪‬ﺘﻤﻊ ﺑﺎﻟﺮﻣﺰ ‪ ) ρ‬ﺭﻭ ( ‪ ،‬ﻭﰲ ﺣﺎﻟﺔ ﺍﻟﻌﻴﻨﺔ ﺑﺎﻟﺮﻣﺰ ‪ ، r‬ﻭﺣﻴﺚ ﺃﻧﻨﺎ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ‬
‫ﻧﺘﻌﺎﻣﻞ ﻣﻊ ﺑﻴﺎﻧﺎﺕ ﻋﻴﻨﺔ ﻣﺴﺤﻮﺑﺔ ﻣﻦ ﺍ‪‬ﺘﻤﻊ‪ ،‬ﺳﻮﻑ ‪‬ﺘﻢ ﲝﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﰲ ﺍﻟﻌﻴﻨﺔ ‪ r‬ﻛﺘﻘﺪﻳﺮ‬
‫ﳌﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﰲ ﺍ‪‬ﺘﻤﻊ‪ ،‬ﻭﻣﻦ ﺍﻟﺘ ﺤﺪﻳﺪ ﺍﻟﺴﺎﺑﻖ ﻟﻠﻐﺮﺽ ﻣﻦ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ‪ ،‬ﳒﺪ ﺃﻧﻪ ﻳﺮﻛﺰ ﻋﻠﻰ ﻧﻘﻄﺘﲔ‬
‫ﳘﺎ‪:‬‬
‫•‬
‫ﻧﻮﻉ ﺍﻟﻌﻼﻗﺔ‪:‬ـ‬
‫ﻭﺗﺄﺧﺬ ﺛﻼﺙ ﺃﻧﻮﺍﻉ ﺣﺴﺐ ﺇﺷﺎﺭﺓ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪ -1‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺷﺎﺭﺓ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺳﺎﻟﺒﺔ ) ‪ (r < 0‬ﺗﻮﺟﺪ ﻋﻼﻗﺔ ﻋﻜﺴﻴﺔ ﺑﲔ ﺍﳌﺘﻐﲑﻳﻦ‪ ،‬ﲟﻌﲎ ﺃﻥ‬
‫ﺯﻳﺎﺩﺓ ﺃﺣﺪ ﺍﳌﺘﻐﲑﻳﻦ ﻳﺼﺎﺣﺒﻪ ﺍﳔﻔﺎﺽ ﰲ ﺍﳌﺘﻐﲑ ﺍﻟﺜﺎﱐ ‪ ،‬ﻭﺍﻟﻌﻜﺲ‪.‬‬
‫‪ -2‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺷﺎﺭﺓ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻣﻮﺟﺒﺔ ) ‪ (r > 0‬ﺗﻮﺟﺪ ﻋﻼﻗﺔ ﻃﺮﺩﻳﺔ ﺑﲔ ﺍﳌﺘﻐﲑﻳﻦ‪ ،‬ﲟﻌﲎ ﺃﻥ‬
‫ﺯﻳﺎﺩﺓ ﺃﺣﺪ ﺍﳌﺘﻐﲑ ﻳﻦ ﻳ ﺼﺎﺣﺒﻪ ﺯﻳﺎﺩﺓ ﰲ ﺍﳌﺘﻐﲑ ﺍﻟﺜﺎﱐ‪ ،‬ﻭﺍﻟﻌﻜﺲ ‪.‬‬
‫‪ -3‬ﺇﺫﺍ ﻛﺎﻥ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻗﻴﻤﺘﻪ ﺻﻔﺮﺍ ) ‪ ( r = 0‬ﺩﻝ ﺫﻟﻚ ﻋﻠﻰ ﺍﻧﻌﺪﺍﻡ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﳌﺘﻐﲑﻳﻦ ‪.‬‬
‫• ﻗﻮﺓ ﺍﻟﻌﻼﻗﺔ‪:‬ـ‬
‫ﻭﳝﻜﻦ ﺍﳊﻜﻢ ﻋﻠﻰ ﻗﻮﺓ ﺍﻟﻌﻼﻗﺔ ﻣﻦ ﺣﻴﺚ ﺩﺭﺟﺔ ﻗﺮ‪‬ﺎ ﺃﻭ ﺑﻌﺪﻫﺎ ﻋﻦ )‪ ، (±1‬ﺣﻴﺚ‬
‫ﺃﻥ ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺗﻘﻊ ﰲ ﺍﳌﺪﻯ) ‪ ، ( -1 < r < 1‬ﻭﻗﺪ ﺻﻨﻒ ﺑﻌﺾ ﺍﻹﺣﺼﺎﺋﻴﲔ ﺩﺭﺟﺎﺕ‬
‫ﻟﻘﻮﺓ ﺍﻟﻌﻼﻗﺔ ﳝﻜﻦ ﲤﺜﻴﻠﻬﺎ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(2 -6‬‬
‫ﺩﺭﺟﺎﺕ ﻗﻮﺓ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ‬
‫‪ 2/2/6‬ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺍﳋﻄﻰ ﺍﻟﺒﺴﻴﻂ " ﻟﺒﲑﺳﻮﻥ"‬
‫ﰲ ﺣﺎﻟﺔ ﲨﻊ ﺑﻴﺎﻧﺎﺕ ﻋﻦ ﻣﺘﻐﲑﻳﻦ ﻛﻤﻴﲔ )‪x‬‬
‫‪Pearson‬‬
‫‪ ، ( y ,‬ﳝﻜﻦ ﻗﻴﺎﺱ ﺍﻻﺭﺗﺒﺎﻁ ﺑﻴﻨﻬﻤﺎ‪ ،‬ﺑﺎﺳﺘﺨﺪﺍﻡ‬
‫ﻃﺮﻳﻘﺔ "ﺑﲑﺳﻮﻥ " ‪ ، Pearson‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪ :‬ﻗﻴﺎﺱ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻮﺯﻥ ﻭﺍﻟﻄﻮﻝ ‪ ،‬ﻭ ﺍﻟﻌﻼﻗﺔ ﺑﲔ‬
‫ﺍﻹﻧﺘﺎﺝ ﻭﺍﻟﺘﻜﻠﻔﺔ ‪ ،‬ﻭ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻹﻧﻔﺎﻕ ﺍﻻﺳﺘﻬﻼﻛﻲ ﻭﺍﻟﺪﺧﻞ‪ ،‬ﻭ ﺍﻟﻌﻼﻗﺔ ﺑﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﱵ ﺣﺼﻞ ﻋﻠﻴﻬﺎ‬
‫ﺍﻟﻄﺎﻟﺐ ﻭﻋﺪﺩ ﺳﺎﻋﺎﺕ ﺍﻻﺳﺘﺬﻛﺎﺭ ‪ ،‬ﻭﻫ ﻜﺬﺍ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ﻛﺜﲑﺓ ‪.‬‬
‫‪82‬‬
‫ﻭﳊﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﰲ ﺍﻟﻌﻴﻨﺔ ‪ ،‬ﺗﺴﺘﺨﺪﻡ ﺻﻴﻐﺔ " ﺑﲑﺳﻮﻥ " ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫)‪ : S xy = ∑ ( x − x)( y − y) (n − 1‬ﻫﻮ ﺍﻟﺘﻐﺎﻳﺮ ﺑﲔ )‪x‬‬
‫)‪(n − 1‬‬
‫‪2‬‬
‫)‪(n − 1‬‬
‫‪2‬‬
‫)‪∑ ( x − x‬‬
‫)‪∑ ( y − y‬‬
‫‪,‬‬
‫‪،(y‬‬
‫= ‪ : S x‬ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻘﻴﻢ )‪، (x‬‬
‫= ‪ : S y‬ﻫﻮ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻘﻴﻢ )‪. ( y‬‬
‫ﻭﳝﻜﻦ ﺍﺧﺘﺼﺎﺭ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﻣﺜــﺎﻝ )‪(1-6‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﺑ ﺎﻷﻋﻼﻑ ﺍﳋﻀﺮﺍﺀ ﺑﺎﻷﻟﻒ ﻫﻜﺘﺎﺭ‪ ،‬ﻭﺇﲨﺎﱄ ﺇﻧﺘﺎﺝ ﺍﻟﻠﺤﻮﻡ ﺑﺎﻷﻟﻒ ﻃﻦ‪،‬‬
‫ﺧﻼﻝ ﺍﻟﻔﺘﺮﺓ ﻣﻦ ‪ 1995‬ﺣﱴ ﻋﺎﻡ ‪. 2002‬‬
‫‪2002‬‬
‫‪2001‬‬
‫‪2000‬‬
‫‪1999‬‬
‫‪1998‬‬
‫‪1997‬‬
‫‪1996‬‬
‫‪1995‬‬
‫ﺍﻟﺴﻨﺔ‬
‫‪217‬‬
‫‪240‬‬
‫‪214‬‬
‫‪233‬‬
‫‪289‬‬
‫‪297‬‬
‫‪313‬‬
‫‪305‬‬
‫ﺍﳌﺴﺎﺣﺔ‬
‫‪747‬‬
‫‪719‬‬
‫‪699‬‬
‫‪635‬‬
‫‪607‬‬
‫‪662‬‬
‫‪603‬‬
‫‪592‬‬
‫ﺍﻟﻜﻤﻴﺔ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪ :‬ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺑﲔ ﺍﳌﺴﺎﺣﺔ ﻭﺍﻟﻜﻤﻴﺔ‪ ،‬ﻭﻣﺎ ﻫﻮ ﻣﺪﻟﻮﻟﻪ ؟‬
‫ﺍﳊــﻞ‬
‫ﺑﻔﺮﺽ ﺃﻥ )‪ (x‬ﻫﻲ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ‪ ( y) ،‬ﻫﻲ ﺍﻟﻜﻤﻴﺔ‪ ،‬ﻭﳊﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ‬
‫ﺑﲔ )‪x‬‬
‫•‬
‫‪,‬‬
‫‪ ( y‬ﻳﺘﻢ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ ، ( 2 -6‬ﻭﺫﻟﻚ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻜﻞ ﻣﻦ ﺍﳌﺴﺎﺣﺔ‪ ،‬ﻭﺍﻟﻜﻤﻴﺔ )‪, x‬‬
‫‪.(y‬‬
‫‪x‬‬
‫‪y‬‬
‫‪x = ∑ = 2108 = 263.5 , y = ∑ = 5264 = 658‬‬
‫‪n‬‬
‫‪8‬‬
‫‪n‬‬
‫‪8‬‬
‫• ﺣﺴﺎﺏ ﺍ‪ ‬ﺎﻣﻴﻊ‬
‫‪83‬‬
‫)‪y − y ( y − y) 2 ( x − x)( y − y‬‬
‫‪x − x ( x − x) 2‬‬
‫‪-66‬‬
‫‪-55‬‬
‫‪4‬‬
‫‪-51‬‬
‫‪-23‬‬
‫‪41‬‬
‫‪61‬‬
‫‪89‬‬
‫‪0‬‬
‫‪41.5‬‬
‫‪49.5‬‬
‫‪33.5‬‬
‫‪25.5‬‬
‫‪-30.5‬‬
‫‪-49.5‬‬
‫‪-23.5‬‬
‫‪-46.5‬‬
‫‪0‬‬
‫‪-2739‬‬
‫‪-2722.5‬‬
‫‪134‬‬
‫‪-1300.5‬‬
‫‪701.5‬‬
‫‪-2029.5‬‬
‫‪-1433.5‬‬
‫‪-4138.5‬‬
‫‪-13528‬‬
‫‪,‬‬
‫‪4356‬‬
‫‪3025‬‬
‫‪16‬‬
‫‪2601‬‬
‫‪529‬‬
‫‪1681‬‬
‫‪3721‬‬
‫‪7921‬‬
‫‪23850‬‬
‫‪1722.25‬‬
‫‪2450.25‬‬
‫‪1122.25‬‬
‫‪650.25‬‬
‫‪930.25‬‬
‫‪2450.25‬‬
‫‪552.25‬‬
‫‪2162.25‬‬
‫‪12040‬‬
‫‪y‬‬
‫‪x‬‬
‫‪592‬‬
‫‪603‬‬
‫‪662‬‬
‫‪607‬‬
‫‪635‬‬
‫‪699‬‬
‫‪719‬‬
‫‪747‬‬
‫‪5264‬‬
‫‪305‬‬
‫‪313‬‬
‫‪297‬‬
‫‪289‬‬
‫‪233‬‬
‫‪214‬‬
‫‪240‬‬
‫‪217‬‬
‫‪2108‬‬
‫‪∑ ( x − x) 2 = 12040 , ∑ ( y − y) 2 = 23850‬‬
‫‪∑ ( x − x)( y − y) = −13528‬‬
‫ﺇﺫﺍ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻗﻴﻤﺘﻪ ﻫﻲ‪:‬‬
‫‪− 13528‬‬
‫)‪∑ ( x − x)( y − y‬‬
‫=‬
‫‪12040 23850‬‬
‫‪∑ ( x − x) 2 ∑ ( y − y) 2‬‬
‫‪− 13528‬‬
‫‪− 13528‬‬
‫=‬
‫‪= −0.798‬‬
‫‪(109.727)(154.434) 16945.619‬‬
‫=‪r‬‬
‫=‬
‫• ﻳﻮﺟﺪ ﺍﺭﺗﺒﺎﻁ ﻋﻜﺴﻲ ﻗﻮﻱ ﺑﲔ ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ‪ ،‬ﻭﻛﻤﻴﺔ ﺇﻧﺘﺎﺝ ﺍﻟﻠﺤﻮﻡ‪.‬‬
‫ﺗﺒﺴﻴﻂ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳊﺴﺎﺑﻴﺔ‪:‬‬
‫ﰲ ﺑﻌﺾ ﺍﻷﺣﻴﺎﻥ‪ ،‬ﻳﻜﻮﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺻﻴﻐﺔ ﺍﳌﻌﺎﺩﻟﺔ )‪ ( 2 -6‬ﰲ ﻏﺎﻳﺔ ﺍﻟﺼﻌﻮﺑﺔ‪ ،‬ﺧﺎﺻﺔ ﺇﺫﺍ ﻻﺯﻡ‬
‫ﺍ ﻟﻌﻤﻠﻴﺎﺕ ﺍﳊ ﺴﺎﺑﻴﺔ ﻗﻴﻤﺎ ﻛﺴﺮﻳﺔ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺫﻟﻚ ﳝﻜﻦ ﺗﺒﺴﻴﻂ ﺍﻟﺼﻴﻐﺔ )‪ ( 2 -6‬ﺇﱃ ﺻﻴﻐﺔ ﺃﺳﻬﻞ ﺗﻌﺘﻤﺪ ﻋﻠﻰ‬
‫ﳎﻤﻮﻉ ﺍﻟﻘﻴﻢ ﻭﻟﻴﺲ ﻋﻠﻰ ﺍﳓﺮﺍﻓﺎﺕ ﺍﻟﻘﻴﻢ ﻋﻦ ﻭﺳﻄﻬﺎ ﺍﳊﺴﺎﰊ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﺼﻴﻐﺔ ﻫﻲ‪:‬‬
‫ﻭﺑﺎﻟﺘﻄﺒﻴﻖ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﻳﺘﺒﻊ ﺍﻵﰐ ‪:‬‬
‫• ﺣﺴﺎﺏ ﺍ‪‬ﺎﻣﻴﻊ‪:‬‬
‫ﺍ‪‬ﺎﻣﻴﻊ ﺍﳌﻄﻠﻮﺑﺔ‬
‫‪∑ x = 2108 , ∑ y = 5264‬‬
‫‪∑ xy = 1373536‬‬
‫‪y2‬‬
‫‪350464‬‬
‫‪363609‬‬
‫‪438244‬‬
‫‪x2‬‬
‫‪93025‬‬
‫‪97969‬‬
‫‪88209‬‬
‫‪xy‬‬
‫‪180560‬‬
‫‪188739‬‬
‫‪196614‬‬
‫‪y‬‬
‫‪x‬‬
‫‪592‬‬
‫‪603‬‬
‫‪662‬‬
‫‪305‬‬
‫‪313‬‬
‫‪297‬‬
‫‪84‬‬
‫‪368449‬‬
‫‪403225‬‬
‫‪488601‬‬
‫‪516961‬‬
‫‪558009‬‬
‫‪3487562‬‬
‫‪∑ x2 = 567498‬‬
‫‪∑ y2 = 3487562‬‬
‫‪83521‬‬
‫‪54289‬‬
‫‪45796‬‬
‫‪57600‬‬
‫‪47089‬‬
‫‪567498‬‬
‫‪175423‬‬
‫‪147955‬‬
‫‪149586‬‬
‫‪172560‬‬
‫‪162099‬‬
‫‪1373536‬‬
‫‪607‬‬
‫‪635‬‬
‫‪699‬‬
‫‪719‬‬
‫‪747‬‬
‫‪5264‬‬
‫‪289‬‬
‫‪233‬‬
‫‪214‬‬
‫‪240‬‬
‫‪217‬‬
‫‪2108‬‬
‫• ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ‪:‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍ‪‬ﺎﻣﻴﻊ ﺍﻟﺴﺎﺑﻘﺔ‪ ،‬ﻭﺑﺎﻟﺘﻄﺒﻴﻖ ﻋﻠﻰ ﺍﳌﻌﺎﺩﻟﺔ )‪ ( 3 -6‬ﺃﻋﻼﻩ‪ ،‬ﳒﺪ ﺃﻥ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻗﻴﻤﺘﻪ‬
‫ﻫﻲ‪:‬‬
‫‪∑x ∑y‬‬
‫‪n‬‬
‫‪∑ xy −‬‬
‫‪(∑ x) 2 ‬‬
‫‪(∑ y) 2 ‬‬
‫‪2‬‬
‫‪y −‬‬
‫‪−‬‬
‫∑ ‪n ‬‬
‫‪n ‬‬
‫‪‬‬
‫‪‬‬
‫)‪(2108)(5264‬‬
‫‪8‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪ x2‬‬
‫∑ ‪‬‬
‫‪‬‬
‫‪1373536 −‬‬
‫‪2 ‬‬
‫‪2‬‬
‫‪‬‬
‫)‪ 567498 − ( 2108)  3487562 − (5264‬‬
‫‪‬‬
‫‪‬‬
‫‪8‬‬
‫‪8‬‬
‫‪‬‬
‫‪‬‬
‫‪− 13528‬‬
‫‪− 13528‬‬
‫=‬
‫‪= −0.798‬‬
‫‪(12040)(23850) 16945.619‬‬
‫=‪r‬‬
‫=‬
‫=‬
‫ﻭﻫﻲ ﻧﻔﺲ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺑﻘﺔ‪:‬‬
‫‪ 3/2/6‬ﻣﻌﺎﻣﻞ ﺍﺭﺗﺒﺎﻁ ﺍﻟﺮﺗﺐ )ﺍﺳﺒﲑﻣﺎﻥ(‬
‫‪Spearman‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻈﺎﻫﺮﺓ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ ﲢﺘﻮﻱ ﻋﻠﻰ ﻣﺘﻐﲑﻳﻦ ﻭﺻﻔﻴﲔ ﺗﺮﺗﻴﺒﲔ‪ ،‬ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ﻗﻴﺎﺱ‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺗﻘﺪﻳﺮﺍﺕ ﺍﻟﻄﻠﺒﺔ ﰲ ﻣﺎﺩﺗﲔ ‪ ،‬ﺃﻭ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺩﺭﺟﺔ ﺗﻔﻀﻴﻞ ﺍﳌﺴﺘﻬﻠﻚ ﻟﺴﻠﻌﺔ ﻣﻌﻴﻨﺔ ‪ ،‬ﻭﻣﺴﺘﻮﻯ‬
‫ﺍﻟﺪﺧﻞ‪ ،‬ﻓﺈﻧﻪ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻃﺮﻳﻘﺔ "ﺑﲑﺳﻮﻥ" ﺍﻟﺴﺎﺑﻘﺔ ﰲ ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﺭﺗﺒﺎﻁ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺭﺗﺐ‬
‫ﻣﺴﺘﻮﻳﺎﺕ ﺍﳌﺘﻐﲑﻳﻦ ﻛﺒﺪﻳﻞ ﻟﻠﻘﻴﻢ ﺍﻷﺻﻠﻴﺔ ‪ ،‬ﻭﻳﻄﻠﻖ ﻋﻠﻰ ﻫﺬﺍ ﺍﳌﻌﺎﻣﻞ " ﻣﻌﺎﻣﻞ ﺍﺭﺗﺒﺎﻁ ﺍﺳﺒﲑﻣﺎﻥ "‬
‫‪ ، Spearman‬ﻭﻳﻌﱪ ﻋﻨﻪ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻫﻲ ﺍﻟﻔﺮﻕ ﺑﲔ ﺭﺗﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻷﻭﻝ ‪ ، x‬ﻭﺭﺗﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﺜﺎﱐ ‪، y‬‬
‫ﺣﻴﺚ ﺃﻥ ‪d‬‬
‫ﺃ ﻱ ﺃﻥ ‪. d = Rx − Ry :‬‬
‫ﻣﺜـــﺎﻝ ) ‪( 2 -6‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺗﻘﺪﻳﺮﺍﺕ ‪ 10‬ﻃﻼﺏ ﰲ ﻣﺎﺩﰐ ﺍﻹﺣﺼﺎﺀ ‪ ،‬ﻭﺍﻻﻗﺘﺼﺎﺩ ‪:‬‬
‫‪85‬‬
‫ﺏ‬
‫‪+‬‬
‫ﺏ‬
‫‪+‬‬
‫ﺏ‬
‫ﺃ‬
‫ﺟـ‬
‫ﺏ‬
‫ﺏ‬
‫ﺏ‬
‫‪+‬‬
‫‪+‬‬
‫ﺟـ‬
‫‪+‬‬
‫ﺏ‬
‫ﺏ‬
‫‪+‬‬
‫ﺃ‬
‫ﺩ‬
‫‪+‬‬
‫ﺟـ‬
‫ﺩ‬
‫ﺟـ‬
‫ﺟـ‬
‫ﺩ‬
‫‪+‬‬
‫ﺃ‬
‫ﺃ‬
‫‪+‬‬
‫ﺗﻘﺪﻳﺮﺍﺕ ﺇﺣﺼﺎﺀ‬
‫ﺗﻘﺪﻳﺮﺍﺕ ﺍﻗﺘﺼﺎﺩ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﺍﺣﺴﺐ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﺑﲔ ﺗﻘﺪﻳﺮﺍﺕ ﺍﻟﻄﻠﺒﺔ ﰲ ﺍﳌﻘﺮﺭﻳﻦ ‪.‬‬
‫‪ -2‬ﻭﻣﺎ ﻫﻮ ﻣﺪﻟﻮﻟﻪ ؟‬
‫ﺍﳊـــﻞ‬
‫‪ -1‬ﺑﻔﺮﺽ ﺃﻥ ‪ x‬ﻫﻲ ﺗﻘﺪﻳﺮﺍﺕ ﺍﻹﺣﺼﺎﺀ‪y ،‬‬
‫ﻫﻲ ﺗﻘﺪﻳﺮﺍﺕ ﺍﻻﻗﺘﺼﺎﺩ‪ ،‬ﳝﻜﻦ ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒـﺎﻁ‬
‫ﺑﻴﻨﻬﻤﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ، ( 4 -6‬ﻭﺫﻟﻚ ﺑﺈﺗﺒﺎﻉ ﺍﻵﰐ ‪:‬‬
‫•‬
‫‪2‬‬
‫ﺇﺫﺍ ﳝﻜﻦ ﺣﺴﺎﺏ ﺍ‪‬ﻤﻮﻉ‪∑ d :‬‬
‫ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪∑ d 2 = 44.5‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ﻫﻮ‪:‬‬
‫‪d2‬‬
‫‪d‬‬
‫ﺭﺗﺐ ‪y‬‬
‫ﺭﺗﺐ ‪x‬‬
‫‪1‬‬
‫‪1‬‬
‫‬‫‪2.5‬‬
‫‪2‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2.5‬‬
‫‪-2‬‬
‫‪1‬‬
‫‪-4‬‬
‫‪-1‬‬
‫‪1‬‬
‫‪2‬‬
‫ﺃ‬
‫‪10‬‬
‫‪7.5‬‬
‫ﺩ‬
‫ﺟـ‬
‫‪8‬‬
‫‪8‬‬
‫‪2‬‬
‫‪5‬‬
‫‪3‬‬
‫‪5‬‬
‫‪8‬‬
‫‪5‬‬
‫‪10‬‬
‫‪9‬‬
‫‪4‬‬
‫‪7.5‬‬
‫‪1‬‬
‫‪6‬‬
‫‪4‬‬
‫‪4‬‬
‫ﺟـ‬
‫ﺩ‬
‫ﺟـ‬
‫ﺩ‬
‫ﺃ‬
‫ﺏ‬
‫ﺏ‬
‫ﺟـ‬
‫‪6.25‬‬
‫‪6∑ d 2‬‬
‫)‪n(n 2 −1‬‬
‫‪r = 1−‬‬
‫)‪6(44.5‬‬
‫‪267‬‬
‫‪= 1−‬‬
‫‪2‬‬
‫‪990‬‬
‫)‪10(10 − 1‬‬
‫‪= 1 − 0.2697 = 0.7303‬‬
‫‪= 1−‬‬
‫‪4‬‬
‫‪1‬‬
‫‪1‬‬
‫‪6.25‬‬
‫‪4‬‬
‫‪1‬‬
‫‪16‬‬
‫‪1‬‬
‫‪44.5‬‬
‫‪y‬‬
‫‪x‬‬
‫‪+‬‬
‫ﺃ‬
‫ﺏ‬
‫‪+‬‬
‫ﺃ‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫ﺏ‬
‫ﺏ‬
‫ﺟـ‬
‫ﺏ‬
‫ﺏ‬
‫ﺏ‬
‫‪+‬‬
‫‪+‬‬
‫‪ -2‬ﻣﺪﻟﻮﻝ ﻣﻌﺎﻣﻞ ﺍﻻﺭﺗﺒﺎﻁ ‪:‬‬
‫ﲟﺎ ﺃﻥ ‪r = 0.703‬‬
‫‪ ،‬ﻭﻳﺪﻝ ﺫﻟﻚ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﺭﺗﺒﺎﻁ ﻃﺮﺩﻱ ﻗﻮﻱ ﺑﲔ ﺗﻘﺪﻳﺮﺍﺕ ﺍ ﻟﻄﺎﻟـﺐ ﰲ‬
‫ﻣﺎﺩﺓ ﺍﻹﺣﺼﺎﺀ ‪ ،‬ﻭﻣﺎﺩﺓ ﺍﻻﻗﺘﺼﺎﺩ ‪.‬‬
‫ﻣﻠﺤﻮﻇﺔ ‪ -:‬ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺻﻴﻐﺔ ﻣﻌﺎﻣﻞ ﺍﺭﺗﺒﺎﻁ " ﺍﺳﺒﲑﻣﺎﻥ " ﰲ ﺣﺴﺎﺏ ﺍﻻﺭﺗﺒﺎﻁ ﺑﲔ ﻣﺘﻐﲑﻳﻦ ﻛﻤـﻴﲔ‪،‬‬
‫ﺣﻴﺚ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺭﺗﺐ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ‪ ،‬ﻭﻧﺘﺮﻙ ﻟﻠﻄﺎﻟﺐ ﺍﻟﻘﻴﺎﻡ ﲝﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﺭﺗﺒﺎﻁ ﺍﻟﺮﺗـﺐ‬
‫ﺑﲔ ﺍﳌﺴﺎﺣﺔ ﻭﺍﻟﻜﻤﻴﺔ ﰲ ﻣﺜﺎﻝ ) ‪ ( 1 -5‬ﺍﻟ ﺴﺎﺑﻖ‪ ،‬ﻭﻋﻠﻴﻪ ﺃﻥ ﻳﻘﻮﻡ ﺑﺘﻔﺴﲑ ﺍﻟﻨﺘﻴﺠﺔ ‪ ) :‬ﻣﻌﺎﻭﻧﺔ ‪= 148 :‬‬
‫‪2‬‬
‫‪∑d‬‬
‫‪86‬‬
‫(‬
‫‪ 3/6‬ﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻰ ﺍﻟﺒﺴﻴﻂ‬
‫‪Simple Regression‬‬
‫ﺇﻥ ﺍﻟﻐﺮﺽ ﻣﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺃﺳﻠﻮﺏ ﲢﻠﻴﻞ ﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ‪ ،‬ﻫﻮ ﺩﺭﺍﺳﺔ ﻭﲢﻠﻴﻞ ﺃﺛﺮ ﻣـﺘﻐﲑ‬
‫ﻛﻤﻲ ﻋﻠﻰ ﻣﺘﻐﲑ ﻛﻤﻲ ﺁﺧﺮ‪ ،‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺩﺭ ﺍﺳﺔ ﺃﺛﺮ ﻛﻤﻴﺔ ﺍﻟﺴﻤﺎﺩ ﻋﻠﻰ ﺇﻧﺘﺎﺟﻴﺔ ﺍﻟﺪﻭﱎ ‪.‬‬
‫• ﺩﺭﺍﺳﺔ ﺃﺛﺮ ﺍﻹﻧﺘﺎﺝ ﻋﻠﻰ ﺍﻟﺘﻜﻠﻔﺔ ‪.‬‬
‫• ﺩﺭﺍﺳﺔ ﺃﺛﺮ ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ ﺍﻟﱵ ﻳﺘﻨﺎﻭﳍﺎ ﺍﻷﺑﻘﺎﺭ ﻋﻠﻰ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ ‪.‬‬
‫• ﺃﺛﺮ ﺍﻟﺪﺧﻞ ﻋﻠﻰ ﺍﻹﻧﻔﺎﻕ ﺍﻻﺳﺘﻬﻼﻛﻲ ‪.‬‬
‫ﻭﻫﻜﺬﺍ ﻫﻨﺎﻙ ﺃﻣﺜﻠﺔ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻻﻗﺘﺼﺎﺩﻳﺔ‪ ،‬ﻭﺍﻟﺰﺭﺍﻋﻴﺔ‪ ،‬ﻭﺍﻟﺘﺠﺎﺭﻳﺔ‪ ،‬ﻭﺍﻟﻌﻠﻮﻡ ﺍﻟـﺴﻠ ﻮﻛﻴﺔ‪،‬‬
‫ﻭﻏﲑﻫﺎ ﻣﻦ ﺍ‪‬ﺎﻻﺕ ﺍﻷﺧﺮﻯ ‪.‬‬
‫‪ 1/3/6‬ﳕﻮﺫﺝ ﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻲ‬
‫ﰲ ﲢﻠﻴﻞ ﺍﻻﳓﺪﺍﺭ ﺍﻟﺒﺴﻴﻂ ‪ ،‬ﳒﺪ ﺃﻥ ﺍﻟﺒﺎﺣﺚ ﻳﻬﺘﻢ ﺑﺪﺭﺍﺳﺔ ﺃﺛﺮ ﺃﺣﺪ ﺍﳌﺘﻐﲑﻳﻦ ﻭﻳﺴﻤﻰ ﺑﺎﳌﺘﻐﲑ‬
‫ﺍﳌﺴﺘﻘﻞ ﺃﻭ ﺍﳌﺘﻨﺒﺄ ﻣﻨﻪ‪ ،‬ﻋﻠﻰ ﺍﳌﺘﻐﲑ ﺍﻟﺜﺎﱐ ﻭﻳﺴﻤﻰ ﺑﺎﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﺃﻭ ﺍﳌﺘﻨﺒﺄ ﺑﻪ‪ ،‬ﻭﻣﻦ ﰒ ﳝﻜﻦ ﻋﺮﺽ ﳕﻮﺫﺝ‬
‫ﺍﻻﳓﺪ ﺍﺭ ﺍﳋﻄﻲ ﰲ ﺷﻜﻞ ﻣﻌﺎﺩﻟﺔ ﺧﻄﻴﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻷﻭﱃ‪ ،‬ﺗﻌﻜﺲ ﺍﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﻛﺪﺍﻟﺔ ﰲ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ‬
‫ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫‪ : y‬ﻫﻮ ﺍﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ) ﺍﻟﺬﻱ ﻳﺘﺄﺛﺮ(‬
‫‪ : x‬ﻫﻮ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ) ﺍﻟﺬﻱ ﻳﺆﺛﺮ (‬
‫‪ : β 0‬ﻫﻮ ﺍﳉﺰﺀ ﺍﳌﻘﻄﻮﻉ ﻣﻦ ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳﻲ ‪ ، y‬ﻭﻫﻮ ﻳﻌﻜﺲ ﻗﻴﻤﺔ ﺍﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﰲ ﺣﺎﻟﺔ ﺍﻧﻌﺪﺍﻡ ﻗﻴﻤﺔ‬
‫ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ‪ ، x‬ﺃ ﻱ ﰲ ﺣﺎﻟﺔ ‪x = 0‬‬
‫ﺑﻮﺣﺪﺓ ﻭﺍﺣﺪﺓ‪.‬‬
‫‪ : β1‬ﻣﻴﻞ ﺍﳋﻂ ﺍﳌﺴﺘﻘﻴﻢ )‪ ، (β 0 + β1 x‬ﻭﻳﻌﻜﺲ ﻣﻘﺪﺍﺭ ﺍﻟﺘﻐﲑ ﰲ ‪ y‬ﺇﺫﺍ ﺗﻐﲑﺕ ‪x‬‬
‫‪ : e‬ﻫﻮ ﺍﳋﻄﺄ ﺍﻟﻌﺸﻮﺍﺋﻲ‪ ،‬ﻭﺍﻟﺬﻱ ﻳﻌﱪ ﻋﻦ ﺍﻟﻔﺮﻕ ﺑﲔ ﺍﻟﻘﻴﻤـﺔ ﺍﻟﻔﻌﻠﻴـﺔ ‪ ، y‬ﻭﺍﻟﻘﻴﻤـﺔ ﺍﳌﻘـﺪﺭﺓ‬
‫‪ˆ = β 0 + β1 x‬‬
‫‪ ، y‬ﺃ ﻱ ﺃﻥ ‪ ، e = y − (β 0 + β1 x) :‬ﻭﳝﻜﻦ ﺗﻮﺿﻴﺢ ﻫﺬﺍ ﺍﳋﻄﺄ ﻋﻠـﻰ‬
‫ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ﻟﻨﻘﻂ ﺍﻻﻧﺘﺸﺎﺭ ‪.‬‬
‫‪87‬‬
‫‪ 2/3/6‬ﺗﻘﺪﻳﺮ ﳕﻮﺫﺝ ﺍﻻﳓﺪﺍﺭ ﺍﳋﻄﻲ ﺍﻟﺒﺴﻴﻂ‬
‫ﳝﻜﻦ ﺗﻘﺪﻳﺮ ﻣﻌﺎﻣﻼﺕ ﺍﻻﳓﺪﺍﺭ ) ‪ ( β1 , β 0‬ﰲ ﺍﻟﻨﻤﻮﺫﺝ ) ‪ ( 5 -6‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﻃﺮﻳﻘﺔ ﺍﳌﺮﺑﻌـﺎﺕ‬
‫ﺍﻟــﺼﻐﺮﻯ‪ ،‬ﻭﻫــﺬﺍ ﺍﻟﺘﻘــﺪﻳﺮ ﻫــﻮ ﺍﻟــﺬﻱ ﳚﻌــﻞ ﳎﻤــﻮﻉ ﻣﺮﺑﻌــﺎﺕ ﺍﻷﺧﻄــ ﺎﺀ ﺍﻟﻌــﺸﻮﺍﺋﻴﺔ‬
‫‪2‬‬
‫‪2‬‬
‫))‪∑ e = ∑ ( y − (β 0 + β1 x‬‬
‫ﺃﻗﻞ ﻣﺎ ﳝﻜﻦ‪ ،‬ﻭ ﳛﺴﺐ ﻫﺬﺍ ﺍﻟﺘﻘﺪﻳﺮ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ x‬ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻘﻴﻢ ‪y ، x‬‬
‫ﺍﳌﻘ ﺪﺭﺓ ﻟﻠﻤﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﻫﻮ‪ ، yˆ = βˆ0 + βˆ1 x :‬ﻭﻳﻄﻠﻖ ﻋﻠﻰ ﻫﺬﺍ ﺍﻟﺘﻘﺪﻳﺮ " ﺗﻘـﺪﻳﺮ ﻣﻌﺎﺩﻟـﺔ ﺍﳓـﺪﺍﺭ ‪y‬‬
‫ﻋﻠﻰ ‪. x‬‬
‫ﻫﻮ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻘﻴﻢ ‪ ، y‬ﻭ ﺗﻜﻮﻥ ﺍﻟﻘﻴﻤـﺔ‬
‫ﻣﺜـﺎﻝ ) ‪( 3 -6‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻴﺎﻧﺎﺕ ﻋﻦ ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ ﺍﻟﻴﻮﻣﻲ ﺑﺎﳉﺮﺍﻡ ﺍﻟﱵ ﳛﺘﺎﺟﻬﺎ ﺍﻟﻌﺠﻞ ﺍﻟﺮﺿﻴﻊ ‪ ،‬ﻭﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ‬
‫ﰲ ﻭﺯﻥ ﺍﻟﻌﺠﻞ ﺑﺎﻟﻜ ﺠﻢ‪ ،‬ﻭﺫﻟﻚ ﻟﻌﻴﻨﺔ ﻣﻦ ﺍﻟﻌﺠﻮﻝ ﺍﻟﺮﺿﻴﻌﺔ ﺣﺠﻤﻬﺎ ‪. 10‬‬
‫‪70‬‬
‫‪20‬‬
‫‪59‬‬
‫‪16‬‬
‫‪50‬‬
‫‪15‬‬
‫‪46‬‬
‫‪19‬‬
‫‪25‬‬
‫‪13‬‬
‫‪20‬‬
‫‪13‬‬
‫‪15‬‬
‫‪12‬‬
‫‪14‬‬
‫‪12‬‬
‫‪11‬‬
‫‪10‬‬
‫‪10‬‬
‫‪10‬‬
‫ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ‬
‫ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﺍﺭﺳﻢ ﻧﻘﻂ ﺍﻻﻧﺘﺸﺎﺭ‪ ،‬ﻭﻣﺎ ﻫﻮ ﺗﻮﻗﻌﺎﺗﻚ ﻟﺸﻜﻞ ﺍﻟﻌﻼﻗﺔ ؟‬
‫‪ -2‬ﻗﺪﺭ ﻣﻌﺎﺩﻟﺔ ﺍﳓﺪﺍﺭ ﺍﻟﻮﺯﻥ ﻋﻠﻰ ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ ‪.‬‬
‫‪ -3‬ﻓﺴ ﺮ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ‪.‬‬
‫‪ -4‬ﻣﺎ ﻫﻮ ﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ ﻋﻨﺪ ﺇﻋﻄﺎﺀ ﺍﻟﻌﺠﻞ ‪ 50‬ﺟﺮﺍﻡ ﻣﻦ ﺍﻟﱪﻭﺗﲔ ؟ ﻭﻣﺎ ﻫﻮ ﻣﻘﺪﺍﺭ ﺍﳋﻄﺄ‬
‫ﺍﻟﻌﺸﻮﺍﺋﻲ؟‬
‫‪ -5‬ﺍﺭﺳﻢ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ﻋﻠﻰ ﻧﻘﻂ ﺍﻻﻧﺘﺸﺎﺭ ﰲ ﺍﳌﻄﻠﻮﺏ ) ‪. ( 1‬‬
‫ﺍﳊــﻞ‬
‫‪88‬‬
‫‪ -1‬ﺭﺳﻢ ﻧﻘﻂ ﺍﻻﻧﺘﺸﺎﺭ ‪:‬‬
‫ﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ ‪y‬‬
‫ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ ‪x‬‬
‫ﻣﻦ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﻳﻜﻮﻥ ﻟﻜﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ ﺃﺛﺮ ﻃﺮﺩﻱ ) ﺇﳚﺎﰊ ( ﻋﻠﻰ ﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ ‪.‬‬
‫‪ -2‬ﺗﻘﺪﻳﺮ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ‪.‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ‪ x‬ﻫﻲ ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ‪y ،‬‬
‫ﻫﻲ ﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ‪ ،‬ﳝﻜﻦ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺘﲔ ﰲ ) ‪-6‬‬
‫‪ ، ( 6‬ﻭﻣﻦ ﰒ ﻳﺘﻢ ﺣﺴﺎﺏ ﺍ‪‬ﺎﻣﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺍ‪‬ﺎﻣﻴﻊ ﺍﳌﻄﻠﻮﺑﺔ‬
‫‪x2‬‬
‫‪xy‬‬
‫‪∑ x = 320‬‬
‫‪∑ y = 140‬‬
‫‪∑ xy = 5111‬‬
‫‪∑ x2 = 14664‬‬
‫‪100‬‬
‫‪121‬‬
‫‪196‬‬
‫‪225‬‬
‫‪400‬‬
‫‪625‬‬
‫‪2116‬‬
‫‪2500‬‬
‫‪3481‬‬
‫‪4900‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪:‬‬
‫‪x‬‬
‫‪x = ∑ = 320 = 32‬‬
‫‪n‬‬
‫‪10‬‬
‫‪x‬‬
‫‪y = ∑ = 140 = 14‬‬
‫‪n‬‬
‫‪10‬‬
‫ﻛﻤﻴﺔ ﺍﻟﱪﻭﺗﲔ‬
‫ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ‬
‫‪y‬‬
‫‪x‬‬
‫‪100‬‬
‫‪110‬‬
‫‪168‬‬
‫‪180‬‬
‫‪260‬‬
‫‪325‬‬
‫‪874‬‬
‫‪750‬‬
‫‪944‬‬
‫‪1400‬‬
‫‪10‬‬
‫‪10‬‬
‫‪12‬‬
‫‪12‬‬
‫‪13‬‬
‫‪13‬‬
‫‪19‬‬
‫‪15‬‬
‫‪16‬‬
‫‪20‬‬
‫‪10‬‬
‫‪11‬‬
‫‪14‬‬
‫‪15‬‬
‫‪20‬‬
‫‪25‬‬
‫‪46‬‬
‫‪50‬‬
‫‪59‬‬
‫‪70‬‬
‫‪5111 14664‬‬
‫‪140‬‬
‫‪320‬‬
‫• ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻷﻭﱃ ﰲ ) ‪ ( 6 -6‬ﳝﻜﻦ ﺣﺴﺎﺏ ‪ βˆ1‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫)‪n xy − x y (10)(5111) − (320)(140‬‬
‫= ‪= ∑ 2 ∑ ∑2‬‬
‫‪2‬‬
‫)‪n∑ x − (∑ x‬‬
‫)‪(10)(14664) − (320‬‬
‫‪6310‬‬
‫‪= 0.1426‬‬
‫‪44240‬‬
‫=‬
‫• ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﰲ ) ‪ ( 6 -6‬ﳝﻜﻦ ﺣﺴﺎﺏ ‪ βˆ0‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪= y − βˆ1 x = 14 − (0.1426)(32) = 9.4368‬‬
‫• ﺇ ﺫﺍ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ﺍﳌﻘﺪﺭﺓ‪ ،‬ﻫﻲ ‪:‬‬
‫‪βˆ0‬‬
‫‪βˆ1‬‬
‫‪89‬‬
‫‪yˆ = 9.44 + 0.143x‬‬
‫‪ -3‬ﺗﻔﺴﲑ ﺍﳌﻌﺎﺩﻟﺔ ‪:‬‬
‫• ﺍﻟﺜﺎﺑﺖ ‪ : βˆ0 = 9.44‬ﻳﺪﻝ ﻋﻠﻰ ﺃﻧﻪ ﰲ ﺣﺎﻟﺔ ﻋﺪﻡ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﱪﻭﺗﲔ ﻗﻲ ﺍﻟﺘﻐﺬﻳـﺔ‪ ،‬ﻓـﺈﻥ‬
‫ﺍﻟﻮﺯﻥ ﻳﺰﻳﺪ ‪ 9.44‬ﻛﺠﻢ ‪.‬‬
‫• ﻣﻌﺎﻣﻞ ﺍﻻﳓﺪﺍﺭ ‪ : βˆ1 = 0.143‬ﻳﺪﻝ ﻋﻠﻰ ﺃﻧﻪ ﻛﻠﻤﺎ ﺯﺍﺩﺕ ﻛﻤﻴﺔ ﺍﻟﱪﻭ ﺗﲔ ﺟﺮﺍﻡ ﻭﺍﺣـﺪ‪،‬‬
‫ﺣﺪﺙ ﺯﻳﺎﺩﺓ ﰲ ﻭﺯﻥ ﺍﻟﻌﺠﻞ ﲟﻘﺪﺍﺭ ‪ 0.143‬ﻛﺠﻢ‪ ،‬ﺃﻯ ﺯﻳﺎﺩﺓ ﻣﻘﺪﺍﺭﻫﺎ ‪ 143‬ﺟﺮﺍﻡ ‪.‬‬
‫‪ -4‬ﻣﻘﺪﺍﺭ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﻟﻮﺯﻥ ﻋﻨﺪ ‪x = 50‬‬
‫ﻫﻮ ‪:‬‬
‫‪yˆ = 9.44 + 0.143(50) = 16.59‬‬
‫ﻭﺃﻣﺎ ﻭﻣﻘﺪﺍﺭ ﺍﳋﻄﺄ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻫﻮ ‪:‬‬
‫‪eˆx=50 = yx=50 − yˆ x=50 = 15 − 16.59 = −1.59‬‬
‫‪ -5‬ﺭﺳﻢ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ﻋﻠﻰ ﻧﻘﻂ ﺍﻻﻧ ﺘﺸﺎﺭ ‪.‬‬
‫ﳝﻜﻦ ﺭﺳﻢ ﻣﻌﺎﺩﻟﺔ ﺧﻂ ﻣﺴﺘﻘﻴﻢ ﺇﺫﺍ ﻋﻠﻢ ﻧﻘﻄﺘﲔ ﻋﻠﻰ ﺍﳋﻂ ﺍﳌﺴﺘﻘﻴﻢ ‪.‬‬
‫‪10‬‬
‫‪10.87‬‬
‫‪50‬‬
‫‪16.59‬‬
‫‪x‬‬
‫ˆ‪y‬‬
‫ﺇﺫﺍ ﻣﻌﺎﺩﻟﺔ ﺍﻻﳓﺪﺍﺭ ﻫﻲ ‪:‬‬
‫‪y‬‬
‫‪x‬‬
‫‪90‬‬
‫ﺍﻟﻔﺼــﻞ ﺍﻟﺴﺎﺑﻊ‬
‫ﺍﻻﺣﺘﻤـﺎﻻﺕ ﻭﺗﻄﺒﻴﻘﺎ‪‬ﺎ‬
‫‪Probabilities and its Applications‬‬
‫‪ 1/7‬ﻣﻘــﺪﻣﺔ‬
‫ﻛﻠﻤﺔ " ﺍﺣﺘﻤﺎﻝ " ﻫﻲ ﻛﻠﻤﺔ ﻳﻨﻄﻖ ‪‬ﺎ ﺍﻟﻜﺜﲑ ﻣﻦ ﺍﻟﻨﺎﺱ‪ ،‬ﻓﺒﻌﺾ ﺧﱪﺍﺀ ﺍﻷﺭﺻﺎﺩ ﺍﳉﻮﻳﺔ ﻳﻘﻮﻟﻮﻥ ﻣﻦ‬
‫ﺍﶈﺘﻤﻞ ﺳﻘﻮﻁ ﺃﻣﻄﺎﺭ ﺍﻟﻴﻮﻡ‪ ،‬ﺍﺣﺘﻤﺎﻝ ﺍﺭﺗﻔﺎﻉ ﰲ ﺩﺭﺟﺎﺕ ﺍﳊﺮﺍﺭﺓ‪ ،‬ﻭﺑﻌﺾ ﺧ ﱪﺍﺀ ﺍﻟﺒﻮﺭﺻﺔ ﻳﻘﻮﻟﻮﻥ‬
‫ﺍﺣﺘﻤﺎﻝ ﺍﺭﺗﻔﺎﻉ ﻗﻴﻤﺔ ﺍﻷﺳﻬﻢ ﺍﳌﺘﺪﺍﻭﻟﺔ ﰲ ﺳﻮﻕ ﺍﳌﺎﻝ ﻟﺸﺮﻛﺔ ﻣﻌﻴﻨﺔ‪ ،‬ﺧﻼﻝ ﻫﺬﺍ ﺍﻟﻴﻮﻡ‪ ،‬ﻭﺍﺣﺘﻤﺎﻝ ﳒﺎﺡ‬
‫ﻃﺎﻟﺐ‪ ،‬ﻭﺍﺣﺘﻤﺎﻝ ﺇﺻﺎﺑﺔ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻟﻔﺎﻛﻬﺔ ﺑﻨﻮﻉ ﻣﻦ ﺍﻟﺒﻜﺘﺮﻳﺎ‪ ،‬ﻭﻫﻜﺬﺍ‪ ،‬ﻳﻜﺜﺮ ﻧﻄﻖ ﺍﻷﻓﺮﺍﺩ ‪‬ﺎ‬
‫ﻭﺭﲟﺎ ﳚﻬﻠﻮﻥ ﻣﻌﻨﺎﻫﺎ ‪ .‬ﻓﻤﺎﺫﺍ ﺗﻌﲏ ﻛﻠﻤﺔ ﺍﺣﺘﻤﺎﻝ؟‬
‫ﻳﻘﺼﺪ ‪‬ﺬﻩ ﺍﻟﻜ ﻠﻤﺔ ﻓﺮﺻﺔ ﺣﺪﻭﺙ ﺃﻭ ﻭﻗﻮﻉ ﺣﺎﺩﺛﺔ ﻣﻌﻴﻨﺔ‪ ،‬ﻭﺗﺴﺘﺨﺪﻡ ﺍﻻﺣﺘﻤﺎﻻﺕ ﰲ ﻛﺜﲑ ﻣﻦ‬
‫ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ‪ ،‬ﻣﺜﻞ ﺍ‪‬ﺎﻻﺕ ﺍﻻﻗﺘﺼﺎﺩﻳﺔ‪ ،‬ﻭﺍﻟﺘﺠﺎﺭﻳﺔ‪ ،‬ﻭﺍﻟﺰﺭﺍﻋﻴﺔ‪ ،‬ﻭﺍﻟﻄﺒﻴﺔ‪ ،‬ﻭﺍﻟﺴﻠﻮﻛﻴﺔ‪ ،‬ﻭﻏﲑﻫﺎ‪،‬‬
‫ﺧﺎﺻﺔ ﻋﻨﺪ ﺍﲣﺎﺫ ﺍﻟﻘﺮﺍﺭ ﰲ ﺩﺭﺍﺳﺎﺕ ﺍﳉﺪﻭﻯ‪ ،‬ﻭﺍﻟﺘﻨﺒﺆ ﺑﺴﻠﻮﻙ ﺍﻟﻈﻮﺍﻫﺮ ﺍﳌﺨﺘﻠﻔﺔ‪ ،‬ﻭﻟﻜﻲ ﳝﻜﻦ ﻓﻬﻢ‬
‫ﻣﻮﺿﻮﻉ ﺍﻻﺣﺘ ﻤﺎﻝ‪ ،‬ﻭﺃﳘﻴﺘﻪ ﰲ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ‪ ،‬ﻧﻘﻮﻡ ﺑﻌﺮﺽ ﺑﻌﺾ ﺍﳌﻔﺎﻫﻴﻢ ﺍﳋﺎﺻﺔ ﺑﺎﻻﺣﺘﻤﺎﻻﺕ ‪.‬‬
‫‪ 2/7‬ﺑﻌﺾ ﺍﳌﻔﺎﻫﻴﻢ ﺍﳋﺎﺻﺔ ﺑﺎﻻﺣﺘﻤﺎﻝ‬
‫• ﺍﻟﺘﺠﺮﺑﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ‬
‫‪Randomized Experiment‬‬
‫ﻫﻲ ﺃﻱ ﻋﻤﻠﻴﺔ ﺗﺘﻢ ﳝﻜﻦ ﲢﺪﻳﺪ ﻛﻞ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﳍﺎ‪ ،‬ﻭﻟﻜﻦ ﻻ ﳝﻜﻦ ﻣﺴﺒﻘﺎ ﲢﺪﻳﺪ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﱵ‬
‫ﺳﺘﻈﻬﺮ ﺃﻭ ﲢﺪﺙ ‪ ،‬ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻣﻌﺪﻧﻴﺔ ﻣﺮﺓ ﻭﺍﺣﺪﺓ‪ ،‬ﻓﺈﻥ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﳍﺎ‬
‫ﻧﺘﻴﺠﺘﺎﻥ ﳘﺎ ‪ " :‬ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ " ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪ ، H‬ﺃﻭ " ﻇﻬﻮﺭ ﺍﻟﻜﺘﺎﺑﺔ " ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪ ، T‬ﺃﻱ ﺃﻥ‬
‫ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻫﻲ ‪:‬‬
‫} ‪ ، {H , T‬ﻭﻗﺒﻞ ﺇﻟﻘﺎﺀ ﺍﻟﻘﻄﻌﺔ ‪ ،‬ﻻ ﳝﻜﻦ ﲢﺪﻳﺪ ﺃﻱ ﻣﻦ ﺍﻟﻨﺘﻴﺠﺘﲔ ﺳﻮﻑ‬
‫ﺗ ﻈﻬﺮ ‪.‬‬
‫• ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‬
‫‪Sample Space‬‬
‫ﻫﻲ ﳎﻤﻮﻋﺔ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻟﻠﺘﺠﺮﺑﺔ‪ ،‬ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪ ، S‬ﻭﻳﺮﻣﺰ ﻟﻌﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ ﻟﻔﺮﺍﻍ‬
‫ﺍﻟﻌﻴﻨﺔ ﺑﺎﻟﺮﻣﺰ ) ‪ ، n(S‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ‪:‬‬
‫‪ -1‬ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ‪ ،‬ﳒﺪ ﺃﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪، S:{H , T } :‬‬
‫ﻭﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﻫﻲ ‪. n( S ) = 2 :‬‬
‫‪91‬‬
‫‪ -2‬ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺗﲔ ) ﺇﻟﻘﺎﺀ ﻗﻄﻌﺘﲔ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ( ‪ ،‬ﻓﺈﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﳝﻜﻦ‬
‫ﺍﳊﺼﻮﻝ ﻋﻠﻴﻪ ﻣﻦ ﺧﻼﻝ ﺷﺠﺮﺓ ﺍﻻﺣﺘﻤﺎﻻﺕ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺃﻱ ﺃﻥ ‪n( S) = 4‬‬
‫‪ -3‬ﻋﻨﺪ ﺭﻣﻲ ﺯﻫﺮﺓ ﻧﺮﺩ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ‪ ،‬ﻓﺈﻥ ﻓﺮﺍ ﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ﳎﻤﻮﻋﺔ ﻋﺪﺩ ﺍﻟﻨﻘﺎﻁ ﺍﻟﱵ‬
‫ﺗﻈﻬﺮ ﻋﻠﻰ ﺍﻟﻮﺟﻪ ‪ ،‬ﻭﻫﻲ ‪ ، S:{1, 2, 3, 4, 5, 6} :‬ﺃﻱ ﺃﻥ ‪. n( S ) = 6 :‬‬
‫‪ -4‬ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻋﺪﺩ ﻣﻦ ﺍﳌﺮﺍﺕ ﺣﱴ ﳓﺼﻞ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ‪ ،‬ﳒﺪ‬
‫ﺃﻥ ﺍﻟﺘﺠﺮﺑﺔ ﻫﻲ ﻋﺪﺩ ﻣﻦ ﺍﶈﺎﻭﻻﺕ ﻳﺘﻢ ﺇﻳﻘﺎﻓﻬﺎ ﻋﻨﺪﻣﺎ ﳓﺼﻞ ﻋﻠﻰ ﺍﻟﺼﻮ ﺭﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪ ،‬ﺇﺫﺍ‬
‫ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪:‬‬
‫}‪ ، S:{H, TH, TTH, TTTH,…….‬ﻭﻳﻜﻮﻥ ‪. n(S ) = ∞ :‬‬
‫‪ -5‬ﻋﻨﺪ ﺳﺤﺐ ﻛﺮﺗﲔ ﺑﺪﻭﻥ ﺇﺭﺟﺎﻉ ﻣﻦ ﻛﻴﺲ ﺑﻪ ﲬﺲ ﻛﺮﺍﺕ ﲪﺮﺍﺀ )‪ ، (red‬ﺛﻼﺙ ﻛﺮﺍﺕ ﺯﺭﻗﺎﺀ‬
‫)‪ ، (blue‬ﻭﻛﺮﺗﺎﻥ ﺧﻀﺮﺍﺀ )‪ ، (green‬ﳒﺪ ﺃﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪:‬‬
‫ﺃﻱ ﺃﻥ ‪ ) ، n( S ) = (10 × 9) = 90 :‬ﻷ‪‬ﺎ ﺣﺎﻻﺕ ﻏﲑ ﻣﺘﺰﻧﺔ (‪.‬‬
‫‪ -6‬ﻋﻨﺪ ﻓﺮﺯ ﺻﻨﺪﻭﻕ ﺑﻪ ﲬﺲ ﻭﺣﺪﺍﺕ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ‪ ،‬ﻳﻜﻮﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻟﻌﺪﺩ ﺍﻟﻮﺣـﺪﺍﺕ‬
‫ﺍﳌﻌﻴﺒﺔ ﻫﻮ ‪ .........‬ﻭﺍﺟﺐ ﻣﱰﱄ‬
‫• ﺍﳊﺎﺩﺙ‬
‫‪Event‬‬
‫ﻫﻮ ﻓﺌﺔ ﺟﺰﺋﻴﺔ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ ﻟﻔﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻠﺤﺎﺩﺙ ﲝﺮﻑ ﻣﻦ ﺍﳊﺮﻭﻑ ﺍﳍﺠﺎﺋﻴـﺔ‬
‫]‪ ، […,C ,B ,A‬ﻭﻳ ﻨﻘﺴﻢ ﺍﳊﺎﺩﺙ ﺇﱄ ﻧﻮﻋﲔ ﳘﺎ ‪:‬‬
‫‪-1‬‬
‫ﺣﺎﺩﺙ ﺑﺴﻴﻂ ‪ : Simple Event‬ﻭﻫﻮ ﺍﻟﺬﻱ ﳛﺘﻮﻱ ﻋﻠﻰ ﻧﺘﻴﺠﺔ ﻭﺍﺣﺪﺓ ﻣﻦ ﺍﻟﻨﺘـﺎﺋﺞ‬
‫ﺍﳌﻜﻮﻧﺔ ﻟﻔﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ‪.‬‬
‫‪92‬‬
‫‪-2‬‬
‫ﺣﺎﺩﺙ ﻣﺮﻛﺐ ‪ : Component Event‬ﻭﻳﺸﻤﻞ ﻧﺘﻴﺠﺘﲔ ﺃﻭ ﺃﻛﺜﺮ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ‬
‫ﻟﻔﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﺃﻱ ﺃﻥ ﺍﳊﺎﺩﺙ ﺍﳌﺮﻛﺐ ﳝﻜﻦ ﺗﻘﺴﻴﻤﻪ ﺇﱃ ﺣﻮﺍﺩﺙ ﺑﺴﻴﻄﺔ ‪.‬‬
‫ﻭﻳﺮﻣﺰ ﻟﻌﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ ﻟﻠﺤﺎﺩﺙ ﺑﺎﻟﺮﻣﺰ )‪ ..., n( B) , n( A‬ﻭﻫﻜﺬﺍ ‪.‬‬
‫ﻓﻌﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺗﲔ ‪ ،‬ﻭﻋﺮﻑ ﺍﳊﺎﺩﺙ ‪ A‬ﺑﺄﻧﻪ ﻇﻬﻮﺭ ﺍﻟـﺼﻮﺭﺓ ﻣـﺮﺗﲔ ‪،‬‬
‫ﻭﺍﳊﺎﺩﺙ ‪ B‬ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ﻋﻠﻰ ﺍﻷﻗﻞ ‪ ،‬ﳒﺪ ﺃﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨـﺔ ﰲ ﻫـﺬﻩ ﺍﳊﺎﻟـﺔ ﻫـﻲ‬
‫}‪ ، S:{HH, HT, TH, TT‬ﻭﺑ ﺎﻟﻨﺴﺒﺔ ﻟﻠﺤﺎﺩﺙ ‪ A‬ﻓﻬﻮ ﺣﺎﺩﺙ ﺑﺴﻴﻂ ‪ ،‬ﻳﺸﻤﻞ ﻧﺘﻴﺠﺔ ﻭﺍﺣﺪﺓ‬
‫ﻫﻲ }‪ ، A:{HH‬ﺃﻱ ﺃﻥ ‪ ، n(A)=1‬ﺃﻣﺎ ﺍﳊﺎﺩﺙ ‪ B‬ﻓﻬﻮ ﺣﺎﺩﺙ ﻣﺮﻛﺐ ﻳﺸﻤﻞ ﺛﻼﺙ ﻧﺘﺎﺋﺞ ﻫﻲ‬
‫}‪ ، B:{HT, TH, HH‬ﺃﻱ ﺃﻥ ‪ ، n(B)=3‬ﻭﻫﺬﺍ ﺍﳊﺎﺩﺙ ﳝﻜﻦ ﺗﻘﺴﻴﻤﻪ ﺇﱃ ﺃﺣﺪﺍﺙ ﺑﺴﻴﻄﺔ ‪.‬‬
‫• ﺍﻻﲢﺎﺩ ) ∪ (‬
‫‪Union‬‬
‫ﻳﻌﱪ ﺍﲢ ﺎﺩ ﺍﳊﺎﺩﺛﺎﻥ ‪ B , A‬ﻋﻦ ﻭﻗﻮﻉ ﺃﺣﺪﻫﺎ ﻋﻠﻰ ﺍﻷﻗﻞ‪ ،‬ﻭﲟﻌﲎ ﺁﺧﺮ ﻭﻗﻮﻉ ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﱐ ﺃﻭ‬
‫(‬
‫)‬
‫ﻛﻼﳘﺎ ‪ ،‬ﻭﻳﻌﱪ ﻋﻦ ﺫﻟﻚ ﺭﻳﺎﺿﻴﺎ )‪ ( A∪ B‬ﺃﻭ ‪ ، A or B‬ﻭﳝﻜﻦ ﺍﻻﺳﺘﻌﺎﻧﺔ ﺑـﺸﻜﻞ " ﻓـﻦ "‬
‫‪ Ven. Diagram‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺷﻜﻞ ) ‪( 1 -7‬‬
‫ﻭﻣﺜﺎﻝ ﻋﻠﻰ ﺫﻟﻚ ‪ ،‬ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﺯﻫﺮﺓ ﻧﺮﺩ ﻣﺘﺰﻧﺔ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪ ،‬ﻭﻋﺮﻑ ﺍﳊﺎﺩﺙ ‪ A‬ﺑﺄﻧﻪ ﻇﻬـﻮﺭ‬
‫ﻭﺟﻪ ﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ‪ ، 3‬ﻭﺍﳊﺎﺩﺙ ‪ B‬ﺑﺄﻧﻪ ﻇﻬﻮﺭ ﻋﺪﺩ ﻓﺮﺩﻱ‪ ،‬ﻳﻼﺣﻆ ﺃﻥ ‪:‬‬
‫}‪ ، B:{1,3,5}, A:{3,6}, S:{1,2,3,4,5,6‬ﻭﻳﻜـﻮﻥ ﺍﲢـﺎﺩ ﺍﳊﺎﺩﺛـﺎﻥ ‪ B , A‬ﻫـﻮ ‪:‬‬
‫}‪ ، (A∪ B): {1,3,5,6‬ﻭﻳﻌﱪ ﻋﻦ ﺫﻟﻚ ﰲ ﺷﻜﻞ ‪ Ven‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫• ﺍﻟﺘﻘﺎﻃﻊ ) ∩ (‬
‫}‪(A∪ B): {1,3,5,6‬‬
‫‪Intersection‬‬
‫ﻳﻌﱪ ﺗﻘﺎﻃﻊ ﺍﳊﺎﺩﺛﺎﻥ ‪ B , A‬ﻋﻦ ﻭﻗﻮﻉ ﺍﻻﺛﻨﺎﻥ ﰲ ﺁﻥ ﻭﺍﺣﺪ ‪ ،‬ﻭﻳﺸﻤﻞ ﻛ ﻞ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﺸﺘﺮﻛﺔ‬
‫ﺑﲔ ﺍﳊﺎﺩﺛﲔ ‪ ،‬ﻭﻳﻌﱪ ﻋﻦ ﺫﻟﻚ ﺭﻳﺎﺿﻴﺎ‬
‫" ﻓﻦ " ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫)‪( A∩ B‬‬
‫ﺃﻭ )‪(A and B‬‬
‫‪ ،‬ﻭﻳﻈ ﻬﺮ ﺫﻟﻚ ﰲ ﺷـﻜﻞ‬
‫‪93‬‬
‫ﺷﻜﻞ ) ‪( 2 -7‬‬
‫ﻓﻔﻲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﳒﺪ ﺃﻥ‬
‫• ﺍﻷﺣﺪﺍﺙ ﺍﳌﺘﻨﺎﻓﻴﺔ‬
‫}‪(A∩ B): {3‬‬
‫‪.‬‬
‫‪Mutually Exclusive evens‬‬
‫ﻳﻘﺎﻝ ﺃﻥ ﺍﳊﺎﺩﺛﺎﻥ ‪ B, A‬ﻣﺘﻨﺎﻓﻴﺎﻥ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ﻭﻗﻮﻉ ﺃﺣﺪﻫﺎ ﻳﻨﻔﻲ ﻭﻗﻮﻉ ﺍﳊﺪﺙ ﺍﻵﺧـﺮ ‪ ،‬ﲟﻌـﲎ‬
‫ﺍﺳ ﺘﺤﺎﻟﺔ ﻭﻗﻮﻋﻬﻤﺎ ﰲ ﺁﻥ ﻭﺍﺣﺪ ‪ ،‬ﻭﻣﻦ ﰒ ﻳ ﻜﻮﻥ ﻧﺘﻴﺠﺔ ﺗﻘﺎﻃﻊ ﺍﳊﺎﺩﺛﺎﻥ ﺍﳌﺘﻨﺎﻓﻴﺎﻥ ﻫﻲ ﺍﻟ ﻔﺌﺔ ﺍﳋ ﺎﻟﻴﺔ‬
‫ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪ φ‬ﺃﻱ ﺃﻥ ‪ ، A∩ B = φ‬ﻭﳝﻜﻦ ﲤﺜﻴﻠﻬﺎ ﺑﺸﻜﻞ " ﻓﻦ " ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺷﻜﻞ ) ‪( 3 -7‬‬
‫ﻻ ﺗﻮﺟﺪ ﻧﺘﺎﺋﺞ ﻣﺸﺘﺮﻛﺔ ‪( A∩ B) = φ‬‬
‫• ﺍﳊﺎﺩﺙ ﺍﳌﻜﻤﻞ‬
‫‪Compliment Event‬‬
‫ﺍﳊﺎ ﺩﺙ ﺍﳌﻜﻤﻞ ﻟﻠﺤﺎﺩﺙ ‪ A‬ﻫﻮ ﺍﻟﺬﻱ ﻳﻨﻔﻲ ﻭﻗﻮﻋﻪ ‪ ،‬ﲟﻌﲎ ﺁﺧﺮ ﻫﻮ ﺍﳊﺎﺩﺙ ﺍﻟﺬﻱ ﻳﺸﻤﻞ ﻛـﻞ‬
‫ﻧﺘﺎﺋﺞ ﺍﻟﺘﺠﺮﺑﺔ ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ ﻟﻠﺤﺎﺩﺙ ‪ ، A‬ﻭﻳﺮﻣﺰ ﻟﻠﺤﺎﺩﺙ ﺍﳌﻜﻤﻞ ﺑﺎﻟﺮﻣﺰ ‪ ، A‬ﻭﻣﻦ ﰒ‬
‫ﻧﺴﺘﻨﺘﺞ ﺃﻥ ‪:‬‬
‫‪  A ∪ A  = S ,  A ∩ A  = φ‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫ﺷﻜﻞ ) ‪( 4 -7‬‬
‫ﻣﺜــﺎﻝ ) ‪( 1 -7‬‬
‫‪‬‬
‫ﺃﻟﻘﻴﺖ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﺛﻼﺙ ﻣﺮﺍﺕ ‪ ،‬ﻭﻋﺮﻓﺖ ﺍﻷﺣﺪﺍﺙ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺍﳊﺎﺩﺙ ‪ A‬ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ﻣﺮﺗﲔ ‪.‬‬
‫ﺍﳊﺎﺩﺙ ‪ B‬ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪.‬‬
‫ﺍﳊﺎﺩﺙ ‪ C‬ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ﰲ ﺍﻟﺮﻣﻴﺔ ﺍﻷﻭﱃ ‪.‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
94
: ‫ ﺇﳚﺎﺩ ﺍﻷﺣﺪﺍﺙ ﺍﳋﺎﺻﺔ ﺑﺎﻻﲢﺎﺩ‬-1
A∪B , A∪C , B∪C , A∪B∪C
: ‫ ﺇﳚﺎﺩ ﺍﻷﺣﺪﺍ ﺙ ﺍﳋﺎﺻﺔ ﺑﺎﻟﺘﻘﺎﻃﻌﺎﺕ‬-2
A∩B , A∩C , B∩C , A∩B∩C
B ‫ ﺃﻭﺟﺪ ﺍﳊﺎﺩﺙ‬-3
‫ﺍﳊـــﻞ‬
: ‫• ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﳍﺬﻩ ﺍﻟﺘﺠﺮﺑﺔ ﻫ ﻮ‬
n( S ) = 8
: ‫• ﻭﺃﻣﺎ ﺍﻷﺣﺪﺍﺙ ﻫﻲ‬
A: {HHT,HTH,THH}, B: {HTT,THT,TTH}, C: {HHH,HHT,HTH,HTT}
n( A) = 3
n( B) = 3
n( C ) = 4
: ‫ ﺍﻷﺣﺪﺍﺙ ﺍﳋﺎﺻﺔ ﺑﺎﻻﲢﺎﺩ‬-1
( A∪ B) : {HHT, HTH , THH , HTT, THT, TTH } , n( A ∪ B) = 6
( A∪ C ) : {HHT, HTH , THH , HHH, HTT} , n( A ∪ C ) = 5
(B ∪ C ) : {HHH, HHT, HTH, HTT, THT, TTH} , n( B ∪ C ) = 6
( A∪ B ∪ C ) : {HHH, HHT, HTH , HTT, THT, TTH , THH}, n( A ∪ B ∪ C ) = 7
: ‫ ﺍﻷﺣﺪﺍﺙ ﺍﳋﺎﺻﺔ ﺑﺎﻟﺘﻘﺎﻃﻊ‬-2
( A ∩ B) : φ , n( A ∩ B) = 0
( A∩ C ) : {HHT , HTH } , n( A ∩ C ) = 2
(B ∩ C ) : {HTT} , n( B ∩ C ) = 1
( A ∩ B ∩ C ) : φ , n( A ∩ B ∩ C ) = 0
(B ) : {HHH , HHT , HTH , THH , TTT} n( B ) = 5
: B ‫ ﺇﳚﺎﺩ‬-3
,
‫ ﻃﺮﻕ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ‬3/7
‫‪95‬‬
‫ﻳﻌﺘﻤﺪ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﻨﻈﺮﻳﺔ ﻋ ﻠﻰ ﺃﺳﺲ ﻭﻗﻮﺍﻋﺪ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ‪ ،‬ﻭﻳﻌﺘﱪ ﻫـﺬﺍ‬
‫ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻻﺣﺘﻤﺎﻝ ﻫﻮ ﺍﻟﻌﻨﺼﺮ ﺍﻷﺳﺎﺳﻲ ﰲ ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ‪ ،‬ﻭﻟﻜﻦ ﰲ ﺍ‪‬ﺎﻝ ﺍﻟﺘﺠﺮﻳﱯ ﺗﻌﺘﻤﺪ‬
‫ﺍﻻﺣﺘﻤﺎﻻﺕ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﻔﻌﻠﻴﺔ ﳌﺸﺎﻫﺪﺍﺕ ﺍﻟﺘﺠﺮﺑﺔ‪ ،‬ﻭﻋﻠﻰ ﺗﻜﺮﺍﺭ ﺍﳊﺎﺩﺙ ﳏﻞ ﺍﻻﻫﺘﻤﺎﻡ‪ ،‬ﻓﺈﺫﺍ ﺭﻣﺰﻧﺎ‬
‫ﻻﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ‪ A‬ﺑﺎﻟﺮﻣﺰ )‪ ، P (A‬ﻓﺈﻥ ﻃﺮ ﻳ ﻘ ﺔ ﺣﺴﺎﺏ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﺗﺘﺤﺪﺩ ﻭﻓﻘـﺎ ﻟﻨـﻮﻉ‬
‫ﺍﻻﺣﺘﻤﺎﻝ‪ ،‬ﻭﳘﺎ ﻧﻮﻋﺎﻥ ‪:‬‬
‫•‬
‫ﺍﻻﺣﺘﻤﺎﻝ‬
‫ﺍﻟﺘﺠﺮﻳﱯ‪ : Empirical probability‬ﻭﻳﻌﱪ ﻋﻨﻪ ﺑﺎﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‪ ،‬ﻭﳛـﺴﺐ‬
‫ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ n :‬ﻫﻮ ﳎﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ) ﺍﻟﻌﺪﺩ ﺍﻟﻜﻠﻲ ﻟﻠﻤﺸﺎﻫﺪﺍﺕ ( ‪ : f(A) ،‬ﻫﻮ ﺗﻜﺮﺍﺭ ﺍﳊﺎﺩﺙ‬
‫‪،A‬‬
‫ﻓﺈﺫﺍ ﰎ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ‪ 500‬ﻣﺮﺓ‪ ،‬ﻭﰎ ﻣﻼﺣﻈﺔ ﻋﺪﺩ ﻣﺮﺍﺕ ﻇﻬـﻮﺭ ﻛـﻞ ﻭﺟـﻪ‪،‬‬
‫ﻭﳋﺼﺖ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪SUM‬‬
‫‪T‬‬
‫‪H‬‬
‫‪500‬‬
‫‪240‬‬
‫‪260‬‬
‫ﺍﻟﻮﺟﻪ )‪(F a ce‬‬
‫ﻋﺪﺩ ﻣﺮﺍﺕ ﻇﻬﻮﺭ ﺍﻟﻮﺟﻪ‬
‫ﻭ ﺇﺫﺍ ﻛﺎﻥ ﺍﳌﻄﻠﻮﺏ ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ‪ ، H‬ﳝﻜﻦ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺭﻗـﻢ ) ‪ ، ( 1 -7‬ﻭﺍﻟـﱵ‬
‫ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ‪ ،‬ﺃﻱ ﺃﻥ ‪:‬‬
‫‪f ( H ) 260‬‬
‫=‬
‫‪= 0.52‬‬
‫‪n‬‬
‫‪500‬‬
‫•‬
‫ﺍ ﻻﺣﺘﻤﺎﻝ ﺍﻟﻨﻈﺮﻱ‬
‫= ) ‪P (H‬‬
‫‪ : Theoretical Probability‬ﻭﻫﻮ ﺍﻟﺬﻱ ﻳﻌﺘﻤﺪ ﰲ ﺣﺴﺎﺑﻪ ﻋﻠﻰ ﺃﺳﺲ‬
‫ﻭﻗﻮﺍﻋﺪ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ‪ ،‬ﻭﺍﻟﱵ ﺗﺴﺘﺨﺪﻡ ﰲ ﲢﺪﻳﺪ ﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻟﻠﺘﺠﺮﺑﺔ‪ ،‬ﻭﻋـﺪﺩ ﺍﻟﻨﺘـﺎﺋﺞ‬
‫ﺍﳌﻤﻜﻨﺔ ﻟﻮﻗﻮﻉ ﺍﳊﺎﺩﺙ‪ ،‬ﻭﻣﻦ ﰒ ﳛﺴﺐ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻻﺣﺘﻤﺎﻝ ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ n (S) :‬ﻫﻮ ﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻟﻠﺘﺠﺮﺑﺔ‪ n (A) ،‬ﻫﻮ ﻋﺪﺩ ﺍﻟﻨﺘـﺎﺋﺞ ﺍﳌﻤﻜﻨـﺔ ﻟﻮﻗـﻮﻉ‬
‫ﺍﳊﺎﺩﺙ ‪ ، A‬ﻓﻌﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪ ،‬ﳒﺪ ﺃﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪S: {H, T} :‬‬
‫‪ ،‬ﺃﻱ ﺃﻥ ﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻫﻲ ‪ ، n (S) =(2) 1 = 2 :‬ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﳊﺎﺩﺙ ‪ A‬ﻫﻮ ﻇﻬﻮﺭ ﺻﻮﺭﺓ ‪،‬‬
‫ﳒﺪ ﺃﻥ }‪ ، A: {H‬ﺃﻱ ﺃﻥ ﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻜﻮﻧﺔ ﻟﻠﺤﺎﺩﺙ‪ A‬ﻫﻲ ‪ ، n( A) = 1 :‬ﻭﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ‬
‫‪96‬‬
‫ﺍﳊﺎﺩﺙ ‪ A‬ﻫﻮ ‪:‬‬
‫‪n ( A) 1‬‬
‫‪= = 0 .5‬‬
‫‪n(S ) 2‬‬
‫•‬
‫= )‪P ( A‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﺘﺠﺮﻳﱯ ﻭ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﻨﻈﺮﻱ ‪:‬‬
‫ﻋﻨـﺪ ﺯﻳـﺎﺩﺓ ﻋـﺪﺩ‬
‫ﺍﶈﺎﻭﻻﺕ ‪ n‬ﻳﻘﺘﺮﺏ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﺘﺠﺮﻳﱯ ﻣﻦ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﻨﻈﺮﻱ ‪ ،‬ﺃﻱ ﺃﻥ ‪:‬‬
‫ﻓﻌﻨﺪ ﺯﻳﺎﺩﺓ ﻋﺪﺩ ﻣﺮﺍﺕ ﺭﻣﻲ ﻗﻄﻌﺔ ﺍﻟﻌﻤﻠﺔ‪ ،‬ﻓﺈﻥ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﱯ ﻟﻠﺼﻮﺭﺓ ﺳﻮﻑ ﻳﻘﺘﺮﺏ ﻣﻦ‬
‫ﺍﻟﻘﻴﻤﺔ )‪ ، (0.5‬ﻭﻫﻲ ﻗﻴﻤﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﻨﻈﺮﻱ ﻟﻈﻬﻮﺭ ﺍﻟﺼﻮﺭﺓ ﻋﻨﺪ ﺭﻣﻲ ﻗﻄﻌﺔ ﺍﻟﻌﻤﻠﺔ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪.‬‬
‫•‬
‫ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﺘﺸﺎ‪‬ﺔ ‪:‬‬
‫ﺇﺫﺍ ﺃﺟﺮﻳﺖ ﲡﺮﺑﺔ‪ ،‬ﻭﻛﺎﻧﺖ ﻛﻞ ﻧﺘﻴﺠﺔ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﻤﻜﻨﺔ ﻟﻠﺘﺠﺮﺑﺔ ﳍﺎ ﻧﻔﺲ‬
‫ﺍﻟﻔﺮﺻﺔ ﰲ ﺍﻟﻈﻬﻮﺭ‪ ،‬ﲟﻌﲎ ﺃﻥ ﻛﻞ ﻧﺘﻴﺠﺔ ﳍﺎ ﺍﺣﺘﻤﺎﻝ ﻫﻮ ) ) ‪ ، (1 n( S‬ﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻨﺘﺎﺋﺞ ﺑﺎﻟﻨﺘﺎﺋﺞ‬
‫ﺍﳌﺘﻤﺎﺛﻠﺔ ﺃﻭ ﺍﳌﺘﺸﺎ‪‬ﺔ‪ ،‬ﻓﻌﻨﺪ ﺇﻟﻘﺎﺀ ﺯﻫﺮﺓ ﻧﺮﺩ ﻣﺘﺰﻧﺔ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ‪ ،‬ﳒـﺪ ﺃﻥ ﻓـﺮﺍﻍ ﺍﻟﻌﻴﻨـﺔ ﻫـﻮ‬
‫}‪ ، S:{1,2,3,4,5,6‬ﻭﺍﺣﺘﻤﺎﻝ ﻛﻞ ﻧﺘﻴﺠﺔ ﻫﻮ )‪ ، (1/6‬ﻭﻋﻨﺪ ﺇﻟﻘﺎ ﺀ ﺍﻟﺰﻫﺮﺓ ﻣﺮﺗﲔ ﳒﺪ ﺃﻥ ﻋﺪﺩ‬
‫ﻧﺘﺎﺋﺞ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻮ ‪ n (S) =6 2 =36 :‬ﻧﺘﻴﺠﺔ‪ ،‬ﻭﻫﻲ ‪:‬‬
‫‪6‬‬
‫)‪(1,6‬‬
‫)‪(2,6‬‬
‫)‪(3,6‬‬
‫)‪(4,6‬‬
‫)‪(5,6‬‬
‫)‪(6,6‬‬
‫‪5‬‬
‫)‪(1,5‬‬
‫)‪(2,5‬‬
‫)‪(3,5‬‬
‫)‪(4,5‬‬
‫)‪(5,5‬‬
‫)‪(6,5‬‬
‫‪4‬‬
‫)‪(1,4‬‬
‫)‪(2,4‬‬
‫)‪(3,4‬‬
‫)‪(4,4‬‬
‫)‪(5,4‬‬
‫)‪(6,4‬‬
‫‪3‬‬
‫)‪(1,3‬‬
‫)‪(2,3‬‬
‫)‪(3,3‬‬
‫)‪(4,3‬‬
‫)‪(5,3‬‬
‫)‪(6,3‬‬
‫‪2‬‬
‫)‪(1,2‬‬
‫)‪(2,2‬‬
‫)‪(3,2‬‬
‫)‪(4,2‬‬
‫)‪(5,2‬‬
‫)‪(6,2‬‬
‫‪1‬‬
‫)‪(1,1‬‬
‫)‪(2,1‬‬
‫)‪(3,1‬‬
‫)‪(4,1‬‬
‫)‪(5,1‬‬
‫)‪(6,1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪6‬‬
‫ﻭﻫﺬﻩ ﺍﻟﻨﺘﺎﺋﺞ ﻣﺘﻤﺎﺛﻠﺔ‪ ،‬ﻭﺍﺣﺘﻤﺎﻝ ﻛﻞ ﻧﺘﻴﺠﺔ ﻫﻮ )‪. (1/36‬‬
‫•‬
‫ﺍﻟﻨﺘﺎﺋﺞ ﻏﲑ ﺍﳌﺘﻤﺎﺛﻠﺔ ‪:‬‬
‫ﻫﻲ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﱵ ﲢﺪﺙ ﻋﻨﺪ ﺗﻜﺮﺍﺭ ﳏﺎﻭﻟﺔ ‪ ،‬ﲝﻴﺚ ﺃﻥ ﺍﺣﺘﻤـﺎﻻﺕ‬
‫ﻧﺘﺎﺋﺞ ﻛﻞ ﳏﺎﻭﻟﺔ ﻏﲑ ﻣﺘﺴﺎﻭﻱ‪ ،‬ﻭﻣﻦ ﰒ ﻻ ﺗﺘﺴﺎﻭﻯ ﺍﺣﺘﻤﺎﻻﺕ ﻧﺘﺎﺋﺞ ﺍﻟﺘﺠﺮﺑﺔ‪ ،‬ﻓﻌﻨﺪ ﺳﺤﺐ ﻛﺮﺗﲔ‬
‫ﻣﻊ ﺍﻹﺭﺟﺎﻉ ﺑﻄﺮﻳﻘﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻣﻦ ﻛﻴﺲ ﺑﻪ ﺛﻼﺙ ﻛﺮﺍﺕ ﲪﺮﺍﺀ )‪ ، (R‬ﻭﻛﺮﺗﺎﻥ ﲢﻤـﻼﻥ ﺍﻟﻠـﻮﻥ‬
‫ﺍﻷﺑﻴﺾ )‪ ، (W‬ﳒﺪ ﺃﻧﻪ ﰲ ﻛﻞ ﺳﺤﺐ ﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻛﺮﺓ ﲪﺮﺍﺀ ﻫﻮ ‪ ، 3/5‬ﻭﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ‬
‫ﻛﺮﺓ ﺑﻴﻀﺎﺀ ﻫﻮ‬
‫ﻛﺮﺗﲔ ﻫﻮ ‪:‬‬
‫‪ ، 2/5‬ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﻧﺘﺎﺋﺞ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﻭﺍﺣﺘﻤﺎﻝ ﻛﻞ ﻧﺘﻴﺠﺔ ﰲ ﺣﺎﻟﺔ ﺳﺤﺐ‬
‫‪97‬‬
‫ﻳﻼﺣﻆ ﺃﻥ ﺍﺣﺘﻤﺎﻝ ﻛﻞ ﻧﺘﻴﺠﺔ ﳜﺘﻠﻒ ﻋﻦ )‪ ، (1 4‬ﻓﻬﺬﻩ ﺍﳊﺎﻻﺕ ﻏﲑ ﻣﺘﺰﻧﺔ ‪.‬‬
‫‪ 4/7‬ﺑﻌﺾ ﻗﻮﺍﻧﲔ ﺍﻻﺣﺘﻤﺎﻻﺕ‬
‫‪Probability Laws‬‬
‫ﻫﻨﺎﻙ ﺑﻌﺾ ﺍﻟﻘﻮﺍﻧﲔ ﺍﻟﱵ ﳝﻜﻦ ﺗﻄﺒﻴﻘﻬﺎ ﳊﺴﺎﺏ ﺍﻻ ﺣﺘﻤﺎﻻﺕ ﺍﳌﺨﺘﻠﻔﺔ‪ ،‬ﻭﻫﻲ ‪:‬‬
‫•‬
‫ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻻﺣﺘﻤﺎﻻﺕ‬
‫‪Addition Law‬‬
‫ﺇﺫﺍ ﻛ ﺎﻥ ﻟﺪﻳﻨﺎ ﺍﳊﺎﺩﺛﺎﻥ ‪ ، B , A‬ﻓﺈﻥ ﺍﻻﺣﺘﻤﺎﻝ )‪ ، P(A∪B‬ﳝﻜﻦ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻌﺎﺩﻟﺘﻪ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫)‪n( A∪ B‬‬
‫) ‪n( S‬‬
‫)‪n( A) + n( B) − n( A∩ B‬‬
‫=‬
‫) ‪n( S‬‬
‫)‪n( A) n( B) n( A∩ B‬‬
‫=‬
‫‪+‬‬
‫‪−‬‬
‫) ‪n( S ) n ( S‬‬
‫) ‪n( S‬‬
‫)‪= P ( A) + P ( B) − P ( A∩ B‬‬
‫= )‪P ( A∪ B‬‬
‫ﺇﺫﺍ ‪:‬‬
‫ﻭﰲ ﺣﺎﻟﺔ ﺛﻼﺙ ﺃﺣﺪﺍﺙ ‪ ، C , B , A‬ﳝﻜﻦ ﺍﺳﺘﻨﺘﺎﺝ ﻣﻌﺎﺩﻟﺔ ﺍﻻﲢﺎﺩ ) ‪ ، P ( A ∪ B ∪ C‬ﻭﻫﻲ ‪:‬‬
‫ﻭﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺍﻷﺣﺪﺍﺙ ﻣﺘﻨﺎﻓﻴﺔ‪ ،‬ﻓﺈﻥ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺘﻘﺎﻃﻌﺎﺕ ﺗﺴﺎﻭﻱ ﺃﺻﻔﺎﺭ‪ ،‬ﻭﻳﻜﻮﻥ ‪:‬‬
‫‪98‬‬
‫ﻣﺜــﺎﻝ ) ‪( 2 -7‬‬
‫ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﺯﻫﺮﺓ ﻧﺮﺩ ﻏﲑ ﻣﺘﺤﻴﺰﺓ ﻣﺮﺗﲔ‪ ،‬ﻓﺄﻭﺟﺪ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -1‬ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ‪.‬‬
‫‪ -2‬ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪. 10‬‬
‫‪ -3‬ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ﺃﻭ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪. 10‬‬
‫‪ -4‬ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪ 7‬ﺃﻭ ‪. 10‬‬
‫ﺍﳊــــﻞ ‪:‬‬
‫ﻧﺘﺎﺋﺞ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻫﻲ ‪:‬‬
‫‪6‬‬
‫)‪(1,6‬‬
‫)‪(2,6‬‬
‫)‪(3,6‬‬
‫)‪(4,6‬‬
‫)‪(5,6‬‬
‫)‪(6,6‬‬
‫‪5‬‬
‫)‪(1,5‬‬
‫)‪(2,5‬‬
‫)‪(3,5‬‬
‫)‪(4,5‬‬
‫)‪(5,5‬‬
‫)‪(6,5‬‬
‫‪S‬‬
‫‪3‬‬
‫‪4‬‬
‫)‪(1,3) (1,4‬‬
‫)‪(2,3) (2,4‬‬
‫)‪(3,3) (3,4‬‬
‫)‪(4,3) (4,4‬‬
‫)‪(5,3) (5,4‬‬
‫)‪(6,3) (6,4‬‬
‫‪n (S) = 36‬‬
‫‪2‬‬
‫)‪(1,2‬‬
‫)‪(2,2‬‬
‫)‪(3,2‬‬
‫)‪(4,2‬‬
‫)‪(5,2‬‬
‫)‪(6,2‬‬
‫‪1‬‬
‫)‪(1,1‬‬
‫)‪(2,1‬‬
‫)‪(3,1‬‬
‫)‪(4,1‬‬
‫)‪(5,1‬‬
‫)‪(6,1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪6‬‬
‫‪ -1‬ﺑﻔﺮﺽ ﺃﻥ ﺍﳊﺎﺩﺙ ‪ A‬ﻫﻮ ﺣﺎﺩﺙ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ‪ ،‬ﻓﺈﻥ ‪:‬‬
‫‪A: {(1,1) (2,2) (3,3) (4,4) (5,5) (6.6)}, n (A)= 6‬‬
‫ﻭﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ﻫﻮ ‪:‬‬
‫‪n( A) 6 1‬‬
‫=‬
‫=‬
‫‪n( S) 36 6‬‬
‫= )‪P ( A‬‬
‫‪ -2‬ﺑﻔﺮﺽ ﺃﻥ ﺍﳊﺎﺩﺙ ‪ B‬ﻫﻮ ﺣﺎﺩﺙ ﻇﻬ ﻮﺭ ﻭﺟﻬﲔ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪ ، 10‬ﻓﺈﻥ ‪:‬‬
‫‪B: {(4,6) (5,5) (6,4)}, n (B) = 3‬‬
‫ﻭﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ﻫﻮ ‪:‬‬
‫‪n( B) 3 1‬‬
‫=‬
‫=‬
‫‪n( S ) 36 12‬‬
‫= )‪P ( B‬‬
‫‪ -3‬ﳊﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ﺃﻭ )‪ (or‬ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪ ، 10‬ﺗﺴﺘﺨﺪﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪-7‬‬
‫‪ ، ( 3‬ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫‪P (B) = 1‬‬
‫‪12‬‬
‫‪,‬‬
‫‪P ( A) = 1‬‬
‫‪6‬‬
‫ﻭﺃﻣﺎ ﺍﻟﺘﻘﺎﻃﻊ )‪ ( A∩ B‬ﻓﻴﻌﱪ ﻋﻦ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﻣﺘﺸﺎ‪‬ﲔ ﻭ ﳎﻤﻮﻋﻬﻤﺎ ‪ 10‬ﳝﻜﻦ ﺣﺴﺎﺑﻪ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪99‬‬
‫‪( A∩ B) : {(5,5)} , n( A∩ B) = 1‬‬
‫‪n( A ∩ B) 1‬‬
‫= )‪P ( A ∩ B‬‬
‫=‬
‫‪36‬‬
‫ﻭﻣﻦ ﰒ ‪:‬‬
‫) ‪n( S‬‬
‫) ‪P ( A ∪ B ) = P ( A) + P ( B ) − P ( A ∩ B‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪8‬‬
‫‪2‬‬
‫‪+‬‬
‫‪−‬‬
‫=‬
‫=‬
‫‪6 12 36 36 9‬‬
‫=‬
‫‪ -4‬ﺑﻔﺮﺽ ﺃﻥ ﺍﳊﺎﺩﺙ ‪ C‬ﻫﻮ ﺣﺎﺩﺙ ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪ ، 7‬ﻭﺍﳊﺎﺩﺙ ‪ B‬ﻫـﻮ ﺣـﺎﺩﺙ‬
‫ﻇﻬﻮﺭ ﻭﺟﻬﲔ ﳎﻤﻮﻉ ﻧﻘﺎﻃﻬﻤﺎ ‪ ، 10‬ﳒﺪ ﺃﻥ ‪:‬‬
‫})‪B: {(4,6) (5,5) (6,4)} , C: {(1,6) (2,5) (3,4) (4,3) (5,2) (6,1‬‬
‫‪n (B) = 3‬‬
‫‪n (C) = 6‬‬
‫‪،‬‬
‫‪P ( B ) = 3 36‬‬
‫‪P ( C ) = 6 36‬‬
‫ﻳﻼﺣ ﻆ ﺃﻥ ﺍﳊﺎﺩﺛﲔ ‪ C, B‬ﺣﺎﺩﺛﲔ ﻣﺘﻨﺎﻓﻴﲔ‪ ،‬ﻟﺬﺍ ﺗﺴﺘﺨﺪﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 5 -7‬ﰲ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ‬
‫ﺍﳌﻄﻠﻮﺏ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪3‬‬
‫‪6‬‬
‫‪+‬‬
‫‪36 36‬‬
‫= ) ‪P ( B ∪ C ) = P ( B) + P (C‬‬
‫‪9‬‬
‫‪1‬‬
‫=‬
‫‪36 4‬‬
‫•‬
‫ﻗﺎﻧﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﺸﺮﻃﻲ‬
‫=‬
‫‪Conditional probability‬‬
‫ﻳﺴﺘﻨﺪ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﻋﻠﻰ ﻓﺮﺻﺔ ﻭﻗﻮﻉ ﺣﺎﺩﺙ‪ ،‬ﺇﺫﺍ ﺗﻮﺍﻓﺮﺕ ﻣﻌﻠﻮﻣﺎﺕ ﻋﻦ ﻭﻗﻮﻉ ﺣﺎﺩﺙ ﺁﺧﺮ‬
‫ﻟﻪ ﻋﻼﻗﺔ ﺑﺎ ﳊﺎﺩﺙ ﺍﻷﻭﻝ ‪ ،‬ﻛﺎﺣﺘﻤﺎﻝ ﳒﺎﺡ ﺍﻟﻄﺎﻟﺐ ﰲ ﻣﺎﺩﺓ ﺍﻹﺣﺼﺎﺀ ﺇﺫﺍ ﻋﻠﻢ ﺃﻧﻪ ﻣﻦ ﺍﻟﻨـﺎﺟﺤﲔ ﰲ‬
‫ﻣﺎﺩﺓ ﺍﻻﻗﺘﺼﺎﺩ‪ ،‬ﻭﻛﺎﺣﺘﻤﺎﻝ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﺰﺭﻋ ﺔ ﻟﻨﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻟﺴﻤﺎﺩ‪ ،‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻧﻪ ﻳﻘـﻮﻡ ﺑﺰﺭﺍﻋـﺔ‬
‫ﳏﺼﻮﻝ ﻣﻌﲔ‪ ،‬ﻭﻛﺎﺣﺘﻤﺎﻝ ﺃﻥ ﺍﳋﺮﳚﻲ ﻳﻌﻤﻞ ﺑﺎﻟﻘﻄﺎﻉ ﺍﳋﺎﺹ‪ ،‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻧﻪ ﳑﻦ ﲣﺮﺟﻮﺍ ﻣﻦ ﻗﺴﻢ ﻣﻌﲔ‬
‫ﻣﻦ ﺃﻗﺴﺎﻡ ﻛﻠﻴﺔ ﺍﻟﺰﺭﺍﻋﺔ‪ ،‬ﻭﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺫﻟﻚ ﻛﺜﲑﺓ ‪.‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﳊﺎﺩﺙ ‪ Β‬ﺣﺎﺩﺙ ﻣﻌﻠﻮﻡ‪ ،‬ﻭﺍﳊﺎﺩﺙ ‪ Α‬ﺣﺎﺩﺙ ﺁﺧﺮ ﻳﺮﺍﺩ ﺣـﺴﺎﺏ ﺍﺣﺘﻤـﺎﻝ‬
‫ﻭﻗﻮﻋﻪ‪ ،‬ﲟﻌﻠﻮﻣﻴﺔ ﺍﳊﺎﺩﺙ ‪ ، Β‬ﻓﺈﻥ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻳﻌﺮﻑ ﺍﻻﺣﺘﻤﺎﻝ )‪ p( A | B‬ﺑﻘﺎﻧﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﺸﺮﻃﻲ‪ ،‬ﻭﻳﻘﺮ ﺃ " ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ‪A‬‬
‫ﲟﻌﻠﻮﻣﻴﺔ ﺍﳊﺎﺩﺙ ‪ ، " B‬ﺃﻭ ﻳﻘﺮﺃ " ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ‪ A‬ﺑﺸﺮﻁ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ‪ ، " B‬ﻛﻤﺎ ﳝﻜـﻦ‬
‫ﺣﺴﺎ ﺏ ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ‪ B‬ﲟﻌﻠﻮﻣﻴﺔ ﺍﳊﺎﺩﺙ ‪ ، A‬ﻭﺫﻟﻚ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪100‬‬
‫ﻭﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 7 -7 ) ، ( 6 -7‬ﻳﻼﺣﻆ ﺃﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﻟﺸﺮﻃﻲ ﻫﻮ ﻧﺴﺒﺔ ﺣﺎﺩﺙ ﺍﻟﺘﻘﺎﻃﻊ ﺑﲔ‬
‫ﺇﱃ ﺍﳊﺎﺩﺙ ﺍﳌﻌﻠﻮﻡ‪ ،‬ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫ﻣﺜــﺎﻝ ) ‪( 3 -7‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺗﻮﺯﻳﻊ ﺗﻜﺮﺍﺭﻱ ﻟﻌﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﺣﺠﻤﻬﺎ ‪ 100‬ﻣﻦ ﺧﺮﳚﻲ ﺍﻟﻜﻠﻴﺔ ﰲ ﺍﻟﻌﺎﻣﲔ ﺍﳌﺎﺿﻴﲔ‪،‬‬
‫ﺣﺴﺐ ﺍﻟﺘﺨﺼﺺ‪ ،‬ﻭﻧﻮﻉ ﺍﳌﻬﻨﺔ ‪:‬‬
‫ﻋﻤﻞ ﺣﺮ‬
‫‪Sum‬‬
‫‪30‬‬
‫‪35‬‬
‫‪35‬‬
‫‪100‬‬
‫ﻗﻄﺎﻉ ﺧﺎﺹ‬
‫‪10‬‬
‫‪10‬‬
‫‪13‬‬
‫‪33‬‬
‫ﻋﻤﻞ ﺣﻜﻮﻣﻲ‬
‫‪15‬‬
‫‪8‬‬
‫‪12‬‬
‫‪35‬‬
‫‪5‬‬
‫‪17‬‬
‫‪10‬‬
‫‪32‬‬
‫ﺍﳌﻬﻨﺔ‬
‫ﺍﻟﺘﺨﺼﺺ‬
‫ﺍﻗﺘﺼﺎﺩ ﺯﺭﺍﻋﻲ‬
‫ﻋﻠﻮﻡ ﺃﻏﺬﻳﺔ‬
‫ﻋﻠﻮﻡ ﺗﺮﺑﺔ‬
‫‪Sum‬‬
‫ﻓﺈﺫﺍ ﺍﺧﺘﲑ ﺃﺣﺪ ﺍﳋﺮﳚﲔ ﺑﻄﺮ ﻳﻘﺔ ﻋﺸﻮﺍﺋﻴﺔ‪ ،‬ﺍﺣﺴﺐ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪ -1‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﺍﻻﻗﺘﺼﺎﺩ ﻭ ﻳﻌﻤﻞ ﺑﺎﻟﻘﻄﺎﻉ ﺍﳋﺎﺹ ‪.‬‬
‫‪ -2‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﳑﻦ ﻳﻌﻤﻠﻮﻥ ﺑﺎﳊﻜﻮﻣﺔ ﺃﻭ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ ‪.‬‬
‫‪ -3‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ ﺃﻭ ﻣﻦ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻟﺘﺮﺑﺔ ‪.‬‬
‫‪ -4‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻥ ﺍﻟﻔﺮﺩ ﻣﻦ ﺧ ﺮﳚﻲ ﻗﺴﻢ ﻋﻮﻡ ﺍﻷﻏﺬﻳﺔ‪ ،‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﳑﻦ ﻳﻌﻤﻠﻮﻥ ﻋﻤﻼ ﺣﺮﺍ ‪.‬‬
‫ﺍﳊ ﻞ ‪:‬‬
‫ﺃﻭﻻ ‪ :‬ﻧﺮﻣﺰ ﻟﻨﻮﻉ ﺍﳌﻬﻨﺔ ﺑﺎﻟﺮﻣﻮ ‪ ، A‬ﻭﻟﻨﻮﻉ ﺍﻟﺘﺨﺼﺺ ﺑﺎﻟﺮﻣﺰ ‪ ، B‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪Sum‬‬
‫ﻋﻤﻞ ﺣﺮ‬
‫ﻗﻄﺎﻉ ﺧﺎﺹ‬
‫ﻋﻤﻞ ﺣﻜﻮﻣﻲ‬
‫‪A3‬‬
‫‪A2‬‬
‫‪A1‬‬
‫ﺍ ﳌﻬﻨﺔ‬
‫ﺍﻟﺘﺨﺼﺺ‬
‫‪30‬‬
‫‪10‬‬
‫‪5‬‬
‫‪15‬‬
‫‪B1‬‬
‫ﺍﻗﺘﺼﺎﺩ ﺯﺭﺍﻋﻲ‬
‫‪35‬‬
‫‪10‬‬
‫‪17‬‬
‫‪8‬‬
‫‪35‬‬
‫‪13‬‬
‫‪10‬‬
‫‪12‬‬
‫‪B2‬‬
‫‪B3‬‬
‫ﻋﻠﻮﻡ ﺃﻏﺬﻳﺔ‬
‫‪100‬‬
‫‪33‬‬
‫‪32‬‬
‫‪35‬‬
‫ﻋﻠﻮﻡ ﺗﺮﺑﺔ‬
‫‪Sum‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﺍﻟﺘﻜﺮﺍﺭ ﰲ ﻛﻞ ﺧﻠﻴﺔ ﻳﻌﱪ ﻋﻦ ﻋﺪﺩ ﺍﳋﺮﳚ ﲔ ﺍﻟﺬﻳﻦ ﻳﻨﺘﻤﻮﻥ ﻟﻘﺴﻢ ﻣﻌﲔ ﻭ ﻳﻌﻤﻠﻮﻥ ﰲ ﻣﻬﻨﺔ‬
‫ﻣﻌﻴﻨﺔ‪ ،‬ﺃﻱ ﻳﻌﱪ ﻋﻦ ﻋﺪﺩ ﺗﻜﺮﺍﺭ ﺍﺕ ﺣﻮﺍﺩﺙ ﺍﻟﺘﻘﺎﻃﻊ ﺍﳌﻤﻜﻨﺔ ‪. A∩ B‬‬
‫‪101‬‬
‫‪ -1‬ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﺍﻻﻗﺘﺼﺎﺩ ﻭ ﻳﻌﻤﻞ ﺑﺎﻟﻘﻄﺎﻉ ﺍﳋﺎﺹ ‪.‬‬
‫‪f ( B1 ∩ A2 ) 5‬‬
‫=‬
‫‪= 0.05‬‬
‫‪n‬‬
‫‪100‬‬
‫= ) ‪P ( B1 ∩ A2‬‬
‫‪ -2‬ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﳑﻦ ﻳﻌﻤﻠﻮﻥ ﺑﺎﳊﻜﻮﻣﺔ ﺃﻭ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ ‪.‬‬
‫) ‪P ( A1 ∪ B2 ) = p( A1 ) + P ( B2 ) − P ( A1 ∩ B2‬‬
‫‪35‬‬
‫‪35‬‬
‫‪8‬‬
‫‪62‬‬
‫=‬
‫‪+‬‬
‫‪−‬‬
‫=‬
‫‪= 0.62‬‬
‫‪100 100 100 100‬‬
‫‪ -3‬ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻷﻏﺬﻳﺔ ﺃﻭ ﻣﻦ ﻗﺴﻢ ﻋﻠﻮﻡ ﺍﻟﺘﺮﺑﺔ ‪.‬‬
‫ﻫﺬﺍﻥ ﺣﺎﺩﺛﺎﻥ ﻣﺘﻨﺎﻓﻴﺎﻥ‪ ،‬ﻷﻥ ﲣﺮﺝ ﺍﻟﻔﺮﺩ ﻣﻦ ﺃﺣﺪ ﺍﻷﻗﺴﺎﻡ ﻳﻨﻔﻲ ﲣﺮﺟﻪ ﻣﻦ ﺍﻷﻗﺴﺎﻡ ﺍﻵﺧﺮ ﻯ ‪،‬‬
‫ﻭﲟﻌﲎ ﺁﺧﺮ ﺍﺳﺘﺤﺎﻟﺔ ﺃﻥ ﺍﻟﻔﺮﺩ ﲣﺮﺝ ﻣﻦ ﻗﺴﻤﲔ ﰲ ﺁﻥ ﻭﺍﺣﺪ‪ ،‬ﻟﺬﺍ ﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ ﺍﲢﺎﺩﳘﺎ ﻫﻮ ‪:‬‬
‫) ‪P ( B2 ∪ B3 ) = p ( B2 ) + P ( B3‬‬
‫‪35‬‬
‫‪35‬‬
‫‪70‬‬
‫‪+‬‬
‫=‬
‫‪= 0.70‬‬
‫‪100 100 100‬‬
‫=‬
‫‪ -4‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻥ ﺍﻟﻔﺮﺩ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻮﻡ ﺍﻷﻏﺬﻳﺔ‪ ،‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﳑﻦ ﻳﻌﻤﻠﻮﻥ ﻋﻤﻼ ﺣﺮﺍ‪،‬‬
‫ﻫﺬﺍ ﺍﺣﺘﻤﺎﻝ ﺷﺮﻃﻲ‪ ،‬ﺍﳌﻄﻠﻮﺏ ﻫﻨﺎ " ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﻟﻔﺮﺩ ﳑﻦ ﻳﻌﻤﻠﻮﻥ ﻋﻤﻼ ﺣﺮﺍ ‪ A3‬ﺑﺸﺮﻁ‬
‫ﺃﻧﻪ ﻣﻦ ﺧﺮﳚﻲ ﻗﺴﻢ ﻋﻠﻮ ﻡ ﺃﻏﺬﻳﺔ ‪ ، B2‬ﺃﻱ ﺃﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻄﻠﻮﺏ ﻫﻮ ‪:‬‬
‫‪ 10 ‬‬
‫‪‬‬
‫‪‬‬
‫‪p( A3 ∩ B2 )  100  10‬‬
‫=‬
‫= ) ‪p( A3 | B2‬‬
‫=‬
‫) ‪p ( B2‬‬
‫‪ 35  35‬‬
‫‪‬‬
‫‪‬‬
‫‪ 100 ‬‬
‫ﻭﺍﺟﺐ ﻣﱰﱄ‪:‬‬
‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﺒﲔ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺴﻠﻴﻤﺔ‪ ،‬ﻭﺍﻟﺘﺎﻟﻔﺔ ﻣﻦ ﺍﳋﺒﺰ ﺍﻟﻌﺮﰊ ﺑﻌﺪ ﺛﻼﺙ ﺃﻳﺎﻡ ﻣﻦ ﺗﺎﺭﻳﺦ‬
‫ﺍﻹﻧﺘﺎﺝ ﰲ ﺃﺣﺪ ﻣﺮﺍﻛﺰ ﺍﻟﺘﻤﻮﻳﻦ ﺍﻟﱵ ﺗﺘﻌﺎﻣﻞ ﻣﻊ ﺛﻼﺙ ﳐﺎﺑﺰ ﻫﻲ ‪. (C , B , A) :‬‬
‫ﳐﺒﺰ ‪A‬‬
‫ﳐﺒﺰ ‪B‬‬
‫ﳐﺒﺰ ‪C‬‬
‫ﺍﻹﲨﺎﱄ‬
‫ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺴﻠﻴﻤﺔ‬
‫‪36‬‬
‫‪60‬‬
‫‪54‬‬
‫‪150‬‬
‫ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺘﺎﻟﻔﺔ‬
‫‪24‬‬
‫‪63‬‬
‫‪33‬‬
‫‪120‬‬
‫ﺇﺫﺍ ﺍﺧﺘﲑﺕ ﻭﺣﺪﺓ ﻣﻦ ﺍﳋﺒﺰ ﺑﻄﺮﻳﻘﺔ ﻋﺸﻮﺍﺋﻴﺔ‪ ،‬ﻓﺄﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﻜﻮﻥ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳌﺨﺒﺰ‪ B‬؟‬
‫‪ -2‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﻜﻮﻥ ﺗﺎﻟﻔﺔ ؟‬
‫‪ -3‬ﺇﺫﺍ ﻛﺎ ﻧﺖ ﺍﻟﻮﺣﺪﺓ ﺳﻠﻴﻤﺔ ‪ ،‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﻜﻮﻥ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳌﺨﺒﺰ ‪ C‬؟‬
‫‪ -4‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﻜﻮﻥ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳌﺨﺒﺰ ‪ A‬ﺃﻭ ﺗﻜﻮﻥ ﺗﺎﻟﻔﺔ ؟‬
‫‪ -5‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳌﺨﺒﺰ ‪ ، A‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﻜﻮﻥ ﺗﺎﻟﻔﺔ ؟‬
‫ﺍﻹﲨﺎﱄ‬
‫‪60‬‬
‫‪123‬‬
‫‪87‬‬
‫‪270‬‬
‫‪102‬‬
‫•‬
‫ﻗﺎﻧﻮﻥ ﺿﺮﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ‬
‫‪Probability Multiplying Law‬‬
‫ﻭﻳﻌﻜﺲ ﻫﺬﺍ ﺍﻟﻘﺎﻧﻮﻥ ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮ ﻉ ﺍﻷﺣﺪﺍﺙ ﻣﻌﺎ‪ ،‬ﺃﻱ ﺍﺣﺘﻤﺎﻝ ﺍﻟﺘﻘﺎﻃﻌﺎﺕ‪ ،‬ﻓﺈﺫﺍ ﻛـﺎﻥ ‪، B , A‬‬
‫ﺣﺎﺩﺛﺎﻥ ﳝﻜﻦ ﻭﻗﻮﻋﻬﻤﺎ ﻣﻌﺎ‪ ،‬ﻓﺈﻥ ﺍﻻ ﺣﺘﻤﺎﻝ )‪ P ( A ∩ B‬ﳝﻜﻦ ﺣﺴﺎﺑﻪ ﻛ ﺤﺎﺻﻞ ﺿﺮﺏ ﺍﺣﺘﻤﺎﻟﲔ‪ ،‬ﳘﺎ ‪:‬‬
‫ﻣﺜــﺎﻝ ) ‪( 4 -7‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﺴﺒﺔ ﻣﺰﺍﺭﻉ ﺍﳋﻀﺮﻭﺍﺕ ﺍﻟﱵ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﻣﻌﲔ ﻟﻠﺘﺴﻤﻴﺪ ‪ ، 60%‬ﻭﺇﺫﺍ ﻛـﺎﻥ‬
‫ﻧﺴﺒﺔ ﺍﳌﺒ ﻴﻌﺎﺕ ﻣﻦ ﺇﻧﺘﺎﺝ ﺍﳋﻀﺮﻭﺍﺕ ﺍﳌﺴﻤﺪ ‪ ، 70%‬ﺑﻴﻨﻤﺎ ﻧﺴﺒﺔ ﺍﳌﺒﻴﻌﺎﺕ ﻣﻦ ﺍﳋﻀﺮﻭﺍﺕ ﻏـﲑ ﺍﳌـﺴﻤﺪ ﺓ‬
‫‪ ، 80%‬ﺇﺫﺍ ﺍﺧﺘﲑﺕ ﺃﺣﺪ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﳋﻀﺮﻭﺍﺕ ﻋﺸﻮﺍﺋﻴﺎ ‪ ،‬ﻓﺄﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ؟‬
‫‪ -2‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ‪ ،‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗ ﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ؟‬
‫‪ -3‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ ﻭﺗﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ؟‬
‫‪ -4‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﳑﻦ ﻻ ﻳ ﺴﺘﺨﺪﻣ ﻮﻥ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ ﻭ ﺗﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ؟‬
‫ﺍﳊــﻞ‬
‫ﺇﺫﺍ ﻓﺤﺼﻨﺎ ﺣﺎﻝ ﺍﳌﺰﺭﻋﺔ ﺍﳌﺴﺤﻮﺑﺔ ‪ ،‬ﳒﺪ ﺃﻧﻨﺎ ﻧﺘﻌﺎﻣﻞ ﻣﻊ ﻧﺘﻴﺠﺘﲔ ﻣﺘﻌﺎﻗﺒﺘﲔ ﳘﺎ ‪:‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ ﺍﻷﻭﱄ ﻭﳍﺎ ﺣﺎﻟﺘ ﺎﻥ ‪ } :‬ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﻃﺮﻳﻘﺔ ﺍﻟﺘﺴﻤﻴﺪ ) ‪ (A1‬ﺃﻭ ﺍﳌﺰﺭﻋﺔ ﻻ ﺗﺴﺘﺨﺪﻡ ) ‪{ (A2‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻭﳍﺎ ﺣﺎﻟﺘﺎﻥ ‪ } :‬ﺍﳌﺰﺭﻋﺔ ﺗﺒﻴﻊ ﺍﻹﻧﺘﺎﺝ ) ‪ ، (B1‬ﺃﻭ ﺍﳌﺰﺭﻋﺔ ﻻ ﺗﺒﻴﻊ ﺍﻹﻧﺘﺎﺝ ) ‪{ (B2‬‬
‫ﻟﺬﺍ ﳝﻜﻦ ﺍﺳﺘﻨﺘﺎﺝ ﺷﺠﺮﺓ ﺍﻻﺣﺘﻤﺎﻻﺕ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﻜﻠﻴﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺣﺴﺎﺏ ﺍﻻﺣﺘ ﻤﺎﻻﺕ ‪:‬‬
‫‪ -1‬ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ ﻫﻮ ‪:‬‬
‫‪P ( A1 ) = 0.6‬‬
‫‪103‬‬
‫‪ -2‬ﺇﺫﺍ ﻋﻠﻢ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ‪ ،‬ﻓﺈﻥ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺗﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ﻫﻮ ‪:‬‬
‫‪P (B1 A1 ) = 0.7‬‬
‫‪ -3‬ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻫﺬﻩ ﺍﳌﺰﺭﻋﺔ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ ﻭﺗﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺣﺎﺩ ﺛﺘﺎﻥ‬
‫ﻣﻌﺎ ) ‪ ، (B1 and A1‬ﻟﺬﺍ ﳛﺴﺐ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 8 -7‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫) ‪P ( A1 ∩ B1 ) = P ( A1 ) P (B1 A1‬‬
‫‪= (0.6 )(0.7 ) = 0.42‬‬
‫‪ -4‬ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﳌﺰﺭﻋﺔ ﻻ ﺗﺴﺘﺨﺪﻡ ﺃﺳﻠﻮﺏ ﺍﻟﺘﺴﻤﻴﺪ ﻭﺗﺒﻴﻊ ﺇﻧﺘﺎﺟﻬﺎ ﻫﻮ ‪:‬‬
‫) ‪P ( A2 ∩ B1 ) = P ( A2 ) P (B1 A2‬‬
‫‪= (0.4)(0.8) = 0.32‬‬
‫•‬
‫ﺍﻷﺣﺪﺍﺙ ﺍﳌﺴﺘﻘﻠﺔ‬
‫‪Independent Events‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳊﺎﺩﺛﺘﺎﻥ ‪ B , A‬ﳝﻜﻦ ﻭﻗﻮﻋﻬﻤﺎ ﻣﻌﺎ‪ ،‬ﻭﻟﻜﻦ ﻭﻗﻮﻉ ﺃﺣﺪﳘﺎ ﻟﻴﺲ ﻟﻪ ﻋﻼﻗﺔ ﺑﻮﻗﻮﻉ ﺃﻭ ﻋﺪﻡ‬
‫ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ﺍﻵﺧﺮ ‪ ،‬ﻓﺈﻥ ﺍﻻﺣﺘﻤﺎﻝ )‪ P ( A ∩ B‬ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻪ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻳﻘﺎﻝ ﺃﻥ ﺍﳊﺎﺛﺘﺎﻥ ‪ B , A‬ﻣﺴﺘﻘﻠﺘﺎﻥ ‪.‬‬
‫ﻣﺜـــﺎﻝ ) ‪( 5 -7‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻧﺴﺒﺔ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺧﻀﺮﻭﺍﺕ ‪ ، 60%‬ﻭﻧﺴﺒﺔ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﻓﺎﻛ ﻬـ ﻪ ‪، 75%‬‬
‫ﻭﻧﺴﺒﺔ ﺍﳌﺰﺍﺭﻉ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﳋﻀﺮﻭﺍﺕ ﻭ ﺍﻟﻔﺎﻛﻬﺔ ‪ ، 50%‬ﺃﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫‪ -1‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻣﺰﺭﻋﺔ ﻣﺎ ﺗﻨﺘﺞ ﻓﺎﻛﻬﺔ ﺃﻭ ﺧﻀﺮﻭﺍﺕ؟‬
‫‪ -2‬ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺃﻻ ﺗﻨﺘﺞ ﺍﳌﺰﺭﻋﺔ ﺍﻟﻔﺎﻛﻬﺔ ؟‬
‫‪ -3‬ﻫﻞ ﺍﻧﺘﺎﺝ ﺍﳌﺰﺭﻋﺔ ﻟﻠﻔﺎﻛﻬﺔ ﻣﺴﺘﻘﻞ ﻋﻦ ﺇﻧﺘﺎﺟﻬﺎ ﻟﻠﺨﻀﺮﻭﺍﺕ؟‬
‫ﺍﳊـﻞ ‪:‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ‪ A‬ﺣ ﺎﺩﺙ ﻳﻌﱪ ﻋﻦ " ﺍﳌﺰﺭﻋﺔ ﺗﻨﺘﺞ ﺧﻀﺮﻭﺍﺕ " ‪ B ،‬ﻫﻮ ﺣﺎﺩﺙ ﻳﻌﱪ ﻋﻦ " ﺍﳌﺰ ﺭﻋﺔ‬
‫ﺗﻨﺘﺞ ﻓﺎﻛﻬﺔ " ‪ ،‬ﻓﺈﻥ ‪:‬‬
‫‪P ( A) = 0.6 , P ( B) = 0.75 , P ( A ∩ B) = 0.5‬‬
‫ﻭﻳﻜﻮﻥ ‪:‬‬
‫‪ -1‬ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻣﺰﺭﻋﺔ ﻣﺎ ﺗﻨﺘﺞ ﻓﺎﻛﻬﺔ ﺃﻭ ﺧﻀﺮﻭﺍﺕ ﻫﻮ ‪:‬‬
‫)‪P ( A ∪ B) = P ( A) + P ( B) − P ( A ∩ B‬‬
‫‪= (0.6 ) + (0.75) − 0.5 = 0.85‬‬
‫‪104‬‬
‫‪ -2‬ﺍﺣﺘﻤﺎﻝ ﺃﻻ ﺗﻨﺘﺞ ﺍﳌﺰﺭﻋﺔ ﺍﻟﻔﺎﻛﻬﺔ ﻫ ﻮ ‪:‬‬
‫‪P ( B ) = 1 − P ( B) = 1 − 0.75 = 0.25‬‬
‫‪ -3‬ﳌﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺍﳌﺰﺭﻋﺔ ﻟﻠﻔﺎﻛﻬﺔ ﻣﺴﺘﻘﻞ ﻋﻦ ﺇﻧﺘﺎﺟﻬﺎ ﻟﻠﺨﻀﺮﻭﺍﺕ ﳝﻜﻦ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ) ‪-7‬‬
‫‪(9‬‬
‫‪P ( A) P ( B) = (0.6)(0.75) = 0.45‬‬
‫‪,‬‬
‫‪P ( A ∩ B) = 0.5‬‬
‫ﻭﺣﻴﺚ ﺃﻥ ‪ ، P ( A ∩ B) ≠ P ( A) P ( B) :‬ﻓﺈﻥ ﺇﻧﺘﺎﺝ ﺍﳌﺰﺭﻋﺔ ﻟﻠﻔﺎﻛﻬﺔ )‪ ، (A‬ﻏﲑ ﻣﺴﺘﻘﻞ ﻋﻦ ﺇﻧﺘﺎﺟﻬﺎ‬
‫ﻟﻠﺨﻀﺮﻭﺍﺕ )‪. (B‬‬
‫ﻣﺜـــﺎﻝ ) ‪( 6 -7‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﳊﺎﺩﺛﺎﻥ ‪ B , A‬ﺣﺎﺩﺛﺎﻥ ﻣـ ﺴﺘﻘﻼﻥ ‪ ،‬ﻭﻛـﺎﻥ‬
‫‪P( B) = 0.5 , P ( A) = 0.6‬‬
‫ﺍﻻﺣﺘﻤﺎﻝ )‪. P ( A ∪ B‬‬
‫ﺍﳊـــﻞ ‪:‬‬
‫ﲟﺎ ﺃﻥ ﺍﳊﺎﺩﺛﺎﻥ ‪ B, A‬ﻣﺴﺘﻘﻼﻥ‪ ،‬ﺇﺫﺍ ‪:‬‬
‫)‪P ( A ∩ B) = P ( A) P ( B‬‬
‫‪= (0.6)(0.5) = 0.3‬‬
‫ﻭﻳﻜﻮﻥ ﺍﺣﺘﻤﺎﻝ )‪ P ( A ∪ B‬ﻫﻮ‪:‬‬
‫)‪P ( A ∪ B) = P ( A) + P ( B) − P ( A ∩ B‬‬
‫‪= 0.6 + 0.5 − 0.3 = 0.8‬‬
‫‪ ،‬ﻓﺄﻭﺟـﺪ‬
‫‪105‬‬
‫ﺍﻟﻔﺼـــﻞ ﺍﻟﺜﺎﻣﻦ‬
‫ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻭﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ‬
‫‪Random Variables and Probability Distributions‬‬
‫‪1/8‬ﻣﻘــﺪﻣﺔ‬
‫ﻳﻬﺘﻢ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﺑﺪﺭﺍﺳﺔ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ‪ ،‬ﻣﻦ ﺣﻴﺚ ﺗﻌﺮﻳﻔﻬﺎ‪ ،‬ﻭﺃﻧﻮﺍﻋﻬـﺎ‪ ،‬ﻭﺍﻟﺘﻮﺯﻳﻌـﺎﺕ‬
‫ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﳍﺎ‪ ،‬ﻭﺧﺼﺎﺋﺺ ﻫﺬﻩ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ‪ ،‬ﻭﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﻟﻠﻤﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮ ﺍﺋﻴﺔ ﺍﳋﺎﺻﺔ ‪.‬‬
‫‪ 2/8‬ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ‬
‫‪: Random Variable‬‬
‫ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻫﻮ ﺍﻟﺬﻱ ﻳﺄﺧﺬ ﻗﻴﻤﺎ ﺣﻘﻴﻘﻴﺔ ﳐﺘﻠﻔﺔ ﺗﻌﱪ ﻋﻦ ﻧﺘﺎﺋﺞ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﻭﻣﻦ ﰒ ﳎـﺎﻝ‬
‫ﻫﺬﺍ ﺍﳌﺘﻐﲑ‪ ،‬ﻳﺸﻤﻞ ﻛﻞ ﺍﻟﻘﻴﻢ ﺍﳌﻤﻜﻨﺔ ﻟﻪ‪ ،‬ﻭﻳﻜﻮﻥ ﻟﻜﻞ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ ﺍﺣﺘﻤﺎﻝ ﻣﻌﲔ‪،‬‬
‫ﻭﻳﻨﻘﺴﻢ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸ ﻮﺍﺋﻲ ﺇﱃ ﻗﺴﻤﲔ ﳘﺎ ‪:‬‬
‫‪ -1‬ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﳌﻨﻔﺼﻠﺔ ‪Discrete Random Variables‬‬
‫‪ -2‬ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﳌﺘﺼﻠﺔ ) ﺍﳌﺴﺘﻤﺮﺓ ( ‪Continuous Random Variables‬‬
‫‪ 3/8‬ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﳌﻨﻔﺼﻠﺔ‬
‫ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﻨﻔﺼﻞ ﻫﻮ ﺍﻟﺬﻱ ﻳﺄﺧﺬ ﻗﻴﻢ ﺑﻴﻨﻴﺔ‪ ،‬ﻭﻣﺘﺒﺎﻋﺪﺓ‪ ،‬ﻭﻳﺮﻣﺰ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍ ﺋﻲ ﺑﺸﻜﻞ ﻋﺎﻡ‬
‫ﲝﺮﻑ ﻣﻦ ﺍﳊﺮﻭﻑ ﺍﻷﲜﺪﻳﺔ ﺍﻟﻜﺒﲑﺓ ‪ X, Y, Z,….‬ﻭﻳﺮﻣﺰ ﻟﻠﻘﻴﻢ ﺍﻟﱵ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ ﺑـﺎﳊﺮﻭﻑ ﺍﻷﲜﺪﻳـﺔ‬
‫ﺍﻟﺼﻐﲑﺓ‪ ، x, y, z, … ،‬ﻭﻣﻦ ﺃﻣﺜﻠﺔ ﻫﺬﻩ ﺍﳌﺘﻐﲑﺍﺕ ‪:‬‬
‫‪ -1‬ﻋﺪﺩ ﺍﻷﻭﻻﺩ ﺍﻟﺬﻛﻮﺭ ﰲ ﺍﻷﺳﺮﺓ ﺍﳌﻜﻮﻧﺔ ﻣﻦ ﺃﺭﺑﻊ ﺃﻭﻻﺩ ‪. X: {x= 0,1,2,3,4} ، X‬‬
‫‪ -2‬ﻋﺪﺩ ﺍﻟﻌﻤﻼﺀ ﺍﻟﺬﻳﻦ ﻳﺘﻢ ﺇ‪‬ﺎﺀ ﺧﺪﻣﺘ ﻬﻢ ﺍﻟﺒﻨﻜﻴﺔ ﻛﻞ ‪ 10‬ﺩﻗﺎﺋﻖ ‪. Y: {y= 0,1,2,3,….} ، Y‬‬
‫‪ -3‬ﻋﺪﺩ ﻣﺮﺍﺕ ﺍﺳﺘﺨﺪﺍﻡ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻷﲰﺪﺓ ﺧﻼﻝ ﺍﻟﺪﻭﺭﺓ ﺍﻟﺰﺭﺍﻋﻴﺔ ‪.‬‬
‫‪ -4‬ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺘﺎﻟﻔﺔ ﻣﻦ ﺇﻧﺘﺎﺝ ﻣﺰﺭﻋﺔ ﻣﻌﻴﻨﺔ ﺗﻨﺘﺞ ‪ 200‬ﻭﺣﺪﺓ ﻛﻞ ﻣﻮﺳﻢ ‪.‬‬
‫‪ -5‬ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ‪.‬‬
‫ﻭﻫﻜﺬﺍ ‪ .....‬ﺍﻷﻣﺜﻠﺔ ﻛﺜﲑﺓ‬
‫‪ 1 /3 /8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﻨﻔﺼﻞ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ‪ ،‬ﻫﻮ ﺍﻟﺬﻱ ﻳﺒﲔ ﺍﺣﺘﻤﺎﻻﺕ ﺣﺪﻭﺙ ﺍﻟﻘﻴﻢ ﺍﻟﱵ ﳝﻜﻦ ﻳﺄﺧﺬﻫﺎ ﺍﳌﺘﻐﲑ‪ ،‬ﻭﺍﻟﱵ ﺗـﺮﺗﺒﻂ‬
‫ﺑ ﺎﺣﺘﻤﺎﻻﺕ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌ ﻤﻜﻨﺔ ﰲ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﻭﲟﻌﲎ ﺁﺧﺮ ﻫﻮ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ ﻟﻠﻘﻴﻢ ﺍﻟﱵ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬﻫﺎ‬
‫ﺍﳌﺘﻐﲑ ‪.‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﳌﺘﻐ ﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﻨﻔـﺼﻞ ‪ X‬ﻳﺄﺧـﺬ ﺍﻟﻘـﻴﻢ‪ ، X : {x = x1 , x2 ,..., xn } ،‬ﻭﻛـﺎﻥ‬
‫‪106‬‬
‫) ‪ P ( X = xi ) = f ( xi‬ﻫﻮ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻳﺄﺧﺬ ﺍﻟﻘﻴﻤﺔ ‪ ، xi‬ﻓﺈﻧﻪ‪ ،‬ﳝﻜـﻦ ﺗﻜـﻮﻳﻦ‬
‫ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ ، X‬ﻭﻫﻮ ﺟﺪﻭﻝ ﻣﻜﻮﻥ ﻣﻦ ﻋﻤﻮﺩﻳﻦ‪ ،‬ﺍﻷﻭﻝ ﺑﻪ ﺍﻟ ﻘـﻴﻢ‬
‫ﺍﳌﻤﻜﻨﺔ ﻟﻠ ﻤـﺘﻐﲑ } ‪ ، X : {x = x1 , x2 ,..., xn‬ﻭﺍﻟﺜـﺎﱐ ﺑـﻪ ﺍﻟﻘـﻴﻢ ﺍﻻﺣﺘﻤﺎﻟﻴـﺔ ﳍـﺬﺍ ﺍﳌـﺘﻐﲑ‬
‫) ‪ ، P ( X = xi ) = f ( xi‬ﺃﻱ ﺃﻥ ‪:‬‬
‫ﺟﺪﻭﻝ )‪(1 -8‬‬
‫ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﻨﻔﺼﻞ‬
‫ﻭﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ) ‪ f ( xi‬ﺑﺪﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ‪ ،‬ﻭﻣﻦ ﺧﺼﺎﺋﺺ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫ﻣﺜــ ﺎﻝ )‪(1 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﻧﺴﺒﺔ ﻣﺒﻴﻌﺎﺕ ﺃﺣﺪ ﺍﳌﺮﺍﻛﺰ ﺍﻟﺘﺠﺎﺭﻳﺔ ﻣﻦ ﺍﻟﺘﻔﺎﺡ ﺍﻷﻣﺮﻳﻜﻲ ‪ ، 0.60‬ﺑﻴﻨﻤﺎ‬
‫ﻳﻜﻮﻥ ﻧﺴﺒﺔ ﻣﺒﻴﻌﺎﺗﻪ ﻣﻦ ﺍﻷﻧﻮﺍﻉ ﺍﻷﺧﺮﻯ ﻟﻠﺘﻔﺎﺡ ‪ ، 0.40‬ﺍﺷﺘﺮﻯ ﺃﺣﺪ ﺍﻟﻌﻤﻼﺀ ﻋﺒﻮﺗﲔ‪ ،‬ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻛﻮﻥ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ‪.‬‬
‫‪ -2‬ﺇﺫﺍ ﻋﺮﻑ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﺑﺄﻧﻪ ﻋﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﺓ ﻣﻦ ﺍﻟﺘﻔﺎﺡ ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﻓﺄﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫• ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪. X‬‬
‫• ﺍﺭﺳﻢ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ ﳍﺬﺍ ﺍﳌﺘﻐﲑ ‪.‬‬
‫• ﻛﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﻟﺘﺠﻤﻴﻌﻲ ‪.‬‬
‫•‬
‫ﺍﳊــ ﻞ ‪:‬‬
‫ﻣﺎ ﻫﻮ ﺍﺣﺘﻤﺎﻝ )‪P ( X ≤ 1.5) ، P ( X = 1.5) ، P ( X ≤ 1) ، P ( X = 1‬‬
‫• ﺣﺪﺩ ﻗﻴﻤﺔ ﺍﻟﻮﺳﻴﻂ‪ ،‬ﻭﺍﳌﻨﻮﺍﻝ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍ ﺓ ‪.‬‬
‫ﺗﻜﻮﻳﻦ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ‪:‬‬
‫ﺍﻟﺘﺠﺮﺑﺔ ﻫﻨﺎ ﻫﻮ ﺷﺮﺍﺀ ﻭﺣﺪﺗﲔ ﻣﻦ ﻋﺒﻮﺍﺕ ﺍﻟﺘﻔﺎﺡ‪ ،‬ﻭﻣﻦ ﰒ ﻓﺮﺍﻍ ﺍﻟﻌﻴﻨﺔ ﻳﺘﻜﻮﻥ ﻣﻦ ﺃﺭﺑﻊ ﻧﺘﺎﺋﺞ‪ ،‬ﻫﻲ ‪:‬‬
‫‪107‬‬
‫•‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﺓ ﻣﻦ ﺍﻟﺘ ﻔﺎﺡ ﺍﻷﻣﺮﻳﻜﻲ ‪X‬‬
‫ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﺍﻟﻌﻤﻴﻞ ﺍﺷﺘﺮﻯ ﻋﺒﻮﺗﲔ‪ ،‬ﻭﺃﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻫﻮ ﻋﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﺓ ﻣﻦ ﺍﻟﺘﻔـﺎﺡ‬
‫ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﻟﺬﺍ ﺗﻜﻮﻥ ﺍﻟﻘﻴﻢ ﺍﳌﻤﻜﻨﺔ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻫﻲ ‪:‬‬
‫‪ x= 0‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﻮﺗﲔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻵﺧﺮ‪ ،‬ﺃﻯ ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﺘﻴﺠﺔ ﺍﻟﺘﺠﺮﺑﺔ ) ﺁﺧﺮ‪ ،‬ﺁﺧ ﺮ (‬
‫‪ x= 1‬ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺍﻟﻌﺒﻮﺗﲔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﺃﻱ ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﺘﻴﺠﺔ ﺍﻟﺘﺠﺮﺑﺔ ) ﺁﺧﺮ ‪ ،‬ﺃﻣﺮﻳﻜـﻲ (‬
‫ﺃﻭ ) ﺃﻣﺮﻳﻜﻲ ‪ ،‬ﺁﺧﺮ (‬
‫‪ x= 2‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺒﻮﺗﲔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﺃﻱ ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﺘﻴﺠﺔ ﺍﻟﺘﺠﺮﺑﺔ ) ﺃﻣﺮﻳﻜﻲ ‪ ،‬ﺃﻣﺮﻳﻜﻲ (‬
‫ﻭﻣﻦ ﰒ ﻳﺄﺧﺬ ﺍﳌﺘﻐﲑ ﺍﻟﻘﻴﻢ ‪ ، X: {x= 0,1,2} :‬ﻭﻳﺮﺗﺒﻂ ﺍﺣﺘﻤﺎﻻﺕ ﻫﺬﻩ ﺍﻟﻘﻴﻢ ﺑﺎﺣﺘﻤﺎﻻﺕ ﻧﺘﺎﺋﺞ‬
‫ﺍﻟﺘﺠﺮﺑﺔ ﺍﳌﻨﺎﻇﺮﺓ ﳍﺎ ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺃﻋﻼﻩ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﻫﻮ ‪:‬‬
‫ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍ ﺓ ﻣﻦ ﺍﻟﺘﻔﺎﺡ ﺍﻷﻣﺮﻳﻜﻲ‬
‫) ‪f ( xi‬‬
‫‪xi‬‬
‫‪0.16‬‬
‫‪0.48‬‬
‫‪0.36‬‬
‫‪1‬‬
‫‪0‬‬
‫‪1‬‬
‫‪2‬‬
‫‪Σ‬‬
‫• ﺭﺳﻢ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ )‪: f(x‬‬
‫• ﺗﻜﻮﻳﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﻟﺘﺠﻤﻴﻌﻲ ‪:‬‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ‪ ،‬ﻫﻮ ﺟﺪﻭﻝ ﻳﺸﻤﻞ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﻨﺎﲡﺔ ﻣﻦ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ )‪ ، P ( X ≤ x‬ﻭﻳﺮﻣﺰ‬
‫‪108‬‬
‫ﻟﻪ ﺑﺎﻟﺮﻣﺰ )‪ ، F (x‬ﺃﻱ ﺃﻥ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﻟﺘﺠ ﻤﻴﻌﻲ ﺗﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻣﻦ ﰒ ﳝﻜﻦ ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﻟﺘﺠﻤﻴﻌﻲ ﻟﻌﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﳌـﺸﺘﺮﺍﺓ ﻣـﻦ ﺍﻟﺘﻔـﺎﺡ‬
‫ﺍﻷﻣﺮﻳﻜﻲ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ‪ ،‬ﻭﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﻩ ﻣﻦ ﺍﻟﺘﻔﺎﺡ ﺍﻷﻣﺮﻳﻜﻲ‬
‫) ‪f ( xi‬‬
‫) ‪F ( xi‬‬
‫‪F (0) = P ( X ≤ 0) = 0.16‬‬
‫‪0.16‬‬
‫‪0‬‬
‫‪F (1) = P ( X ≤ 1) = 0.16 + 0.48 = 0.64‬‬
‫‪0.48‬‬
‫‪1‬‬
‫‪F (2) = P ( X ≤ 2) = 0.64 + 0.36 = 1.00‬‬
‫‪0.36‬‬
‫‪2‬‬
‫‪1‬‬
‫•‬
‫‪xi‬‬
‫‪Σ‬‬
‫ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ ‪P ( X ≤ 1.5) ، P ( X = 1.5) ، P ( X ≤ 1) ، P ( X = 1) -:‬‬
‫‪P ( X = 1) = f (1) = 0.48‬‬
‫‪P ( X ≤ 1) = F (1) = 0.64‬‬
‫‪P ( X = 1.5) = f (1.5) = 0‬‬
‫‪P ( X ≤ 1.5) = F (1.5) = F (1) = 0.64‬‬
‫• ﲢﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﻮﺳﻴﻂ‪ ،‬ﻭﺍﳌﻨﻮﺍﻝ ‪.‬‬
‫ﺍﻟﻮﺳﻴﻂ ‪ -:‬ﺭﺗﺒﺔ ﺍﻟﻮﺳﻴﻂ ﻫﻮ ‪ ، 0.50‬ﺇﺫﺍ ﺍﻟﻮﺳﻴﻂ ‪ M‬ﻫﻮ ﺍﻟﻘﻴﻤﺔ ﺍﻟﱵ ﲢﻘﻖ ﺍﻻﺣﺘﻤﺎﻝ ‪:‬‬
‫‪ ، P ( X ≤ M ) = F ( M ) = 0.50‬ﻭﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﻳﻘﻊ ﺑﲔ ﺍﻟ ﻘﻴﻤﺘﲔ )‪ (1,0‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﺮﺳﻢ‬
‫ﺍﻟﺘﺎﱄ ‪:‬‬
‫) ‪F ( xi‬‬
‫‪xi‬‬
‫‪0.16‬‬
‫‪0‬‬
‫‪F ( M ) = 0.50‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻴﻂ ﻗﻴﻤﺘﻪ ﻫﻲ ‪:‬‬
‫ﺣﺴﺎﺏ ﺍﳌﻨﻮﺍﻝ ‪:‬‬
‫‪0.5 − 0.16‬‬
‫‪× (1 − 0) = 0.71‬‬
‫‪0.64 − 0.16‬‬
‫‪M‬‬
‫‪0.64‬‬
‫‪1‬‬
‫‪1.00‬‬
‫‪2‬‬
‫‪M = 0+‬‬
‫ﺍﳌﻨﻮﺍﻝ ‪ = Mode‬ﺍﻟﻘﻴﻤﺔ ‪ xi‬ﺍﳌﻨﺎﻇﺮﺓ ﻷﻛﱪ ﻗﻴﻤﺔ ﺍﺣﺘﻤﺎﻟﻴﺔ ‪.‬‬
‫ﺇﺫﺍ ﺍﳌﻨﻮﺍﻝ ﻫﻮ ‪:‬‬
‫‪ Mode = 1‬ﺣﻴﺚ ﺃﻧﻪ ﻳﻨﺎﻇﺮ ﺃﻛﱪ ﻗﻴﻤﺔ ﺍﺣﺘﻤﺎﻟﻴﺔ ﻫﻲ ‪. f (1) = 0.48 :‬‬
‫‪109‬‬
‫‪ 2 /3 /8‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻭﺍﻟﺘﺒﺎﻳﻦ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﻨﻔﺼﻞ‬
‫ﺃ ‪ -‬ﻳﺮﻣﺰ ﻟﻠﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺑﺎﻟﺮﻣﺰ ‪ ) µ‬ﻣﻴﻮ ( ‪ ،‬ﻭﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺏ ‪ -‬ﻭﺃﻣﺎ ﺍﻟﺘﺒﺎﻳﻦ ﻭﻳﺮﻣﺰ ﻟﻪ ﺑ ﺎﻟﺮﻣﺰ ‪ ) σ 2‬ﺳﻴﺠﻤﺎ ( ‪ ،‬ﻓﻴﺤﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻣﺜـﺎﻝ )‪(2-8‬‬
‫ﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﺍﺣﺴﺐ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫ﺃ ‪ -‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﺓ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺮﻳﻜﻲ ‪:‬‬
‫ﺏ ‪ -‬ﺍﺣﺴﺐ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﺍﳌﺸﺘﺮﺍﺓ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺮﻳﻜﻲ ‪.‬‬
‫ﺕ ‪ -‬ﺃﻭﺟﺪ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍ ﻟﻨﺴﱯ ‪:‬‬
‫ﺍﳊـ ﻞ‬
‫ﺃ ‪ -‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻟﻌﺪﺩ ﺍﻟﻌﺒﻮﺍﺕ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺮﻳﻜﻲ ‪:‬‬
‫ﳊﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻌﺎﺩﻟﺔ ) ‪ ( 4 -8 ) ، ( 3 -8‬ﻭﻫﺬﺍ ﻳﺘﻄﻠـﺐ‬
‫ﺗﻜﻮﻳﻦ ﺟﺪﻭﻝ ﻳﺸﻤﻞ ﺍ‪‬ﺎﻣﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫) ‪f ( xi‬‬
‫‪∑x‬‬
‫‪2‬‬
‫‪i‬‬
‫‪ ، ∑ xi f ( xi ) ,‬ﻭﺫﻟﻚ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫) ‪xi2 f ( xi‬‬
‫) ‪xi f ( xi‬‬
‫) ‪f ( xi‬‬
‫‪xi‬‬
‫‪0‬‬
‫‪0.48‬‬
‫‪1.44‬‬
‫‪1.92‬‬
‫‪0‬‬
‫‪0.48‬‬
‫‪0.72‬‬
‫‪1.20‬‬
‫‪0.16‬‬
‫‪0.48‬‬
‫‪0.36‬‬
‫‪1‬‬
‫‪0‬‬
‫‪1‬‬
‫‪2‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻫﻮ ‪:‬‬
‫‪Σ‬‬
‫‪µ = ∑ xi f ( xi ) = 1.20‬‬
‫ﺏ ‪ -‬ﻭﳊﺴﺎﺏ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﳚﺐ ﺃﻭﻻ ﺣﺴﺎﺏ ﺍﻟﺘﺒﺎﻳﻦ ﻭﻫﻮ ‪:‬‬
‫‪σ 2 = ∑ xi2 f ( xi ) − µ 2 = 1.92 − (1.20) 2 = 0.48‬‬
‫ﺇﺫﺍ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻗﻴﻤﺘﻪ ﻫﻲ‪:‬‬
‫‪σ = σ 2 = 0.48 = 0.693‬‬
‫ﺕ ‪ -‬ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ ﻫﻮ ‪:‬‬
‫‪110‬‬
‫‪σ‬‬
‫‪0.693‬‬
‫= ‪× 100‬‬
‫‪× 100 = 57.7‬‬
‫‪1.2‬‬
‫‪µ‬‬
‫= ‪C.V‬‬
‫ﻭﺍﺟﺐ ﻣﱰﱄ ‪-:‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻌﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﻣﻦ ﺃﺣﺪ ﻣﺴﺎﺣﻴﻖ ﺍﻟﻨﻈﺎﻓـﺔ‬
‫ﺧﻼﻝ ﺍﻟﺸﻬﺮ ‪، X‬‬
‫}‪X : {x = 0,1,2,3,4,5‬‬
‫‪5‬‬
‫‪4‬‬
‫‪0.02‬‬
‫‪0.05‬‬
‫‪3‬‬
‫‪2‬‬
‫‪0.25 0.23‬‬
‫‪1‬‬
‫‪0‬‬
‫‪0.15 0.30‬‬
‫‪ ) x‬ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ (‬
‫)‪f (x‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﺣﺪﺩ ﻧﻮﻉ ﻫﺬﺍ ﺍﳌﺘﻐﲑ ) ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ (‬
‫‪ -2‬ﺍﺣﺴﺐ ﺍﻟﻮﺳﻂ ﻭﺍﻟﻮﺳﻴﻂ ﻭﺍﳌﻨﻮﺍﻝ ﻭﺍﻻﳓﺮﺍﻑ ﺍ ﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﳌﺴﺘﻬﻠﻜﺔ ‪.‬‬
‫‪ -3‬ﻛﻮﻥ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ )‪ F (x‬ﰒ ﺃﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫ﺃ ‪ -‬ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﺍﻟﱵ ﻳﻘﻞ ﺍﺳﺘﻬﻼﻛﻬﺎ ﻋﻦ ﻭﺣﺪﺗﲔ‬
‫ﺏ ‪ -‬ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﺍﻟﱵ ﻳﺰﻳﺪ ﺍﺳﺘﻬﻼﻛﻬﺎ ﻋﻦ ‪ 3‬ﻭﺣﺪﺍﺕ‬
‫ﺕ ‪ -‬ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ‪ 500‬ﺃﺳﺮﺓ‪ ،‬ﻓﻤﺎ ﻫﻮ ﻋﺪﺩ ﺍﻷﺳﺮ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﻳﻜﻮﻥ ﺍﺳﺘﻬﻼﻛﻬﺎ ﻋﻠﻰ ﺍﻷﻗﻞ‬
‫‪ 3‬ﻭﺣﺪﺍﺕ؟‬
‫‪ -4‬ﺍﺣﺴﺐ ﻣﻌﺎﻣﻞ ﺍﻻﻟﺘﻮﺍﺀ‪ ،‬ﻭﻛﺬﻟﻚ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ‪ ،‬ﻭﻋﻠﻖ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺋﺞ ‪.‬‬
‫‪ 4/8‬ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﺍﳌﻨﻔﺼﻠﺔ ﺍﳋﺎﺻﺔ‬
‫ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴﺔ ‪ ،‬ﺗﺘﺒﻊ ﺑﻌﺾ ﺍﻟﻈﻮﺍﻫﺮ ﺗﻮﺯﻳﻌﺎﺕ ﺍﺣﺘﻤﺎﻟﻴﺔ ﺧﺎﺻﺔ‪ ،‬ﻭﻫﻲ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ‬
‫ﺍﻟﱵ ﳝﻜﻦ ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻻﺕ ﻗﻴﻢ ﺍﳌﺘﻐﲑ ﻋﻦ ﻃﺮﻳﻖ ﻣﻌﺎﺩﻟﺔ ﺭ ﻳﺎﺿﻴﺔ ‪ ،‬ﺗﺴﻤﻰ ﺑﺪﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ )‪ ، f (x‬ﻭﻫﺬﻩ‬
‫ﺍﳌﻌﺎﺩﻟﺔ ﳍﺎ ﻣﻌﺎﱂ ﻣﻌﻴﻨﺔ‪ ،‬ﺗﺴ ﻤﻰ ﲟﻌﺎﱂ ﺍ‪‬ﺘﻤﻊ ﺍﻟﺬﻱ ﻳﻨﺴﺐ ﻟﻪ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‪ ،‬ﻭﻫﺬﻩ ﺍﳌﻌﺎﱂ ﻣﺎ ﻫﻲ ﺇﻻ ﺣﻘـﺎﺋﻖ‬
‫ﺛﺎﺑﺘﺔ ﳎﻬﻮﻟﺔ‪ ،‬ﻭ ﻫﻲ ﺍﻷﺳﺎﺱ ﰲ ﺣ ﺴﺎﺏ ﺍﻟﻘﻴﻢ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﻟﻠﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺠﺘﻤﻊ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ ‪.‬‬
‫ﻭﻣﻦ ﺃﻫﻢ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻟﱵ ﺳﻴﺘﻢ ﺩﺭﺍﺳﺘﻬﺎ ﰲ ﻫﺬﺍ ﺍﳌﻘﺮﺭ‪ ،‬ﺗﻮﺯﻳـﻊ ﺛﻨـﺎﺋﻲ ﺍﳊـﺪﻳﻦ‪ ،‬ﻭﺍﻟﺘﻮﺯﻳـﻊ‬
‫ﺍﻟﺒﻮﺍﺳﻮﻥ ‪.‬‬
‫‪ 1 /4/8‬ﺍﻟﺘﻮﺯﻳﻊ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ‬
‫‪The Binomial Distribution‬‬
‫ﻳﺴﺘﺨﺪﻡ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﰲ ﺍﳊﺎﻻﺕ ﺍﻟﱵ ﻳﻜﻮﻥ ﻟﻠﻈﺎﻫﺮﺓ ﳏﻞ ﺍﻟﺪﺭﺍﺳﺔ ﻧﺘﻴﺠﺘﺎﻥ ﻓﻘﻂ ﻣﺘﻨﺎﻓﻴﺘﺎﻥ‪،‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ ﳏﻞ ﺍﻻﻫﺘﻤﺎﻡ ﻭﺗﺴﻤﻰ ﲝﺎﻟﺔ ﺍﻟﻨﺠ ﺎﺡ‪ ،‬ﻭﺍﻷﺧﺮﻯ ﺗﺴﻤﻰ ﲝﺎﻟﺔ ﺍﻟﻔﺸﻞ‪ ،‬ﻭﻣﻦ ﺃﻣﺜﻠﺔ ﺫﻟﻚ‪:‬‬
‫• ﻋﻨﺪ ﺇﻋﻄﺎﺀ ﻣﺮﻳﺾ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻷﺩﻭﻳﺔ‪ ،‬ﳍﺎ ﻧﺘﻴﺠﺘﺎﻥ ‪ ) :‬ﺍﺳﺘﺠﺎﺑﺔ ﻟﻠﺪﻭﺍﺀ ‪ ،‬ﺃﻭ ﻋﺪﻡ ﺍﺳﺘﺠﺎﺑﺔ (‬
‫• ﻋﻨﺪ ﻓﺤﺺ ﻋﺒﻮﺓ ﺑﺪﺍﺧﻠﻬﺎ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻟﻔﺎﻛﻬﺔ‪ ،‬ﳍﺎ ﻧﺘﻴﺠﺘﺎﻥ ) ﺍﻟﻮﺣﺪﺓ ﺇﻣﺎ ﺃﻥ ﺗﻜﻮﻥ ﺳﻠﻴﻤﺔ‪ ،‬ﺃﻭ‬
‫ﺗﻜﻮﻥ ﻣﻌﻴﺒﺔ(‬
‫• ﻋﻨﺪ ﺇﻟﻘﺎﺀ ﻗﻄﻌﺔ ﻋﻤﻠﺔ‪ ،‬ﳍﺎ ﻧﺘﻴﺠﺘ ﺎﻥ ) ﻇﻬﻮﺭ ﺍﻟﻮﺟﻪ ﺍﻟﺬﻱ ﳛﻤﻞ ﺍﻟﺼﻮﺭﺓ ‪ ،‬ﺃﻭ ﺍﻟﻮﺟﻪ ﺍﻟﺬﻱ ﳛﻤﻞ ﺍﻟﻜﺘﺎﺑﺔ(‬
‫• ﻧﺘﻴﺠﺔ ﺍﻟﻄﺎﻟﺐ ﰲ ﺍﻻﺧﺘﺒﺎﺭ ) ﳒﺎﺡ‪ ،‬ﺭﺳﻮﺏ(‬
‫‪111‬‬
‫• ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﺰﺍﺭﻉ ﻟﱪﻧﺎﻣﺞ ﻣﻌﲔ ﰲ ﺍﻟﺰﺭﺍﻋﺔ ) ﻳﺴﺘﺨﺪﻡ ‪ ،‬ﺃﻭ ﻻ ﻳﺴﺘﺨﺪﻡ (‪.‬‬
‫ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ‬
‫ﺇﺫﺍ ﻛﺮﺭﺕ ﳏﺎﻭﻟﺔ ‪ n‬ﻣﻦ ﺍﳌﺮﺍﺕ‪ ،‬ﲝﻴ ﺚ ﺃﻥ ﻛﻞ ﳏﺎﻭﻟﺔ ﳍﺎ ﻧﺘﻴﺠﺘﺎﻥ ﻓﻘﻂ ﻣﺘﻨﺎﻓﻴﺘﺎﻥ ﳘﺎ ‪:‬‬
‫•‬
‫ﺍﻟﻨﺘﻴﺠﺔ ﳏﻞ ﺍﻻﻫﺘﻤﺎﻡ " ﺣﺎﻟﺔ ﳒﺎﺡ " ﻭﺗﺘﻢ ﺑﺎﺣﺘﻤﺎﻝ ﺛﺎﺑﺖ ﰲ ﻛﻞ ﳏﺎﻭﻟﺔ ﻫﻮ ‪p‬‬
‫•‬
‫ﺍﻟﻨﺘﻴﺠﺔ ﺍﻷﺧﺮﻯ " ﺣﺎﻟﺔ ﻓﺸﻞ " ﻭﺗﺘﻢ ﺑﺎﺣﺘﻤﺎﻝ ﺛﺎﺑﺖ ﺃﻳﻀﺎ ﻫﻮ ‪q = 1 − p‬‬
‫ﻭﺑﺎﻓﺘﺮﺍﺽ ﺃﻥ ﻫﺬﻩ ﺍﶈﺎﻭﻻﺕ ﻣﺴﺘﻘﻠﺔ‪ ،‬ﲟﻌﲎ ﺃﻥ ﻧﺘﻴﺠﺔ ﻛﻞ ﳏﺎﻭﻟﺔ ﻟﻴﺲ ﳍ ﺎ ﻋﻼﻗﺔ ﺑﻨﺘﻴﺠﺔ ﺍﶈﺎﻭﻟﺔ ﺍﻷﺧﺮﻯ ‪،‬‬
‫ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﻳﻌﱪ ﻋﻦ ﻋﺪﺩ ﺣﺎﻻﺕ ﺍﻟﻨﺠﺎﺡ " ﻋﺪﺩ ﺍﻟﻨﺘﺎﺋﺞ ﳏﻞ ﺍﻻﻫﺘﻤـﺎﻡ " ﰲ ﺍﻟــ ‪n‬‬
‫ﳏﺎﻭﻟﺔ‪ ،‬ﻓـﺈﻥ ﻣـﺪﻱ ﺍﳌـﺘﻐﲑ ﺍﻟﻌـﺸﻮﺍﺋﻲ ‪ X‬ﻭﺍﻟـﺬﻱ ﻳﻌـ ﱪ ﻋـﻦ ﻋـﺪﺩ ﺣـﺎﻻﺕ ﺍﻟﻨﺠـﺎﺡ ﻫـﻮ ‪:‬‬
‫}‪ ، X : {x = 0,1,2,..., n‬ﻭﻣﻦ ﰒ ﳛﺴﺐ ﺍﻻﺣﺘﻤﺎﻝ )‪ P ( X = x) = f ( x‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ) ‪( nx‬‬
‫ﻫﻲ ﻋﺪﺩ ﻃﺮﻕ ﺍﺧﺘﻴﺎﺭ ‪ x‬ﻣﻦ ‪ n‬ﻣﻊ ﺇﳘﺎﻝ ﺍﻟﺘﺮﺗﻴﺐ‪ ،‬ﻭﲢﺴﺐ ﻛﻤﺎ ﻳ ﻠﻲ ‪:‬‬
‫‪ 7  = 7 × 6 × 5 = 35 =  7 ‬‬
‫‪ 3  3 × 2 ×1‬‬
‫‪4‬‬
‫‪ 7  =  7  = 1‬‬
‫‪0 7‬‬
‫ﻣﺜـــﺎﻝ ) ‪( 3 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﻧﺴﺒﺔ ﺍﻟﺸﻔﺎﺀ ﻣﻦ ﻣﺮﺽ ﻣﻌﲔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﻟﻌﻘﺎﻗﲑ ﺍﻟﻄﺒﻴﺔ ﻫﻮ‬
‫‪ ، 0.60‬ﺇﺫﺍ ﺗﻨﺎﻭﻝ ﻫﺬﺍ ﺍﻟﻌﻘﺎﺭ ‪ 5‬ﻣﺼﺎﺑﲔ ‪‬ﺬﺍ ﺍﳌﺮﺽ ‪ .‬ﺇﺫﺍ ﻋﺮﻑ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﺑﺄﻧﻪ ﻋﺪﺩ ﺍﻟـﺬﻳﻦ‬
‫ﺍﳌﺴﺘﺠﻴﺒﲔ ) ﺣﺎﻻﺕ ﺍﻟﺸﻔﺎﺀ ( ﳍﺬﺍ ﺍﻟﻌﻘﺎﺭ ‪.‬‬
‫ﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫ﺃ ‪ -‬ﻣﺎ ﻫﻮ ﻧﻮﻉ ﺍﳌﺘﻐﲑ؟‬
‫ﺏ ‪ -‬ﺍﻛﺘﺐ ﺷﻜﻞ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ )‪ f (x‬ﳍﺬﺍ ﺍﳌﺘﻐﲑ ‪.‬‬
‫ﺕ ‪ -‬ﺍﺣﺴﺐ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫• ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ‪ 3‬ﻣﺮﺿﻰ ﳍﺬﺍ ﺍﻟﻌﻘﺎﺭ ؟‬
‫• ﻣﺎ ﻫﻮ ﺍﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ﻣﺮﻳﺾ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ؟‬
‫• ﻣﺎ ﻫﻮ ﺍﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ‪ 2‬ﻣﺮﺿﻰ ﻋﻠﻰ ﺍﻷﻛﺜﺮ؟‬
‫ﺙ ‪ -‬ﺍﺣﺴﺐ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳﺘﺠﺎﺑﺔ ‪.‬‬
‫‪112‬‬
‫ﺍﳊــ ﻞ ‪:‬‬
‫ﺝ ‪ -‬ﺣﺪﺩ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪.‬‬
‫ﺃ ‪ -‬ﻋﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳﺘﺠﺎﺑﺔ ‪ X‬ﻣﺘﻐﲑ ﻛﻤﻲ ﻣﻨﻔﺼﻞ ‪ ،‬ﻭﻣﺪﻯ ﻫﺬﺍ ﺍﳌﺘﻐﲑ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻫـﻮ ‪:‬‬
‫}‪: X : {x = 0,1,2,3,4,5‬‬
‫ﺏ ‪ -‬ﺷﻜﻞ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ ‪:‬‬
‫‪،n =5‬‬
‫ﺇﺫﺍ ‪:‬‬
‫‪q = 1 − p = 0.40 ، p = 0.60‬‬
‫‪f ( x) =  nx ( p ) x (q ) n − x‬‬
‫‪ ‬‬
‫)(‬
‫‪= 5x (0.6) x (0.4) 5 − x , x = 0,1, 2,3, 4,5‬‬
‫ﺕ ‪ -‬ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ ‪:‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ‪ 3‬ﻣﺮﺿﻰ ﳍﺬﺍ ﺍﻟﺪﻭﺍﺀ ‪P ( x = 3) = f (3) :‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍ ﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ﻣﺮﻳﺾ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ‪P ( x ≥ 1) :‬‬
‫)(‬
‫‪5× 4× 3‬‬
‫= ‪f (3) = 53 (0.6) 3 (0.4) 5−3‬‬
‫‪× 0.216 × 0.16 = 10 × 0.03456‬‬
‫‪3 × 2 ×1‬‬
‫‪= 0.3456‬‬
‫)‪P ( x ≥ 1) = f (1) + f (2) + f (3) + f (4) + f (5) = 1 − f (0‬‬
‫) ([‬
‫]‬
‫‪= 1 − 50 (0.6) 0 (0.4) 5 = 1 − 1 × 1 × 0.01024 = 0.98976‬‬
‫• ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺍﺳﺘﺠﺎﺑﺔ ‪ 2‬ﻣﺮﺿﻰ ﻋﻠﻰ ﺍﻷﻛﺜﺮ ‪: P ( x ≤ 2) :‬‬
‫)‪P ( x ≤ 2) = f (2) + f (1) + f (0‬‬
‫)(‬
‫)(‬
‫)(‬
‫‪= 52 (0.6) 2 (0.4) 3 + 15 (0.6)1 (0.4) 4 + 50 (0.6) 0 (0.4) 5‬‬
‫‪5× 4‬‬
‫‪5‬‬
‫=‬
‫‪(0.36)(0.064) + (0.6)(0.0256) + 1(1)(0.01024‬‬
‫‪2 ×1‬‬
‫‪1‬‬
‫‪= 0.2304 + 0.0768 + 0.01024 = 0.31744‬‬
‫ﺙ ‪ -‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳﺘﺠﺎﺑﺔ ‪:‬‬
‫• ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ) ‪ (µ‬ﰲ ﺣﺎﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪-8‬‬
‫‪ ، ( 3‬ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺮﻳﺎﺿﻴﺔ ﳝﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﱃ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺇﺫﺍ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ﻫﻮ ‪:‬‬
‫‪µ = np = 5(0.60) = 3‬‬
‫• ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻫﻮ ﺍﳉﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﺍﳌﻮﺟﺐ ﻟﻠﺘﺒﺎﻳﻦ‪ ،‬ﻭﳊﺴﺎﺏ ﺍﻟﺘﺒﺎﻳﻦ ﰲ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﻳﺘﻢ ﺗﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ ، ( 4 -8‬ﻭﻣﻨﻬﺎ ﳝﻜﻦ ﺍﻟﺘﻮﺻﻞ ﺇﱃ‬
‫‪113‬‬
‫ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺇﺫﺍ ﺗﺒﺎﻳﻦ ﻋﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳﺘﺠﺎﺑﺔ ﻫﻮ‪:‬‬
‫‪σ 2 = npq‬‬
‫‪= 5(0.60)(0.40) = 1.2‬‬
‫ﻭﻣﻦ ﰒ ﻳﺄﺧﺬ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪σ = npq‬‬
‫‪= 1.2 = 1.095‬‬
‫ﻭﳝﻜﻦ ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪σ‬‬
‫‪1.095‬‬
‫= ‪× 100‬‬
‫‪× 100 = 36.5%‬‬
‫‪3‬‬
‫‪µ‬‬
‫= ‪V.C‬‬
‫ﺝ ‪ -‬ﲢﺪﻳﺪ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪:‬‬
‫ﻳ ﺘﺤﺪﺩ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﻭﻓﻘﺎ ﻟﻘﻴﻤﺔ ﺍﺣﺘﻤﺎﻝ ﺍﻟﻨﺠﺎﺡ ‪ p‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺇﺫﺍ ﻛﺎﻥ‬
‫‪p = 0.5‬‬
‫ﻓﺈﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﻳﻜﻮﻥ ﻣﺘﻤﺎﺛﻞ ‪.‬‬
‫ﺇﺫﺍ ﻛﺎﻥ‬
‫‪p < 0.5‬‬
‫ﻓﺈﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﻳﻜﻮﻥ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫ﺇﺫﺍ ﻛﺎﻥ‬
‫‪p > 0.5‬‬
‫ﻓﺈﻥ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻ ﺣﺘﻤﺎﱄ ﺛﻨﺎﺋﻲ ﺍﳊﺪﻳﻦ ﻳﻜﻮﻥ ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫ﻭﺣﻴﺚ ﺃﻥ ‪ p = 0.6 > 0.5‬ﻓﺈﻥ ﺗﻮﺯﻳﻊ ﻋﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳﺘﺠﺎﺑﺔ ﺳﺎﻟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫‪ 2 /4/8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺒﻮﺍﺳﻮﱐ‬
‫‪Poisson Distribution‬‬
‫ﻳﻜﺜﺮ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﰲ ﺍﳊﺎﻻﺕ ﺍﻟﱵ ﺗﻘﻊ ﻓﻴﻬﺎ ﺍﻷﺣﺪﺍﺙ ﻭﻓﻘﺎ ﳌﻌﺪﻻﺕ ﺯﻣﻨﻴﺔ ‪ ،‬ﻭﻛﺬﻟﻚ ﰲ‬
‫ﺣﺎ ﻟﺔ ﺍﻷﺣﺪﺍﺙ ﻧﺎﺩﺭﺓ ﺍﻟﻮﻗﻮﻉ‪ ،‬ﻭﻣﻦ ﺃﻣﺜﻠﺔ ﺫﻟﻚ‪:‬‬
‫•‬
‫ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ‪X : {x = 0,1,2,...} .‬‬
‫•‬
‫ﻋﺪﺩ ﻣﺮﺍﺕ ﺭﻱ ﻧﻮﻉ ﻣﻌﲔ ﻣﻦ ﺍﶈﺎﺻﻴﻞ ﺍﻟﺰﺭﺍﻋﻴﺔ ﺧﻼﻝ ﺍﳌﻮﺳﻢ ‪X : {x = 0,1,2,...} .‬‬
‫•‬
‫ﻋﺪﺩ ﺍﻟﻌﻤﻼﺀ ﺍﻟﺬﻳﻦ ﻳﺘﻢ ﺧﺪﻣﺘﻬﻢ ﺍﻟﺒﻨﻜﻴﺔ ﻛﻞ ‪ 10‬ﺩﻗﺎﺋﻖ ‪X : {x = 0,1,2,...} .‬‬
‫•‬
‫ﻋﺪﺩ ﻣﺮﺍﺕ ﺯﻳﺎﺭﺓ ﺍﳌﺮﻳﺾ ﻟﻠﻄﺒﻴﺐ ﻛﻞ ﺳﻨﺔ ‪X : {x = 0,1,2,...} .‬‬
‫•‬
‫ﻋﺪﺩ ﻣﺮﺍﺕ ﺗﻨﺎﻭﻝ ﺍﻷﺳﺮﺓ ﻟﻠﺤﻮﻡ ﺍﳊﻤﺮﺍﺀ ﺧﻼﻝ ﺍﻷﺳﺒﻮﻉ ‪X : {x = 0,1,2,...} .‬‬
‫•‬
‫ﻋﺪﺩ ﺃﺧﻄﺎﺀ ﺍﻟﻄﺒﺎﻋﺔ ﻟﻜﻞ ﺻﻔﺤﺔ ﻣﻦ ﺻﻔﺤﺎﺕ ﺍﻟﻜﺘﺎﺏ ‪X : {x = 0,1,2,...} .‬‬
‫ﻭﻫﻜﺬﺍ ﺍﻷﻣﺜﻠﺔ ﻛﺜﲑﺓ‬
‫ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﻟﺒﻮﺍﺳﻮﱐ‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻣﺘﻮﺳﻂ ﻋﺪﺩ ﻣﺮﺍﺕ ﻭﻗﻮﻉ ﺣﺎﺩﺙ ﻭﻓﻘﺎ ﳌﻌﺪﻝ ﺯﻣﲏ ﻣﻌﲔ ﻫـﻮ ‪ ، µ‬ﻭﻛـﺎﻥ ﺍﳌـﺘﻐﲑ‬
‫ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﻳﻌﱪ ﻋﻦ ﻋﺪﺩ ﻣﺮﺍﺕ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ﻭﻓﻘﺎ ﳍﺬﺍ ﺍﳌﻌﺪﻝ‪ ،‬ﻓﺈﻥ ﻣﺪﻱ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﻫﻮ‪:‬‬
‫}‪ ، X : {x = 0,1,2,...‬ﻭﻫﺬﺍ ﺍﳌـﺪﻯ ﻋﺒـﺎﺭﺓ ﻋـﻦ ﻓﺌـﺔ ﻣﻔﺘﻮﺣـﺔ ﻣـﻦ ﺍﻟـﻴﻤﲔ‪ ،‬ﻓـﺈﻥ ﺍﻻﺣﺘﻤـﺎﻝ‬
‫‪114‬‬
‫)‪ P ( X = x) = f ( x‬ﻭﺍﻟﺬﻱ ﻳﻌﱪ ﻋﻦ ﺍﺣﺘﻤﺎﻝ ﻭﻗﻮﻉ ﺍﳊﺎﺩﺙ ﻋﺪﺩ ‪ x‬ﻣﻦ ﺍﳌﺮﺍﺕ ﻭﻓﻘﺎ ﳍـﺬﺍ ﺍﳌﻌـﺪﻝ‪،‬‬
‫ﳛﺴﺐ ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ‪ e‬ﻫﻲ ﺃﺳﺎﺱ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺍﻟﻄﺒﻴﻌﻲ‪ ،‬ﻭ ﺗﻮ ﺟﺪ ﰲ ﺑﻌﺾ ﺍﻵﻻﺕ ﺍﳊﺎﺳﺒﺔ‪ ،‬ﻭﻗﻴﻤﺘﻬﺎ ﻫﻲ‪e = 2.718 :‬‬
‫ﺗﻘﺮﻳﺒﺎ‪ ،‬ﻭﳝﻜﻦ ﺣﺴﺎﺏ ﻗﻴﻤﺘﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻵﺍﻟﺔ ﺍﳊﺎﺳﺒﺔ ﺑﺎﺗﺒﺎﻉ ﺍﳋﻄﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻦ ﺍﻟﺸﻤﺎﻝ ﺇﱃ ﺍﻟﻴﻤﲔ ‪:‬‬
‫ﻣﺜﻼ ﺇﳚﺎﺩ ‪e − 1.5‬‬
‫ﻭﺃﻣﺎ !‪ x‬ﻓﺘﺴﻤﻰ "ﻣﻀﺮﻭﺏ ﺍﻟﻌﺪﺩ ‪ " x‬ﻭﻳﺴﺎﻭﻱ ‪x!= x( x − 1)( x − 2)...3 × 2 × 1 :‬‬
‫ﻣﺜــﺎﻝ ) ‪( 4 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﺗﺘﺒﻊ‬
‫ﺗﻮﺯﻳﻊ ﺑﻮﺍﺳﻮﻥ ﲟﺘﻮﺳﻂ ‪ 3‬ﻭﺣﺪﺍﺕ ﺷﻬﺮﻳﺎ‪ ،‬ﺇﺫﺍ ﻋﺮﻑ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ X‬ﺑﺄﻧﻪ ﻋﺪﺩ ﺍﻟﻮﺣـﺪﺍﺕ ﺍ ﻟـﱵ‬
‫ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﻣﻦ ﻫﺬﻩ ﺍﻟﺴﻠﻌﺔ ‪.‬‬
‫ﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫ﺃ ‪ -‬ﻣﺎ ﻫﻮ ﻧﻮﻉ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ؟‬
‫ﺏ ‪ -‬ﺍﻛﺘﺐ ﺷﻜﻞ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ )‪ f (x‬ﳍﺬﺍ ﺍﳌﺘﻐﲑ ‪.‬‬
‫ﺡ ‪ -‬ﺍﺣﺴﺐ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫• ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﻷ ﺳﺮﺓ ﺗﺴﺘﻬﻠﻚ ﻭﺣﺪﺗﲔ ﺧﻼﻝ ﺍﻟﺸﻬﺮ؟‬
‫• ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺃﺳﺮﺓ ﻣﺎ ﺗﺴﺘﻬﻠﻚ ﻭﺣﺪﺓ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷ ﻗﻞ ﺧﻼﻝ ﺍﻟﺸﻬﺮ؟‬
‫• ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺃﺳﺮﺓ ﻣﺎ ﺗﺴﺘﻬﻠﻚ ‪ 3‬ﻭﺣﺪﺍﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ ﺧﻼﻝ ﺍﻟﺸﻬﺮ؟‬
‫ﺥ ‪ -‬ﺍﺣﺴﺐ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﳌﺴﺘﻬﻠﻜﺔ ‪.‬‬
‫ﺩ ‪ -‬ﺣﺪﺩ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪.‬‬
‫ﺍﳊـ ﻞ ‪:‬‬
‫ﺃ ‪ -‬ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ‪ X‬ﻣﺘﻐﲑ ﻛﻤﻲ ﻣﻨﻔﺼﻞ ‪ ،‬ﻭﻣﺪﻯ ﻫﺬﺍ ﺍﳌﺘﻐﲑ ﰲ ﻫ ﺬﻩ‬
‫ﺍﳊﺎﻟﺔ ﻫﻮ ‪: X : {x = 0,1,2,3,...} :‬‬
‫ﺏ ‪ -‬ﺷﻜﻞ ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ ‪:‬‬
‫ﲟﺎ ﺃﻥ ﻣﺘﻮﺳﻂ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﱵ ﺗﺴﺘﻬﻠﻜﻬﺎ ﺍﻷﺳﺮﺓ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﻫﻮ ‪ ، µ = 3 :‬ﺇﺫﺍ‬
‫ﺩﺍﻟﺔ ﺍﻻﺣﺘﻤﺎﻝ ﻫﻲ ‪:‬‬
‫‪115‬‬
‫‪, x = 0,1, 2,...‬‬
‫‪e −µ µ x‬‬
‫= )‪f ( x‬‬
‫!‪x‬‬
‫‪e −3 3 x‬‬
‫=‬
‫!‪x‬‬
‫ﺡ ‪ -‬ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ ‪:‬‬
‫•‬
‫ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺃﺳﺮﺓ ﻣﺎ ﺗﺴﺘﻬﻠﻚ ﻭﺣﺪﺗﲔ ﺧﻼﻝ ﺍﻟﺸ ﻬﺮ‪f(2) ،‬‬
‫)‪e −3 32 0.0498(9‬‬
‫=‬
‫‪= 0.22404‬‬
‫!‪2‬‬
‫‪2 ×1‬‬
‫= )‪f (2‬‬
‫• ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺃﺳﺮﺓ ﻣﺎ ﺗﺴﺘﻬﻠﻚ ﻭﺣﺪﺓ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﻫﻮ ‪:‬‬
‫‪P ( X ≥ 1) = f (1) + f (2) + ....‬‬
‫‪e −3 30 0.0498‬‬
‫=‬
‫‪= 1 − 0.0498 = 0.9502‬‬
‫!‪0‬‬
‫‪1‬‬
‫‪= 1 − f (0) = 1 −‬‬
‫• ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺃﺳﺮﺓ ﻣﺎ ﺗﺴﺘﻬﻠﻚ ‪ 3‬ﻭﺣﺪﺍﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ﻫﻮ ‪:‬‬
‫)‪P ( X ≤ 3) = f (3) + f (2) + f (1) + f (0‬‬
‫‪e −3 33 e −3 32 e −3 31 e −3 30 0.0498‬‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫!‪3‬‬
‫!‪2‬‬
‫!‪1‬‬
‫!‪0‬‬
‫‪1‬‬
‫=‬
‫‪ 27 9 3 1 ‬‬
‫‪= 0.0498 + + +  = 0.0498(13) = 0.6474‬‬
‫‪ 6 2 1 1‬‬
‫ﺥ ‪ -‬ﺣﺴﺎﺏ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪ ،‬ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻟﻌﺪﺩ ﺣﺎﻻﺕ ﺍﻻﺳ ﺘﺠﺎﺑﺔ ‪:‬‬
‫• ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ) ‪ (µ‬ﰲ ﺣﺎﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺒﻮﺍﺳﻮﻥ ﻫﻮ ﻣﻌﻠﻤﺔ ﻣﻌﻄﺎﺓ ﻫﻲ‪:‬‬
‫‪µ =3‬‬
‫ﰲ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ‪ ،‬ﻓﺈﻥ ﺍﻟﺘﺒﺎﻳﻦ ﻳﺴﺎﻭﻱ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ‪:‬‬
‫ﺃﻱ ﺃﻥ ‪:‬‬
‫‪σ2 =µ =3‬‬
‫ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻫﻮ‪:‬‬
‫‪σ = µ = 3 = 1.732‬‬
‫ﻭﳝﻜﻦ ﺣﺴﺎﺏ ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ‪ ،‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﱵ ﺳﺒﻖ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﰲ‬
‫ﺍﻟﻔﺼﻞ ﺍﻟﺴﺎﺑﻖ‪ ،‬ﻭﻫﻮ‪:‬‬
‫‪σ‬‬
‫‪1.732‬‬
‫= ‪× 100‬‬
‫‪× 100 = 57.7%‬‬
‫‪3‬‬
‫‪µ‬‬
‫ﺩ ‪ -‬ﲢﺪﻳﺪ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ‪:‬‬
‫ﺩﺍﺋﻤﺎ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺒﻮﺍﺳﻮﻥ ﻣﻮﺟﺐ ﺍﻻﻟﺘﻮﺍﺀ ‪.‬‬
‫= ‪V.C‬‬
‫‪116‬‬
‫‪ 5/8‬ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﳌﺴﺘﻤﺮﺓ‬
‫‪Continuous Random Variables‬‬
‫ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﺴﺘﻤﺮ‪ ،‬ﻫﻮ ﺍﻟﺬﻱ ﻳﺄﺧﺬ ﻗﻴﻤﺎ ﻣﺘﺼﻠﺔ‪ ،‬ﻭﻳﺄﺧﺬ ﻋﺪﺩ ﻻ‪‬ﺎﺋﻲ ﻣﻦ ﺍﻟﻘﻴﻢ ﺍﳌﻤﻜﻨﺔ ﻟﻪ‬
‫ﺩﺍﺧــﻞ ﳎﺎﻟــﻪ‪ ،‬ﻓــﺈﺫﺍ ﻛــﺎﻥ ‪ X‬ﻣــﺘﻐﲑ ﻋــﺸﻮﺍﺋﻲ ﻣــﺴﺘﻤﺮ‪ ،‬ﻭﻳﻘــﻊ ﰲ ﺍﳌــﺪﻯ )‪ ، (a,b‬ﺃﻱ‬
‫ﺃﻥ ‪ ، { X = x : a < x < b} :‬ﻓﺈﻥ ﻟﻠﻤﺘﻐﲑ ‪ X‬ﻋﺪﺩ ﻻ‪‬ﺎﺋﻲ ﻣﻦ ﺍﻟﻘﻴﻢ ﺗﻘﻊ ﺑﲔ ﺍﳊـﺪﻳﻦ ﺍﻷﺩﱏ ﻭﺍﻷﻋﻠـﻰ‬
‫)‪ ، (a,b‬ﻭﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﻜﻤﻴﺔ ﺍﳌﺴﺘﻤﺮﺓ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫•‬
‫ﻛﻤﻴﺔ ﺍﻷﻟﺒﺎﻥ ﺍﻟﱵ ﺗﻨﺘﺠﻬﺎ ﺍﻟﺒﻘﺮﺓ ﰲ ﺍﻟﻴﻮﻡ ﺑﺎﻟﻠﺘﺮ ‪{ X = x : 10 < x < 40} :‬‬
‫•‬
‫ﺍﳌﺴﺎﺣﺔ ﺍﳌﱰﺭﻋﺔ ﺑﺎﻷﻋﻼﻑ ﰲ ﺍﳌﻤﻠﻜﺔ ﺑﺎﻷﻟﻒ ﻫﻜﺘﺎﺭ }‪{ X = x : 1000 < x < 15000‬‬
‫• ﻓﺘﺮﺓ ﺻﻼﺣﻴﺔ ﺣﻔﻆ ﺍﻟﺪﺟﺎﺝ ﺍﳌﱪﺩ ﺑﺎﻷﻳﺎﻡ‪{ X = x : 1 < x < 5} ،‬‬
‫•‬
‫ﻭﺯﻥ ﺍﳉﺴﻢ ﺑﺎﻟﻜﻴﻠﻮﺟﺮﺍﻡ ﻟﻸﻋﻤﺎﺭ ﻣﻦ )‪{ X = x : 55 < x < 80} ، (40-30‬‬
‫ﻭﻫﻜﺬﺍ ﺍﻷﻣﺜﻠﺔ ﻋﻠﻰ ﺍﳌﺘﻐﲑ ﺍﻟﻜﻤﻲ ﺍﳌﺴﺘﻤﺮ ﻛﺜﲑﺓ ‪.‬‬
‫‪ 1 /5 /8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﳌﺴﺘﻤﺮ‬
‫‪Continuous Probability‬‬
‫ﻋﻨﺪ ﲤﺜﻴﻞ ﺑﻴﺎﻧﺎﺕ ﺍﳌﺘﻐﲑ ﺍﻟﻜﻤﻲ ﺍﳌﺴﺘﻤﺮ ﰲ ﺷﻜﻞ ﻣﺪﺭﺝ ﺗﻜﺮﺍﺭﻱ ﺍﻟﻨﺴﱯ‪ ،‬ﳒﺪ ﺃﻥ ﺷﻜﻞ ﻫﺬﺍ ﺍﳌﺪﺭﺝ‬
‫ﻫﻮ ﺃﻗﺮﺏ ﻭﺻﻒ ﳌﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﳌﺴﺘﻤﺮ‪ ،‬ﻭﻛﻠﻤﺎ ﺿﺎﻗﺖ ﺍﻟﻔﺘﺮﺍﺕ ﺑﲔ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ‪،‬‬
‫ﳝﻜﻦ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﺭﺳﻢ ﺩﻗﻴﻖ ﻟﻠﻤﻨﺤﲎ ﺍﳋﺎﺹ ﺑﺪﺍﻟﺔ ﺍﺣﺘﻤﺎﻝ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻤﺮ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣـﺒﲔ ﺑﺎﻟـﺸﻜﻞ‬
‫ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺷﻜﻞ )‪(1 -8‬‬
‫ﺷﻜﻞ ﻣﻨﺤﲎ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣ ﺘﻤﺎﱄ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﺴﺘﻤﺮ‬
‫‪117‬‬
‫ﻭﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﻨﺤﲎ ﺗﻌﱪ ﻋﻦ ﳎﻤﻮﻉ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻭﻟﺬﺍ ﺗﺴﺎﻭﻱ ﻫﺬﻩ ﺍﳌﺴﺎﺣﺔ ﺍﻟﻮﺍﺣـﺪ‬
‫ـﺎﻝ ‪Probability Distribution‬‬
‫ﺍﻟــﺼﺤﻴﺢ ‪ ،‬ﻭﺗــﺴﻤﻰ ﺍﻟﺪﺍﻟــﺔ )‪ f(x‬ﺑﺪﺍﻟــﺔ ﻛﺜﺎﻓــﺔ ﺍﻻﺣﺘﻤـ‬
‫)‪ ، Function(p.d.f‬ﻭﺑﻔﺮﺽ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﺴﺘﻤﺮ ﻳﻘﻊ ﰲ ﺍﳌ ﺪﻯ ‪ ، X = {x : a π x π b} :‬ﻭﺃﻥ‬
‫ﻣﻨﺤﲎ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﻳﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻓﺈﻥ ﻣﻦ ﺧﺼﺎﺋﺺ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ )‪ f (x‬ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -1‬ﺍﻟﺪﺍﻟﺔ )‪ f (x‬ﻣﻮﺟﺒﺔ ﺩﺍﺧﻞ ﺍﳌﺪﻯ )‪ (a,b‬ﺃﻱ ﺃﻥ ‪x ∈ (a , b) ، f ( x) φ 0 :‬‬
‫‪ -2‬ﺍﻟﺘ ﻜﺎﻣﻞ ﻋﻠﻰ ﺣﺪﻭﺩ ﺍﳌﺘﻐﲑ ﻣﻦ ﺍﳊﺪ ﺍﻷﺩﱏ ‪ a‬ﺣﱴ ﺍﳊﺪ ﺍﻷﻋﻠـﻰ ‪ b‬ﻳﻌـﱪ ﻋـﻦ ﳎﻤـﻮﻉ‬
‫ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻟﺬﺍ ﻳﺴﺎﻭﻱ ﺍﻟﻮﺍﺣﺪ ﺍﻟﺼﺤﻴﺢ ‪ ،‬ﺃﻱ ﺃﻥ ‪:‬‬
‫ﺣﻴﺚ ﺃﻥ ﺍﻟﺸﻜﻞ ﺍﻟﺮﻳﺎﺿﻲ ﺃﻋﻼﻩ ﻳﺴﻤﻰ ﺑﺎﻟﺘﻜﺎﻣﻞ ﺍﶈﺪﺩ ﻣﻦ ‪ x = a‬ﺣﱴ ‪ ، x = b‬ﻭﻫﺬﺍ ﻳﻌـﲏ‬
‫ﺇﳚﺎﺩ ﺍﳌﺴﺎﺣﺔ ﺃﺳ ﻔﻞ ﺍﳌﻨﺤﲏ ﺑﲔ )‪. (a , b‬‬
‫‪ -3‬ﳊﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ﺍﳌﺴﺘﻤﺮ ﻳﻘﻊ ﰲ ﺍﳌﺪﻯ )‪ (d,c‬ﺃﻱ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤـﺎﻝ‬
‫) ‪ ، p(c < x < d‬ﳚﺐ ﺣﺴﺎﺏ ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﻨﺤﲏ ﻣﻦ ‪ x = c‬ﺣﱴ ‪ x = d‬ﻛﻤﺎ ﻫﻲ‬
‫ﻣﺒﻴﻨﺔ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺒﻴﺎﱐ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪118‬‬
‫ﻭﻳﺘﻢ ﺫﻟﻚ ﺑﺈﳚﺎﺩ ﺍﻟﺘﻜﺎﻣﻞ ﺍﶈﺪﺩ ﰲ ﻫﺬﺍ ﺍﳌﺪﻯ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -4‬ﰲ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻤﺮ‪ ،‬ﻳﻜﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ )‪ p( x = value‬ﻣﺴﺎﻭﻳﺎ ﻟﻠﺼﻔﺮ‪ ،‬ﺃﻱ ﺃﻥ ‪:‬‬
‫ﻭﻟﻜﻲ ﳝﻜﻨﻨﺎ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ‪ ،‬ﳚﺐ ﻋﺮﺽ ﺑﻌﺾ ﻗﻮﺍﻋﺪ ﺍﻟﺘﻜﺎﻣﻞ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺟﺪﻭﻝ )‪(2 -8‬‬
‫ﺑﻌﺾ ﻗﻮﺍﻋﺪ ﺍﻟﺘﻜﺎﻣﻞ‬
‫‪(a + bx) n +1‬‬
‫)‪b ( n +1‬‬
‫‪∫ e dx = e‬‬
‫‪1‬‬
‫‪∫ (a +bx) dx = log‬‬
‫)‪( a + bx‬‬
‫‪integration‬‬
‫) ‪e ( a + bx‬‬
‫‪n‬‬
‫= ‪∫ (a + bx) dx‬‬
‫‪1‬‬
‫‪b‬‬
‫) ‪( a + bx‬‬
‫‪1‬‬
‫‪b‬‬
‫‪xn +1‬‬
‫‪and‬‬
‫‪n +1‬‬
‫‪n‬‬
‫= ‪∫ x dx‬‬
‫‪∫ e dx = e‬‬
‫‪1‬‬
‫)‪∫ x dx = log ( x‬‬
‫‪x‬‬
‫‪and‬‬
‫‪and‬‬
‫‪x‬‬
‫‪e‬‬
‫)‪(1‬‬
‫)‪(2‬‬
‫)‪(3‬‬
‫∞‬
‫‪gamma‬‬
‫‪Γ( n + 1) = ∫ xn e − xdx = n!= n(n − 1)(n − 2)...3 × 2 × 1‬‬
‫‪Incomplete‬‬
‫‪gamma‬‬
‫‪a‬‬
‫‪n‬‬
‫‪‬‬
‫‪ai ‬‬
‫‪IΓ(n + 1) = ∫ xne − xdx = n!1 − e − a ∑ ‬‬
‫‪i = 0 i! ‬‬
‫‪‬‬
‫‪0‬‬
‫)‪(5‬‬
‫= ‪B(m + 1, n + 1) = ∫ xn (1 − x) m dx‬‬
‫)‪(6‬‬
‫)‪(4‬‬
‫‪0‬‬
‫‪Beta‬‬
‫!‪m!n‬‬
‫!)‪(m + n + 1‬‬
‫‪1‬‬
‫‪0‬‬
‫ﻣﺜـ ﺎﻝ ) ‪( 5 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﻹﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ﻟﻸﺳﺮﺓ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ ﻋﻠﻰ ﺍﳌﻮﺍﺩ ﺍﻟﻐﺬﺍﺋﻴﺔ ﻟﻪ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﺣﺘﻤﺎﻝ ﺗﺄﺧﺬ‬
‫ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪cx(10 − x) , 0 < x < 10‬‬
‫‪0 otherwise‬‬
‫ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﺣﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺜﺎﺑﺖ ‪c‬‬
‫{ = )‪f ( x‬‬
‫‪119‬‬
‫‪ -2‬ﺍﺣﺴﺐ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﺇﻧﻔﺎﻕ ﺍﻷﺳﺮﺓ ﻳﺘﺮﺍﻭﺡ ﻣﺎ ﺑﲔ )‪ (8,5‬ﺃﻟﻒ ﺭﻳﺎﻝ ﺧﻼﻝ ﺍﻟﺸﻬﺮ ‪.‬‬
‫‪ -3‬ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ‪ 600‬ﺃﺳﺮﺓ ‪ ،‬ﻓﻤﺎ ﻫﻮ ﻋﺪﺩ ﺍﻷﺳﺮ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﻳﻘﻞ ﺇﻧﻔﺎﻗﻬﺎ ﻋـﻦ ‪ 3‬ﺁﻻﻑ ﺧـﻼﻝ‬
‫ﺍﻟﺸﻬﺮ؟‬
‫ﺍﳊـــﻞ‬
‫‪ -1‬ﺣﺴﺎﺏ ﻗﻴﻤﺔ ‪c‬‬
‫ﻣﻦ ﺧﺼﺎﺋﺺ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ‪:‬‬
‫‪x=b‬‬
‫‪f ( x) dx = 1‬‬
‫∫‬
‫‪x=a‬‬
‫ﺇﺫﺍ‬
‫‪10‬‬
‫‪  x2  x3 ‬‬
‫‪∫x= 0cx(10 − x) dx = c x∫= 0(10 x − x ) dx = c 10 2  − 3 ‬‬
‫‪0‬‬
‫‪x =10‬‬
‫‪x =10‬‬
‫‪2‬‬
‫‪10‬‬
‫‪‬‬
‫‪x3 ‬‬
‫‪(1000) ‬‬
‫‪‬‬
‫‪= c 5 x2 −  = c (5(100) −‬‬
‫‪) −0‬‬
‫‪3 0‬‬
‫‪3 ‬‬
‫‪‬‬
‫‪‬‬
‫‪500‬‬
‫‪c =1‬‬
‫=‬
‫‪3‬‬
‫‪c = 3 500 = 0.006‬‬
‫‪ -2‬ﺣﺴﺎﺏ ﺃﻥ ﺇﻧﻔﺎﻕ ﺍﻷﺳﺮﺓ ﻳﺘﺮﺍﻭﺡ ﺑﲔ )‪ (8,5‬ﺃﻟﻒ ﺭﻳﺎﻝ ﺧﻼ ﺍﻟﺸﻬﺮ ﻫﻮ ‪.‬‬
‫‪8‬‬
‫‪x =8‬‬
‫‪‬‬
‫‪x3 ‬‬
‫‪p(5 < x < 8) = ∫ 0.006 x(10 − x) dx = 0.0065 x2 − ‬‬
‫‪3 5‬‬
‫‪‬‬
‫‪x= 5‬‬
‫‪‬‬
‫‪83  ‬‬
‫‪53  ‬‬
‫])‪= 0.006  5(8) 2 −  −  5(5) 2 −   = 0.006[(149.3333) − (83.3333‬‬
‫‪3 ‬‬
‫‪3 ‬‬
‫‪‬‬
‫‪= 0.006(66) = 0.396‬‬
‫‪ -3‬ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻨﺎ ‪ 600‬ﺃﺳﺮﺓ ‪ ،‬ﻓﺈﻥ ﻋﺪﺩ ﺍﻷﺳﺮ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﻳﻘﻞ ﺇﻧﻔﺎﻗﻬﺎ ﻋﻦ ‪ 3‬ﺁﻻﻑ ﺧﻼﻝ ﺍﻟـﺸﻬﺮ‬
‫ﻫﻮ ‪:‬‬
‫)‪number of family = 600 p ( x < 3‬‬
‫‪3‬‬
‫‪= 600∫ 0.006 x(10 − x)dx‬‬
‫‪0‬‬
‫‪3‬‬
‫‪‬‬
‫‪x3 ‬‬
‫‪= 3.6 5 x2 −  = 3.6[45 − 9] − 0 = 129.6 ≈ 130‬‬
‫‪3 0‬‬
‫‪‬‬
‫ﺣﻮﺍﱄ ‪ 130‬ﺃﺳﺮﺓ ‪.‬‬
‫‪ 2 /5 /8‬ﺍﳌﺘﻮﺳﻂ ﻭﺍﻟﺘﺒﺎﻳﻦ ﰲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﺍﳌﺴﺘﻤﺮ‬
‫‪120‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ )‪ f (x‬ﻫﻲ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﻟﻠﻤﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ a < x < b ، x‬ﻓﺈﻥ ﺍﻟﺘﻮﻗـﻊ‬
‫ﺍﻟﺮﻳﺎﺿﻲ ﻟﻠﺪﺍﻟﺔ )‪ h(x‬ﺗﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻣﻦ ﰒ ﳝﻜﻦ ﻛﺘﺎﺑﺔ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻮﺳﻂ ﻭﺍﻟﺘﺒﺎﻳﻦ ﻛﻤﺎ ﻳﻠﻲ ‪.‬‬
‫ﺗﺎﺑﻊ ﻣﺜﺎﻝ ) ‪( 5 -8‬‬
‫ﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﺃﻭﺟﺪ ﺍﳌﺘﻮﺳﻂ ﻭﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﻭﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ ﻟﻺﻧﻔﺎﻕ ﺍﻟﺸﻬﺮﻱ ‪.‬‬
‫ﺍﳊـــﻞ‬
‫‪ -1‬ﺍﳌﺘﻮﺳﻂ ﺍﳊﺴﺎﰊ‬
‫‪10‬‬
‫‪10‬‬
‫‪µ = E ( x) = xf ( x)dx = ∫ x(0.006 x(10 − x) ) = 0.006 ∫ (10 x2 − x3 )dx‬‬
‫‪0‬‬
‫‪0‬‬
‫‪10‬‬
‫‪ x‬‬
‫‪ 10000 10000 ‬‬
‫‪‬‬
‫‪x ‬‬
‫‪−‬‬
‫‪= 0.00610 −  = 0.006‬‬
‫‪ − (0 )‬‬
‫‪4 0‬‬
‫‪4 ‬‬
‫‪ 3‬‬
‫‪‬‬
‫‪ 3‬‬
‫‪1‬‬
‫‪= 60   = 5‬‬
‫‪12 ‬‬
‫‪4‬‬
‫‪3‬‬
‫ﻣﺘﻮﺳﻂ ﺇﻧﻔﺎﻕ ﺍﻷﺳﺮﺓ ﺍﻟﺸﻬﺮﻱ ‪ 5‬ﺁﻻﻑ ﺭﻳﺎﻝ ‪.‬‬
‫‪ -2‬ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ‬
‫‪σ 2 = E ( x 2 ) − u 2 = E ( x 2 ) − (5) 2‬‬
‫‪b‬‬
‫‪10‬‬
‫‪E ( x ) = ∫ x f ( x) dx = 0.006 ∫ (10 x3 − x4 )dx‬‬
‫‪2‬‬
‫‪2‬‬
‫‪a‬‬
‫‪0‬‬
‫‪10‬‬
‫‪  x4   x5 ‬‬
‫‪100000 100000 ‬‬
‫‪= 0.00610  −   = 0.006 ‬‬
‫‪−‬‬
‫‪−0‬‬
‫‪5 ‬‬
‫‪ 4‬‬
‫‪  4   5  0‬‬
‫‪ 1 ‬‬
‫‪= 600  = 30‬‬
‫‪ 20 ‬‬
‫ﺇﺫﺍ ﺍﻟﺘﺒﺎﻳﻦ ﻫﻮ ‪:‬‬
‫‪ ، σ 2 = 30 − 25 = 5‬ﻭﻣﻦ ﰒ ﻳﺄﺧﺬ ﺍﻻﳓﺮﺍﻑ ﺍﳌﻌﻴﺎﺭﻱ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪σ = var iance = 5 = 2.236‬‬
‫‪121‬‬
‫‪ -3‬ﻣﻌﺎﻣﻞ ﺍﻻﺧﺘﻼﻑ ﺍﻟﻨﺴﱯ‬
‫‪σ‬‬
‫‪2.236‬‬
‫= ‪× 100‬‬
‫‪× 100 = 44.72%‬‬
‫‪5‬‬
‫‪µ‬‬
‫ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ‬
‫= ‪C.V‬‬
‫‪(C.D.F) Cumulative Distribution Function‬‬
‫ﻳﺮﻣﺰ ﳍﺬﻩ ﺍﻟﺪﺍﻟﺔ ﺑﺎﻟﺮﻣﺰ )‪ (C.D.F)= F(x‬ﻭﲢﺴﺐ ﺑﺈﳚﺎﺩ ﺍﻻﺣﺘﻤﺎﻝ ‪:‬‬
‫ﻭﳝﻜﻦ ﺗﻮﺿﻴﺤﻬﺎ ﺑﻴﺎ ﻧﻴﺎ ﺑﺎﻟﺮﺳﻢ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺗﺎﺑﻊ ﻣﺜﺎﻝ ) ‪( 5 -8‬‬
‫ﰲ ﺍﳌ ﺜﺎﻝ ) ‪ ( 5 -8‬ﺃﻭﺟﺪ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ ‪ ، C.D.F‬ﰒ ﺍﺳﺘﺨﺪﻡ ﻫﺬﻩ ﺍﻟﺪﺍﻟـﺔ ﳊـﺴﺎﺏ‬
‫ﺍﺣ ﺘﻤﺎﻝ ﺃﻥ ﺇﻧﻔﺎﻕ ﺍﻷﺳﺮﺓ ﻳﻘﻞ ﻋﻦ ‪ 5‬ﺁﻻﻑ ﺟﻨﻴﻪ ‪.‬‬
‫ﺍﳊــﻞ‬
‫•‬
‫ﺇﳚﺎﺩ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ ‪C.D.F‬‬
‫‪x‬‬
‫‪F ( x) = ∫ f ( x) dx‬‬
‫‪x‬‬
‫‪  x3 ‬‬
‫‪ −  ‬‬
‫‪  3  0‬‬
‫•‬
‫‪0‬‬
‫‪x‬‬
‫‪  x2‬‬
‫‪= ∫ 0.006 x(10 − x)dx = 0.00610‬‬
‫‪  2‬‬
‫‪0‬‬
‫‪‬‬
‫‪ x3 ‬‬
‫‪= 0.0065 x2 −  ‬‬
‫‪ 3 ‬‬
‫‪‬‬
‫ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻄﻠﻮﺏ )‪ ، F (5) = p ( x ≤ 5‬ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ﺑﺎﻟﺮﺳﻢ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﻭﳝﻜﻦ ﺣﺴﺎﺏ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﺑﺎﻟﺘﻌﻮﻳﺾ ﻋﻦ ‪ x = 5‬ﰲ ﺍﻟﺪﺍﻟﺔ )‪ F(x‬ﺍﻟﱵ ﰎ ﺍﻟﺘﻮﺻﻞ ﺇﻟﻴﻬﺎ‪ ،‬ﺃﻱ‬
‫ﺃﻥ ‪:‬‬
‫‪122‬‬
‫= )‪F (5) = P ( x ≤ 5‬‬
‫‪ 2 x3 ‬‬
‫‪125 ‬‬
‫‪‬‬
‫‪= 0.0065 x −  = 0.006 125 −‬‬
‫‪3‬‬
‫‪3 ‬‬
‫‪‬‬
‫‪‬‬
‫‪ 250 ‬‬
‫‪= 0.006‬‬
‫‪ = 0.5‬‬
‫‪ 3 ‬‬
‫ﺃﻱ ﺃﻥ ‪ 50%‬ﻣﻦ ﺍﻷﺳﺮ ﻳﻘﻞ ﺇﻧﻔﺎﻗﻬﺎ ﻋﻦ ‪ 5‬ﺁﻻﻑ ﺭﻳﺎﻝ ‪.‬‬
‫ﺧﺼﺎﺋﺺ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ‬
‫‪F ( x) φ 0 -1‬‬
‫‪F ( a ) = 0 -2‬‬
‫‪F (b) = 1 -3‬‬
‫‪p( x φ x) = 1 − F ( x) -4‬‬
‫‪f ( x) = dF ( x) dx -5‬‬
‫‪ 6/8‬ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﺍﳌﺴﺘﻤﺮﺓ ﺍﳋﺎﺻﺔ‬
‫‪Continuous Probability Distributions‬‬
‫ﻫﻨﺎﻙ ﺑﻌﺾ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﺍﳌﺴﺘﻤﺮﺓ ﺍﳋﺎﺻﺔ ‪ ،‬ﻭﳍﺎ ﺩﻭﺍﻝ ﻛﺜﺎﻓﺔ ﺍﺣﺘﻤﺎﻝ ﳏﺪﺩﺓ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺑﻌﺾ ﻫﺬﻩ‬
‫ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ‪:‬‬
‫‪ 1 /6 /8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﳌﻨﺘﻈﻢ‬
‫‪Uniform distribution‬‬
‫ﺷﻜﻞ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ‬
‫‪p.d.f‬‬
‫ﻫﻮ ﺗﻮﺯﻳﻊ ﻟﻪ ﺩﺍﻟﺔ ﺍﺣﺘﻤﺎﻝ ﺛﺎﺑﺘﺔ‪ ،‬ﻭﻳﺴﺘﺨﺪﻡ ﰲ ﺣﺎﻟﺔ ﺍﻟﻈﻮﺍﻫﺮ ﺍﻟﱵ ﳝﻜﻦ ﺃﻥ ﲢﺪﺙ ﺑﺸﻜﻞ ﻣﻨﺘﻈﻢ‪،‬‬
‫ﻓ ﺈﺫﺍ ﻛﺎﻥ ﺍﳌﺘﻐﲑ ‪ x‬ﻣﺘﻐﲑ ﻋﺸﻮﺍﺋﻲ ﻟﻪ ﺗﻮﺯﻳﻊ ﻣﻨﺘﻈﻢ ‪ ، Uniform‬ﻣﺪﺍﻩ ﻫﻮ ‪ a < x < b‬ﻓﺈﻥ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ‬
‫ﺍﺣﺘﻤﺎﻟﻪ ﻫﻲ ‪:‬‬
‫ﻭﳝﻜﻦ ﲤﺜﻴﻞ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﺑﻴﺎﻧﻴﺎ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪123‬‬
‫ﻣﻌﺎﱂ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‬
‫ﺗﻮﺟﺪ ﻣﻌﻠﻤﺘﺎﻥ ﳍﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﳘﺎ ) ‪ ، (b, a‬ﻭﻟﺬﺍ ﻳﻜﺘﺐ ﺭﻣﺰ ﳍﺬﺍ ﺍﻟ ﺘﻮﺯﻳﻊ ﺍﻟﺼﻮﺭﺓ )‪x ~ U (a , b‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻟﺘﻮﺯﻳﻊ ﺍﳌﺴﺘﻄﻴﻞ‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ، µ‬ﻭﺍﻟﺘﺒﺎﻳﻦ ‪ σ 2‬ﳍﺬﺍ ﺍﳌﺘﻐﲑ ﳘﺎ ‪:‬‬
‫‪(b − a ) 2‬‬
‫‪a +b‬‬
‫= ‪, σ2‬‬
‫‪12‬‬
‫‪2‬‬
‫= )‪µ = E ( x‬‬
‫ﻋﻠﻰ ﺍﻟﻄﺎﻟﺐ ﺇﺛﺒﺎﺕ ﺫﻟﻚ ‪:‬‬
‫ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ‬
‫‪C.D.F‬‬
‫ﺗﺄﺧﺬ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ )‪ F ( x‬ﺍﻟﺸﻜﻞ ﺍﻵﰐ‬
‫ﻣﺜـﺎﻝ ) ‪( 6 -8‬‬
‫ﺍﺳﺘﻮﺭﺩ ﺃﺣﺪ ﺍﳌﺮﺍﻛﺰ ﺍﻟﺘﺠﺎﺭﻳﺔ ‪ 1500‬ﻃﻦ ﺑﻄﺎﻃﺲ‪ ،‬ﻭﻭﺿﻌ ﻬﺎ ﰲ ﳐﺰﻥ‪ ،‬ﻭﻗﺎﻡ ﺑﺒﻴﻌﻬﺎ ﺑﻜﻤﻴـﺎﺕ‬
‫ﻣﺘﺴﺎﻭﻳﺔ ﻋﻠﻰ ﻣﺪﺍﺭ ﺷﻬﻮﺭ ﺍﻟﺴﻨﺔ ‪ .‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﺒﻴﻊ ﺗﺘﺒﻊ ﺗﻮﺯﻳﻊ ﻣﻨﺘﻈﻢ‪ ،‬ﻓﺄﻭﺟﺪ ﺍﻵﰐ ‪:‬‬
‫• ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﺒﻴﻊ ‪.‬‬
‫• ﺑﻌﺪ ﻣﺮﻭﺭ ﺳﺒﻌﺔ ﺃﺷﻬﺮ ﻣﻦ ﺑﺪﺍﻳﺔ ﺍﻟﺒﻴﻊ‪ ،‬ﻣﺎ ﻫﻲ ﺍﻟﻜﻤﻴﺔ ﺍﳌﻮﺟﻮﺩﺓ ﺑﺎﳌﺨﺰﻥ؟‬
‫ﺍﳊـــﻞ‬
‫• ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﺰﻣﻦ ‪:‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ﺍﳌﺘﻐﲑ ‪ x‬ﻳﻌﱪ ﻋﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﺒﻴﻊ ﻣﻘﺎﺳﺔ ﺑﺎﻟـﺸﻬﺮ‪ ،‬ﺃﻱ ﺃﻥ ‪، 0 < x < 12‬‬
‫ﻭﻣﻦ ﰒ ﺗﺄﺧﺬ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﺰﻣﻦ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪1‬‬
‫‪1‬‬
‫=‬
‫‪, 0 < x < 12‬‬
‫‪12 − 0 12‬‬
‫= )‪f ( x‬‬
‫• ﺣﺴﺎﺏ ﺍﻟﻜﻤﻴﺔ ﺍﳌﻮﺟ ﻮﺩﺓ ﺑﺎﳌﺨﺰﻥ ﺑﻌﺪ ﺳﺒﻌﺔ ﺃﺷﻬﺮ ﻣﻦ ﺑﺪﺍﻳﺔ ﺍﻟﺒﻴﻊ ‪.‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ‪ Q‬ﻫﻲ ﻛﻤﻴﺔ ﺍﻟﺒﻄﺎﻃﺲ ﺍﳌﺴﺘﻮﺭﺩﺓ ‪ ،‬ﺗﻜﻮﻥ ﺍﻟﻜﻴﺔ ﺍﳌﺘﺒﻘﻴﺔ ﺑﺎﳌﺨﺰﻥ ﺑﻌﺪ ﻣـﺮﻭﺭ‬
‫ﺳﺒﻌﺔ ﺃﺷﻬﺮ ﻣﻦ ﺑﺪﺍﻳﺔ ﺍﻟﺒﻴﻊ ﻫﻲ ‪:‬‬
‫‪7−0‬‬
‫‪) = 625 Ton‬‬
‫‪12 − 0‬‬
‫‪Q × p( x > 7) = Q × (1 − F (7)) = 1500(1 −‬‬
‫‪124‬‬
‫‪ 2 /6 /8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻷﺳﻲ ﺍﻟﺴﺎﻟﺐ‬
‫ﺷﻜﻞ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ‬
‫‪Negative Exponential distribution‬‬
‫‪p.d.f‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺘﻐﲑ ‪ x‬ﻣﺘﻐﲑ ﻋﺸﻮﺍﺋﻲ ﻟﻪ ﺗﻮﺯﻳﻊ ﺃﺳﻲ ﺳﺎﻟﺐ ‪ ،‬ﻣﺪﺍﻩ ﻫﻮ ∞ < ‪ 0 < x‬ﻓﺈﻥ ﺩﺍﻟـﺔ‬
‫ﻛﺜﺎﻓﺔ ﺍﺣﺘﻤﺎﻟﻪ ﻫﻲ ‪:‬‬
‫ﻭﳝﻜﻦ ﲤﺜﻴﻞ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﺑﻴﺎﻧﻴﺎ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﻣﻌﺎﱂ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‬
‫ﺗﻮﺟﺪ ﻣﻌﻠﻤﺔ ﻭﺍﺣﺪﺓ ﻫﻲ ) ‪(θ‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻷﺳﻰ ﺍﻟﺴﺎﻟﺐ‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪ ، µ‬ﻭﺍﻟﺘﺒﺎﻳﻦ ‪ σ 2‬ﳍﺬﺍ ﺍﳌﺘﻐﲑ ﳘﺎ ‪:‬‬
‫ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ‬
‫‪1‬‬
‫‪θ2‬‬
‫= ‪µ = E ( x) = θ1 , σ 2‬‬
‫‪C.D.F‬‬
‫ﺗﺄﺧﺬ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ )‪ F ( x‬ﺍﻟﺸﻜﻞ ﺍﻵ ﰐ‬
‫)‬
‫(‬
‫‪x‬‬
‫‪F ( x) = p ( X ≤ x) = ∫ f ( x)dx = 1 − e−θx‬‬
‫‪0‬‬
‫ﻣﺜــﺎﻝ ) ‪( 7 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻹ‪‬ﺎﺀ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻴﻞ ﰲ ﺍﻟﺒﻨﻚ ﺗﺘﺒﻊ ﺗﻮﺯﻳﻊ ﺃﺳﻲ ﲟﺘﻮﺳﻂ ‪ 2‬ﺩﻗﻴﻘﺔ ‪ ،‬ﻓﺄﻭﺟﺪ ﻣﺎ‬
‫ﻳﻠﻲ ‪.‬‬
‫• ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻹ‪‬ﺎﺀ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻴﻞ ‪.‬‬
‫• ﻣﺎ ﺍﺣﺘﻤﺎﻝ ﺇ‪‬ﺎﺀ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻴﻞ ﰲ ﺃﻗﻞ ﻣﻦ ﺩﻗﻴﻘﺔ ‪.‬‬
‫ﺍ ﳊـــﻞ‬
‫• ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﺰﻣﻦ ‪:‬‬
‫‪125‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ﺍﳌﺘﻐﲑ ‪ x‬ﻳﻌﱪ ﻋﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣ ﻨﻴﺔ ﻹ‪‬ـﺎﺀ ﺧﺪﻣـﺔ ﺍﻟﻌﻤﻴـﻞ ﺑﺎﻟﺪﻗﻴﻘـﺔ ‪ ،‬ﺃﻱ ﺃﻥ‬
‫∞ < ‪ ، 0 < x‬ﻓﺈﻥ ﺍﳌﺘﻮﺳﻂ ‪ ، 1 θ = 2‬ﻭﻣﻦ ﰒ ﺗﺼﺒﺢ ﻗﻴﻤﺔ ) ‪ (θ‬ﻫـﻲ ‪، (θ = 0.5) :‬‬
‫ﻭﺗﻜﺘﺐ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻟﺰﻣﻦ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫∞ < ‪e−0.5 x, 0 < x‬‬
‫‪f ( x) = 0.5‬‬
‫• ﺣﺴﺎﺏ ﺍﺣﺘﻤﺎﻝ ﺇ‪‬ﺎﺀ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻴﻞ ﰲ ﺃﻗﻞ ﻣﻦ ﺩﻗﻴﻘﺔ ‪.‬‬
‫‪) = 0.3935‬‬
‫‪ 3 /6 /8‬ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ‬
‫)‪−0.5(1‬‬
‫‪p( x ≤ 1) = (1 − e− 0.5 x ) = (1 − e‬‬
‫‪The Normal Distribution‬‬
‫ﻳﻌﺘﱪ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻦ ﺃﻛﺜﺮ ﺍ ﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﺍﺳﺘﺨﺪﺍﻣﺎ ﰲ ﺍﻟﻨﻮﺍﺣﻲ ﺍﻟﺘﻄﺒﻴﻘﻴـﺔ‪ ،‬ﻭﻣﻨـﻬﺎ‬
‫ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ ﺷﺎﻣﻼ ﺍﻟﺘﻘﺪﻳﺮ‪ ،‬ﻭﺍﺧﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺮﻭﺽ‪ ،‬ﻛﻤﺎ ﺃﻥ ﻣﻌﻈﻢ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﳝﻜﻦ ﺗﻘﺮﻳﺒـﻬﺎ ﺇﱃ‬
‫ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻋﺮﺽ ﳍﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ‪.‬‬
‫ﺷﻜﻞ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ‬
‫‪p.d.f‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺘﻐﲑ ‪ x‬ﻣﺘﻐﲑ ﻋﺸﻮﺍﺋﻲ ﻟﻪ ﺗﻮﺯﻳﻊ ﻃﺒﻴﻌﻲ ‪ ،‬ﻣﺪﺍﻩ ﻫﻮ ∞ < ‪ − ∞ < x‬ﻓﺈﻥ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ‬
‫ﺍﺣﺘﻤﺎﻟﻪ ﻫﻲ ‪:‬‬
‫ﻭﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻟﻪ ﻣﻨﺤﲎ ﻣﺘﻤﺎﺛﻞ ﻳﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻓﻬﺬﺍ ﺍﳌﻨﺤﲎ ﻣﺘﻤﺎﺛﻞ ﻋﻠﻰ ﺟﺎﻧﱯ ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪. µ‬‬
‫ﻣﻌﺎﱂ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ‬
‫ﺗﻮ ﺟﺪ ﻣﻌﻠﻤﺘﲔ ﳍﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﳘﺎ ‪:‬‬
‫ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪E (x) = µ :‬‬
‫ﻭﺍﻟﺘﺒﺎﻳﻦ ‪var( x) = σ 2 :‬‬
‫ﻭﻣﻦ ﰒ ﻳﻌﱪ ﻋﻦ ﺗﻮﺯﻳﻊ ﺍﳌﺘﻐﲑ ‪ x‬ﺑﺎﻟﺮﻣﻮﺯ ‪ x ~ N (µ ,σ 2 ) :‬ﻭﻳﻌﲏ ﺫﻟﻚ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌـﺸﻮﺍﺋﻲ ‪x‬‬
‫‪126‬‬
‫ﻳﺘﺒﻊ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﲟﺘﻮﺳﻂ ‪ ، µ‬ﻭﺗﺒﺎﻳﻦ ‪. σ 2‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ‬
‫ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻦ ﺃﻛﺜﺮ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴﺔ ﺍﺳﺘﺨﺪﺍﻣﺎ‪ ،‬ﺑﻞ ﻳﺸﺘﻖ ﻣﻨﻪ ﻛﻞ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﻻﺣﺘﻤﺎﻟﻴـﺔ‬
‫ﺍﻷﺧﺮﻯ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰲ ﺍﻻﺳﺘﺪﻻﻝ ﺍﻹﺣﺼﺎﺋﻲ‪ ،‬ﻭﻣﻦ ﺧﺼﺎﺋﺺ ﻫﺬﺍ ﺍﻟﺘﻮ ﺯﻳﻊ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -2‬ﻭﺍﻟﺘﺒﺎﻳﻦ ‪σ 2‬‬
‫‪ -1‬ﺍﻟﻮﺳﻂ ﺍﳊﺴﺎﰊ ‪µ‬‬
‫‪ -3‬ﻣﻨﺤﲏ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻣﺘﻤﺎﺛﻞ ﻋﻠﻰ ﺟﺎﻧﱯ ﺍﻟﻮﺳﻂ ‪µ‬‬
‫ﻛﻴﻔﻴﺔ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ‬
‫) ‪p( x1 < x < x2‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌ ﻄﻠﻮﺏ ﺣﺴﺎﺑﻪ ﻫﻮ ) ‪ ، p( x1 < x < x2‬ﻭ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﳛﺪﺩ ﺑﺎﳌـﺴﺎﺣﺔ‬
‫ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﺣﻴﺚ ﺃﻥ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻣﻦ ﺍﻟﺘﻮﺯﻳﻌﺎﺕ ﺍﳌﺴﺘﻤﺮﺓ‪ ،‬ﻓﺈﻥ ﻫﺬﻩ ﺍﳌﺴﺎﺣﺔ ) ﺍﻻﺣﺘﻤﺎﻝ ( ﲢﺴﺐ ﺑﺈﳚﺎﺩ ﺍﻟﺘﻜﺎﻣـﻞ‬
‫ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪2‬‬
‫‪dx‬‬
‫‪− 1  x− µ ‬‬
‫‪2 σ ‬‬
‫‪x2‬‬
‫‪e‬‬
‫‪x2‬‬
‫‪1‬‬
‫∫ = ‪p( x1 < x < x2 ) = ∫ f ( x)dx‬‬
‫‪x1‬‬
‫‪x1 σ 2π‬‬
‫ﻭﻫﺬﺍ ﺍﻟﺘﻜﺎﻣﻞ ﻳﺼﻌﺐ ﺣﺴﺎﺑﻪ‪ ،‬ﻭﻣﻦ ﰒ ﳉﺄ ﺍﻹﺣﺼﺎﺋﻴﲔ ﺇﱃ ﻋﻤ ﻞ ﲢﻮﻳﻠﺔ ﺭﻳﺎﺿـﻴﺔ ‪ ، Transform‬ﳝﻜـﻦ‬
‫ﺍﺳﺘﺨﺪﺍﻡ ﺗﻮﺯﻳﻌﻬﺎ ﺍﻻﺣﺘﻤﺎﱄ ﰲ ﺣﺴﺎﺏ ﻣﺜﻞ ﻫﺬﻩ ﺍﻻﺣﺘﻤﺎﻻﺕ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﺘﺤﻮﻳﻠﺔ ﻫﻲ ‪:‬‬
‫‪ x− µ ‬‬
‫‪z=‬‬
‫‪‬‬
‫‪ σ ‬‬
‫ﻭﻳﻌﺮﻑ ﺍﳌﺘﻐﲑ ﺍﳉﺪﻳﺪ ‪ z‬ﺑﺎﳌﺘﻐﲑ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﻘﻴﺎﺳﻲ ‪ ، Standard Normal Variable‬ﻭﻫﺬﺍ‬
‫ﺍﳌﺘﻐﲑ ﻟﻪ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﺣ ﺘﻤﺎﻝ ﺗﺄﺧﺬ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﻭﻣﻦ ﺧﺼﺎﺋﺺ ﻫﺬﺍ ﺍﻟﺘﻮﺯﻳﻊ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫‪ -1‬ﻣﺘﻮﺳﻄﻪ ﻫﻮ ‪E ( z) = 0 :‬‬
‫‪ -2‬ﺗﺒﺎﻳﻨﻪ ﻫﻮ ‪var( z) = 1 :‬‬
‫‪127‬‬
‫ﻭﻣﻦ ﰒ ﻳﻌﱪ ﻋﻦ ﺗﻮﺯﻳﻊ ﺍﳌﺘﻐﲑ ‪ z‬ﺑﺎﻟﺮﻣﻮﺯ ‪ z ~ N (0,1) :‬ﻭﻳﻌﲏ ﺫﻟ ﻚ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﻟﻌﺸﻮﺍﺋﻲ ‪ x‬ﻳﺘﺒﻊ‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﻘﻴﺎﺳﻲ ﲟﺘﻮﺳﻂ ) ‪ ، ( 0‬ﻭﺗﺒﺎﻳﻦ ) ‪. ( 1‬‬
‫‪ -3‬ﻳﺄﺧﺬ ﺍﳌﻨﺤﲎ ﺍﻟﺸﻜﻞ ﺍﻟﻨﺎﻗﻮﺱ ﺍﳌﺘﻤﺎﺛﻞ ﻋﻠﻰ ﺟﺎﻧﱯ ﺍﻟﺼﻔﺮ ‪:‬‬
‫ﻭﺻﻤﻢ ﺍﻹﺣﺼﺎﺋﻴﻴﻮﻥ ﺟﺪﺍﻭﻝ ﺇﺣﺼﺎﺋﻴﺔ ﳊﺴﺎﺏ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍ ﻟﺘﺠﻤﻴﻌﻲ ‪ ، F ( z) = P ( Z < z) :‬ﻛﻤﺎ ﻫﻮ‬
‫ﻣﺒﲔ ﺑﺎﻟﺮﺳﻢ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﻭﻧﻌﻮﺩ ﺍﻵﻥ ﺇﱃ ﺧﻄﻮﺍﺕ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ ) ‪ p( x1 < x < x2‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺘﺤﻮﻳﻠﺔ ‪: z = ( x − µ) σ‬‬
‫‪ -1‬ﻳﺘﻢ ﲢﻮﻳﻞ ﺍﻟﻘﻴﻢ ﺍﻟﻄﺒﻴﻌﻴﺔ ) ‪ ( x1, x2‬ﺇﱃ ﻗﻴﻢ ﻃﺒﻴﻌﻴﺔ ﻗﻴﺎﺳﻴﺔ ‪:‬‬
‫‪. z1 = ( x1 − µ ) σ , z2 = ( x2 − µ ) σ‬‬
‫‪ -2‬ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ ‪: p( x1 < x < x2 ) = p( z1 < z < z2 ) :‬‬
‫‪ -3‬ﺗﺴﺘﺨﺪ ﻡ ﺟﺪﺍﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﻘﻴﺎﺳﻲ ‪ ،‬ﻭﺍﻟـﺬﻱ ﻳﻌﻄـﻲ ﺍﳌـﺴﺎﺣﺔ ﺍﳋﺎﺻـﺔ ﺑﺎﻻﺣﺘﻤـﺎﻝ‬
‫)‪F ( z) = P ( Z < z‬‬
‫‪ -4‬ﻃﺮﻳﻘﺔ ﺍﺳﺘﺨﺪﺍﻡ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﻘﻴﺎﺳﻲ ﰲ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻻﺕ‬
‫ﺃﻭﺟﺪ ﺍﻻﺣﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺃ‪P ( z < 1.57) -‬‬
‫ﺏ‪P ( z < −2.33) -‬‬
‫ﺝ‪P ( z > 1.96) -‬‬
‫ﺩ‪-‬‬
‫‪128‬‬
‫)‪P (−2.01 < z < 1.28‬‬
‫ﺍﳊﻞ‬
‫ﺃ‪ -‬ﲢﺪﺩ ﺍﳌﺴﺎﺣﺔ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻻﺣﺘﻤﺎﻝ )‪ P ( z < 1.57) = F (1.57‬ﺃﺳﻔﻞ ﺍﳌﻨﺤﲎ ﻛﻤﺎ ﻳﻠﻲ‬
‫ﻭﻳﺘﻢ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳉﺪﻭﻝ ﻛﻤﺎ ﻫﻮ ﻣﺒﲔ ‪:‬‬
‫ﻭﻳﻜﻮﻥ ﺍﻻﺣﺘﻤﺎﻝ ﺍﳌﻄﻠﻮ ﺏ ﻫﻮ ‪P ( z < 1.57) = F (1.57) = 0.9418 :‬‬
‫ﺏ‪ -‬ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﻨﺤﲎ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻻﺣﺘﻤـﺎﻝ )‪ P ( z < −2.33) = F (−2.33‬ﻣﻮﺿـﺤﺔ‬
‫ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫)‪P(z<-2.33‬‬
‫‪.08 .09‬‬
‫‪.07‬‬
‫‪.06‬‬
‫‪.05‬‬
‫‪.04‬‬
‫‪.03‬‬
‫‪.02‬‬
‫‪.01‬‬
‫‪.00‬‬
‫‪z‬‬
‫‪.‬‬
‫‪.‬‬
‫‪.‬‬
‫‪.‬‬
‫‬‫‪2.70‬‬
‫‬‫‪2.60‬‬
‫‪129‬‬
‫‬‫‪2.50‬‬
‫‬‫‪2.40‬‬
‫‪0.0099‬‬
‫‬‫‪2.30‬‬
‫‪.‬‬
‫‪.‬‬
‫‪.‬‬
‫ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ‪P ( z < −2.33) = 0.0099 :‬‬
‫ﺝ‪ -‬ﲢﺪﺩ ﺍﳌﺴﺎﺣﺔ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻻﺣﺘﻤﺎﻝ )‪ P ( z > 1.96‬ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻭﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ﳛﺴﺐ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺧﺼﺎﺋﺺ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ ‪ ،‬ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫)‪P ( z > 1.96) = 1 − p( z < 1.96) = 1 − F (1.96‬‬
‫ﻭﺑﺎﻟﻜــﺸﻒ ﰲ ﺍﳉــﺪﻭﻝ ﺑــﻨﻔﺲ ﺍﻟﻄﺮﻳﻘــﺔ ﺍﻟــﺴﺎﺑﻘﺔ ﻋﻠــﻰ ﺍﻟﻘﻴﻤــﺔ ‪ 1.96‬ﳒــﺪ ﺃﻥ ‪:‬‬
‫‪ ، p( z < 1.96) = 0.9750‬ﻭﻣـــﻦ ﰒ ﻳﻜـــﻮﻥ ﺍﻻﺣﺘﻤـــﺎﻝ ﺍﳌﻄﻠـــﻮﺏ ﻫـــﻮ ‪:‬‬
‫‪P ( z > 1.96) = 1 − 0.9750 = 0.0250‬‬
‫ﺩ‪ -‬ﺍﳌﺴﺎﺣﺔ ﺃﺳﻔﻞ ﺍﳌﻨﺤﲎ ﺍﳌﻌﱪﺓ ﻋﻦ ﺍﻻﺣﺘﻤﺎﻝ )‪ P (−2.01 < z < 1.28‬ﻫﻲ ‪:‬‬
‫ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﻳﻀﺎ ﺧﺼﺎﺋﺺ ﺩﺍﻟﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﺠﻤﻴﻌﻲ ﳝﻜﻦ ﺣﺴﺎﺏ ﻫﺬﺍ ﺍﻻﺣﺘﻤﺎﻝ ‪ ،‬ﺣﻴﺚ ﺃﻥ ‪:‬‬
‫)‪P (−2.01 < z < 1.28) = F (1.28) − F (−2.01‬‬
‫ﻭﺑﺎﻟﻜﺸﻒ ﰲ ﺍﳉﺪﻭﻝ ﻋﻦ ﻫﺎﺗﲔ ﺍﻟﻘﻴﻤﺘﲔ ‪ ،‬ﳒﺪ ﺃﻥ ‪:‬‬
‫‪P (−2.01 < z < 1.28) = 0.8997 − 0.0222 = 0.8775‬‬
‫ﻣﺜـــﺎﻝ ) ‪( 8 -8‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻞ ﺍﻟﺴﻨﻮﻱ ﻟﻸﺳﺮﺓ ﰲ ﺃﺣﺪ ﻣﻨﺎﻃﻖ ﺍﳌﻤﻠﻜﺔ ﻳﺘﺒﻊ ﺗﻮﺯﻳﻊ ﻃﺒﻴﻌﻲ ﻣﺘﻮﺳﻄﻪ ‪ 80‬ﺃﻟـﻒ‬
‫ﺭﻳﺎﻝ‪ ،‬ﻭﺗﺒﺎﻳﻨﻪ ‪ . 900‬ﻭﺍﳌﻄﻠﻮﺏ ‪:‬‬
‫‪ -1‬ﻛﺘﺎﺑﺔ ﻗﻴﻤﺔ ﻣﻌﺎﱂ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﺪﺧﻞ ﺍﻟﺴﻨﻮﻱ ‪.‬‬
‫‪130‬‬
‫‪ -2‬ﻛﺘﺎﺑﺔ ﺷﻜﻞ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ ‪.‬‬
‫‪ -3‬ﻣﺎ ﻫﻲ ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﺍﻟﱵ ﻳﻘﻞ ﺩﺧﻠﻬﺎ ﻋﻦ ‪ 60‬ﺃﻟﻒ ﺭﻳﺎﻝ ؟‬
‫‪ -4‬ﻣ ﺎ ﻫﻮ ﺍﻟﺪﺧﻞ ﺍﻟﺬﻱ ﺃﻗﻞ ﻣﻨﻪ ‪ 0.975‬ﻣﻦ ﺍﻟﺪﺧﻮﻝ؟‬
‫ﺍﳊـــﻞ‬
‫‪ -1‬ﻛﺘﺎﺑﺔ ﻗﻴﻤﺔ ﻣﻌﺎﱂ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻻﺣﺘﻤﺎﱄ ﻟﻠﺪﺧﻞ ﺍﻟﺴﻨﻮﻱ ‪.‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ‪ x‬ﻣﺘﻐﲑ ﻋﺸﻮﺍﺋﻲ ﻳﻌﱪ ﻋﻦ ﺍﻟﺪﺧﻞ ﺍﻟﺴﻨﻮﻱ ﺑﺎﻷﻟﻒ ﺭﻳﺎﻝ‪ ،‬ﻭﻫﻮ ﻳﺘﺒﻊ ﺍﻟﺘﻮﺯﻳـﻊ ﺍﻟﻄﺒﻴﻌـﻲ‪،‬‬
‫ﻭﻣﻌﺎﳌﻪ ﻫﻲ ‪:‬‬
‫ﺃ‪ -‬ﺍﳌﺘﻮﺳﻂ‬
‫ﺃﻱ ﺃﻥ ‪:‬‬
‫‪E ( x) = µ = 80‬‬
‫ﺏ‪ -‬ﺍﻟﺘﺒﺎﻳﻦ ﻫﻮ ‪Var ( x) = σ 2 = 900 :‬‬
‫)‪x ~ N (80,900‬‬
‫‪ -2‬ﺷﻜﻞ ﺩﺍﻟﺔ ﻛﺜﺎﻓﺔ ﺍﻻﺣﺘﻤﺎﻝ‬
‫) (‬
‫‪2‬‬
‫‪− 1 x−80‬‬
‫‪2‬‬
‫‪30‬‬
‫‪e‬‬
‫‪, −∞ < x < ∞ , π = 22 / 7‬‬
‫‪1‬‬
‫= )‪f ( x‬‬
‫‪30 2π‬‬
‫‪ -3‬ﻧﺴﺒﺔ ﺍﻷﺳﺮ ﺍﻟﱵ ﻳﻘﻞ ﺩﺧﻠﻬﺎ ﻋﻦ ‪ 60‬ﺃﻟﻒ ﺭﻳﺎﻝ ﻫﻲ ‪P ( x π 60) :‬‬
‫ﻭﻳﺘﺒﻊ ﺍﳋﻄﻮﺍﺕ ﺍﳌ ﺬﻛﻮﺭﺓ ﺳﺎﺑﻘﺎ ﰲ ﺣﺴﺎﺏ ﺍﻻﺣﺘﻤﺎﻝ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪x− µ ‬‬
‫‪‬‬
‫< ‪P ( x < 60) = p z‬‬
‫‪‬‬
‫‪σ ‬‬
‫‪‬‬
‫‪60 − 80 ‬‬
‫‪‬‬
‫< ‪= P z‬‬
‫)‪ = P ( z < −0.67 ) = F (−0.67‬‬
‫‪30 ‬‬
‫‪‬‬
‫ﻭﺑﺎﻟﻜﺸﻒ ﻣﺒﺎﺷﺮﺓ ﻋﻦ ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﰲ ﺟﺪﻭﻝ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﻘﻴﺎﺳﻲ ‪ ،‬ﳒﺪ ﺃﻥ‬
‫‪P ( x < 60) = P ( z < −0.67 ) = 0.2514‬‬
‫‪ -4‬ﺍﻟﺪﺧﻞ ﺍﻟﺬﻱ ﺃﻗﻞ ﻣﻨﻪ ‪ 0.975‬ﻣﻦ ﺍﻟﺪﺧﻮﻝ ‪ :‬ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻳﺒﺤﺚ ﻋﻦ ﻗﻴﻤﺔ ﺍﳌﺘﻐﲑ )‪ (x‬ﺍﻟﺬﻱ ﺃﻗﻞ ﻣﻨﻪ‬
‫‪ ، 0.975‬ﺑﻔﺮﺽ ﺃﻥ ﻫﺬﺍ ﺍﳌﺘﻐﲑ ﻫﻮ ) ‪ ، ( x1‬ﻓﺈﻥ ‪:‬‬
‫‪131‬‬
‫‪x − 80 ‬‬
‫‪‬‬
‫‪P ( x < x1 ) = p z < 1‬‬
‫‪ = 0.975‬‬
‫‪30 ‬‬
‫‪‬‬
‫ﺑﺎﻟﻜﺸﻒ ﺑﻄﺮﻳﻘﺔ ﻋﻜﺴﻴﺔ ‪ ،‬ﺣﻴﺚ ﻧﺒﺤﺚ ﻋﻦ ﺍﳌﺴﺎﺣﺔ ‪ 0.9750‬ﳒﺪﻫﺎ ﺗﻘﻊ ﻋﻨﺪ ﺗﻘﺎﻃﻊ ﺍﻟـﺼﻒ ‪، 1.9‬‬
‫ﻭﺍﻟﻌﻤﻮﺩ ‪ .06‬ﺃﻱ ﺃﻥ ﻗ ﻴﻤﺔ ‪ ، z = 1.96‬ﻭﻳﻜﻮﻥ ‪:‬‬
‫‪x1 − 80‬‬
‫‪, Then x1 = 30(1.96) + 80 = 138.8‬‬
‫‪30‬‬
‫ﺇﺫﺍ ﺍﻟﺪﺧﻞ ﻫﻮ ‪ 138.8‬ﺃﻟﻒ ﺭﻳﺎﻝ ﰲ ﺍﻟﺴﻨﺔ ‪.‬‬
‫= ‪1.96‬‬
‫‪132‬‬
‫ﳌﺰﻳﺪ ﻣﻦ ﺍﻟﻜﺘﺐ ﺯﻭﺭﻭﺍ‬
‫ﻣﻮﻗﻌﻨﺎ ﻋﻠﻰ ﺷﺒﻜﺔ‬
‫ﺍﻻﻧﺘﺮﻧﻴﺖ‬
‫‪WWW.RR4EE.NET‬‬