( )C ( ) ( ) ( )C ( ) ( ) ( ) ( ) ( ) ( ) ( )C ( ) ( ) ( ) ( ) ( ) ( ) () () ( ) - laadj-lyes

‫ﺍﻟــﺴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺛﺎﻧﻮﻱ‬
‫ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜـــﺎﻟﺜﺔ ‪ :‬ﺍﻟﻈـــﻮﺍﻫﺮ ﺍﻟﻜـــﻬﺮﺑﺎﺋﻴﺔ‬
‫ﺷــﻌﺒﺔ‬
‫ﲤﺎﺭﻳﻦ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻟﺜﺔ ﻣﻦ ﻣﻮﺍﺿﻴﻊ ﺷﻬﺎﺩﺓ ﺍﻟﺘﻌﻠﻴﻢ ﺍﻟﺜﺎﻧﻮﻱ‬
‫ﺍﻟﻌﻠﻮﻡ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ – ﺭﻳﺎﺿﻴﺎﺕ – ﺗﻘﲏ ﺭﻳﺎﺿﻲ‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻷﻭﻝ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2008‬‬
‫ﻗﺼﺪ ﺷﺤﻦ ﻣﻜﺜﻔﺔ ﻣﻔﺮﻏﺔ ‪ ،‬ﺳﻌﺘﻬﺎ ) ‪ ، ( C‬ﻧﺮﺑﻄﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﻣﻊ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ ﻣﻮﻟﺪ ﻛﻬﺮﺑﺎﺋﻲ ﺫﻭ ﺗﻮﺗﺮ ﺛﺎﺑﺖ ‪ E = 3V‬ﻣﻘﺎﻭﻣﺘﻪ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻣﻬﻤﻠﺔ ‪.‬‬‫ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 104 W‬‬
‫ﻗﺎﻃﻌﺔ ‪. K‬‬
‫ﻹﻇﻬﺎﺭ ﺍﻟﺘﻄﻮﺭ ﺍﻟﺰﻣﲏ ﻟﻠﺘﻮﺗﺮ ) ‪ uC ( t‬ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ‪ ،‬ﻧﺼﻠﻬﺎ ﺑﺮﺍﺳﻢ ﺍﻫﺘﺰﺍﺯ ﻣﻬﺒﻄﻲ ﺫﻱ ﺫﺍﻛﺮﺓ ‪ .‬ﺍﻟﺸﻜﻞ‪-4-‬‬
‫ﺍﻟﺸــﻜﻞ‪-4-‬‬
‫ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪ K‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﻓﻨﺸﺎﻫﺪ ﻋﻠﻰ ﺷﺎﺷﺔ ﺭﺍﺳﻢ ﺍﻻﻫﺘﺰﺍﺯ ﺍﳌﻬﺒﻄﻲ ﺍﳌﻨﺤﲎ ) ‪ uC ( t‬ﺍﳌﻤﺜﻞ ﰲ ﺍﻟﺸﻜﻞ‪-5-‬‬
‫) ‪uC (V‬‬
‫‪ .1‬ﻣﺎ ﻫﻲ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﺑﻌﺪ ﻣﺪﺓ ‪ Dt = 15 s‬ﻣﻦ ﻏﻠﻘﻬﺎ ؟‬
‫‪ .2‬ﺃﻋﻂ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﺜﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ ، t‬ﻭﺑﲔ ﺃﻥ ﻟﻪ ﻧﻔﺲ ﻭﺣﺪﺓ ﻗﻴﺎﺱ ﺍﻟﺰﻣﻦ ‪.‬‬
‫‪ .3‬ﻋﲔ ﺑﻴﺎﻧﻴﺎ ﻗﻴﻤﺔ ‪ t‬ﻭﺍﺳﺘﻨﺘﺞ ﺍﻟﺴﻌﺔ ) ‪ ( C‬ﻟﻠﻤﻜﺜﻔﺔ ‪.‬‬
‫‪ .4‬ﺑﻌﺪ ﻏﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ) ﰲ ﺍﻟﻠﺤﻈﺔ ‪uC (V ) : ( t = 0‬‬
‫ﺃ‪ -‬ﺃﻛﺘﺐ ﻋﺒﺎﺭﺓ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ i ( t‬ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﺑﺪﻻﻟﺔ ) ‪ q ( t‬ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫ﺏ‪-‬ﺍﻛﺘﺐ ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ uC ( t‬ﺑﲔ ﻟﺒﻮﺳﻲ ﺍﳌﻜﺜﻔﺔ ﺑﺪﻻﻟﺔ ﺍﻟﺸﺤﻨﺔ ) ‪. q ( t‬‬
‫‪duC‬‬
‫ﺟ‪ -‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﺗﻌﱪ ﻋﻦ ) ‪ uC ( t‬ﺗﻌﻄﻰ ﺑﺎﻟﻌﺒﺎﺭﺓ ‪= E :‬‬
‫‪dt‬‬
‫‪0,5‬‬
‫) ‪t ( ms‬‬
‫‪. uC + RC‬‬
‫ﺍﻟﺸــﻜﻞ‪-5-‬‬
‫‪2‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪A‬‬
‫‪ .5‬ﻳﻌﻄﻰ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺑﺎﻟﻌﺒﺎﺭﺓ ‪ . uC ( t ) = E ç 1 - e ÷ :‬ﺍﺳﺘﻨﺘﺞ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻠﺜﺎﺑﺖ ‪ . A‬ﻭﻣﺎ ﻫﻮ ﻣﺪﻟﻮﻟﻪ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ؟‬
‫‪è‬‬
‫‪ø‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﲢﺪﻳﺪ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﺑﻌﺪ ﻣﺪﺓ ‪ Dt = 15 s‬ﻣﻦ ﻏﻠﻘﻬﺎ ‪.‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﺎ ‪ Dt = 15 s‬ﳒﺪ ‪ uC = 3V :‬ﻭﺑﺎﻟﺘﺎﱄ ‪ u R = E - uC = 0 :‬؛ ﻟﻜﻦ ‪ u R = Ri :‬ﻭﻣﻨﻪ ‪. i = 0‬‬
‫‪ .2‬ﻛﺘﺎﺑﺔ ﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﺜﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ ، t‬ﻭﺗﺒﲔ ﺃﻥ ﻟﻪ ﻧﻔﺲ ﻭﺣﺪﺓ ﻗﻴﺎﺱ ﺍﻟﺰﻣﻦ ‪.‬‬
‫ﻋﺒﺎﺭﺓ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﻫﻲ ‪. t = RC :‬‬
‫‪[U ] . [Q ] = [Q ] = [ I ][T ] = T‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪[ ] :‬‬
‫] ‪[ I ] [U ] [ I‬‬
‫] ‪[I‬‬
‫‪ .3‬ﺗﻌﲔ ﺑﻴﺎﻧﻴﺎ ﻗﻴﻤﺔ ‪ t‬ﻭﺍﺳﺘﻨﺘﺎﺝ ﺍﻟﺴﻌﺔ ) ‪ ( C‬ﻟﻠﻤﻜﺜﻔﺔ ‪.‬‬
‫= ] ‪ ، [t ] = [ R ][ C‬ﻭﻣﻨﻪ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﻣﺘﺠﺎﻧﺲ ﻣﻊ ﻭﺣﺪﺓ ﺍﻟﺰﻣﻦ ‪.‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﱠﺎ ‪ uC = 0, 63 ´ E = 0, 63 ´ 3 = 1,89V :‬ﳒﺪ ‪. t = 1, 25 ´ 2 = 2,5s :‬‬
‫‪2, 5‬‬
‫‪t‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪ t = RC :‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫= ‪ C‬ﺇﺫﻥ ‪= 2, 5 ´ 10 - 4 F = 250 m F :‬‬
‫‪4‬‬
‫‪10‬‬
‫‪R‬‬
‫=‪.C‬‬
‫) ‪dq ( t‬‬
‫‪ .4‬ﺃ‪ -‬ﻋﺒﺎﺭﺓ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ i ( t‬ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﺑﺪﻻﻟﺔ ) ‪ q ( t‬ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ‪:‬‬
‫‪dt‬‬
‫= ) ‪i (t‬‬
‫‪1‬‬
‫ﺏ‪ -‬ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ uC ( t‬ﺑﲔ ﻟﺒﻮﺳﻲ ﺍﳌﻜﺜﻔﺔ ﺑﺪﻻﻟﺔ ) ‪ q ( t‬ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ‪.q ( t ) :‬‬
‫‪C‬‬
‫ﺟ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﺗﻌﱪ ﻋﻦ ) ‪. uC ( t‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. uC + u R = E :‬‬
‫ﺻﻔﺤﺔ ‪1‬‬
‫= ) ‪uC ( t‬‬
‫) ‪dq ( t‬‬
‫) ‪du ( t‬‬
‫‪duC‬‬
‫‪ ، u R ( t ) = R.i ( t ) = R‬ﻭﻣﻨﻪ ‪= E :‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫‪= RC C‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪.5‬‬
‫‪uC + RC‬‬
‫ﺍﺳﺘﻨﺘﺎﺝ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻠﺜﺎﺑﺖ ‪ . A‬ﻭﲢﺪﻳﺪ ﻣﺪﻟﻮﻟﻪ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ؟‬
‫‪t‬‬
‫‪- ö‬‬
‫‪duC ( t ) E - At‬‬
‫‪æ‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، uC ( t ) = E ç 1 - e A ÷ :‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪= e‬‬
‫‪dt‬‬
‫‪A‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪.‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪RC - At‬‬
‫‪du‬‬
‫‪E -t‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪ ، uC + RC C = E :‬ﺇﺫﻥ ‪ ، E ç 1 - e A ÷ + RC e A = E :‬ﺃﻱ ‪e = 1 :‬‬
‫‪A‬‬
‫‪dt‬‬
‫‪A‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪t‬‬
‫‪RC‬‬
‫‪æ RC‬‬
‫‪ö -A‬‬
‫ﻭﻣﻨﻪ‪ A = RC :‬ﻭﻫﻮ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ‬
‫‪ ç‬ﻭﺑﺎﻟﺘﺎﱄ ‪- 1 = 0 :‬‬
‫ﺇﺫﻥ ‪- 1 ÷ e = 0 :‬‬
‫‪A‬‬
‫‪è A‬‬
‫‪ø‬‬
‫ﻣﺪﻟﻮﻟﻪ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ‪ :‬ﻫﻮ ﺍﳌﺪﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﺒﻠﻮﻍ ﺷﺤﻨﺔ ‪-‬ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ﺑﲔ ﻃﺮﰲ‪ -‬ﺍﳌﻜﺜﻔﺔ ‪ 63%‬ﻣﻦ ﻗﻴﻤﺘﻬﺎ ﺍﻷﻋﻈﻤﻴﺔ ‪ ،‬ﻭﻫﻮ ﻣﺆﺷﺮ ﳌﺪﺓ ﺷﺤﻦ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫‪+‬‬
‫‪t‬‬
‫‪A‬‬
‫‪-‬‬
‫‪. 1- e‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺜﺎﱐ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2008‬‬
‫ﲢﺘﻮﻱ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺒﻴﻨﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ -2-‬ﻋﻠﻰ ‪:‬‬
‫· ﻣﻮﻟﺪ ﺗﻮﺗﺮﻩ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪. E = 12V‬‬
‫· ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 10W‬‬
‫· ﻭﺷﻴﻌﺔ ﺫﺍﺗﻴﺘﻬﺎ ‪ L‬ﻭﻣﻘﺎﻭﻣﺘﻬﺎ ‪. r‬‬
‫· ﻗﺎﻃﻌﺔ ‪. K‬‬
‫‪ .1‬ﻧﺴﺘﻌﻤﻞ ﺭﺍﺳﻢ ﺍﻫﺘﺰﺍﺯ ﻣﻬﺒﻄﻲ ﺫﻱ ﺫﺍﻛﺮﺓ ‪ ،‬ﻹﻇﻬﺎﺭ ﺍﻟﺘﻮﺗﺮﻳﻦ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﲔ ) ‪ ( u BA‬ﻭ ) ‪. ( uCB‬‬
‫ﺑﲔ ﻋﻠﻰ ﳐﻄﻂ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪ ،‬ﻛﻴﻒ ﻳﺘﻢ ﺭﺑﻂ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﲟﺪﺧﻠﻲ ﻫﺬﺍ ﺍﳉﻬﺎﺯ ؟‬
‫ﺍﻟﺸﻜــﻞ ‪-2-‬‬
‫‪ .2‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪ K‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ . t = 0‬ﳝﺜﻞ ﺍﻟﺸﻜﻞ ‪ -3-‬ﺍﳌﻨﺤﲎ ) ‪u BA = f ( t‬‬
‫ﺍﳌﺸﺎﻫﺪ ﻋﻠﻰ ﺷﺎﺷﺔ ﺭﺍﺳﻢ ﺍﻻﻫﺘﺰﺍﺯ ﺍﳌﻬﺒﻄﻰ ‪.‬‬
‫) ‪u BA (V‬‬
‫ﻋﻨﺪﻣﺎ ﺗﺼﺒﺢ ﺍﻟﺪﺍﺭﺓ ﰲ ﺣﺎﻟﺔ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪ ،‬ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪:‬‬
‫ﺃ‪ -‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. ( u BA‬‬
‫ﺏ‪-‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. ( uCB‬‬
‫ﺟ‪ -‬ﺍﻟﺸﺪﺓ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺘﻴﺎﺭ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬
‫‪ .3‬ﺑﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ )ﺍﻟﺸـﻜﻞ ‪ (-3-‬ﺍﺳﺘﻨﺘﺞ ‪:‬‬
‫‪2‬‬
‫ﺃ‪ -‬ﻗﻴﻤﺔ ) ‪ (t‬ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﺍﳌﻤﻴﺰ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺏ‪-‬ﻣﻘﺎﻭﻣﺔ ﻭﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫) ‪t ( ms‬‬
‫‪ .4‬ﺍﺣﺴﺐ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺍﻟﺸــﻜﻞ ‪-3-‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺗﻮﺿﻴﺢ ﻛﻴﻔﻴﺔ ﺭﺑﻂ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﲟﺪﺧﻠﻲ ﻫﺬﺍ ﺟﻬﺎﺯ ﺭﺍﺳﻢ ﺍﻹﻫﺘﺰﺍﺯ ﺍﳌﻬﺒﻄﻲ ‪.‬‬
‫ﺃﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .2‬ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﳒﺪ ‪:‬‬
‫ﺃ‪ -‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. u BA = u R = 10V : ( u BA‬‬
‫ﺏ‪ -‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. uCB = ub = E - u R = 12 - 10 = 2V : ( uCB‬‬
‫‪u R 10‬‬
‫=‬
‫ﺟ‪ -‬ﺍﻟﺸﺪﺓ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺘﻴﺎﺭ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪= 1 A :‬‬
‫‪R 10‬‬
‫‪2‬‬
‫‪0‬‬
‫=‪I‬‬
‫‪ .3‬ﺃ‪ -‬ﲢﺪﻳﺪ ﻗﻴﻤﺔ ) ‪ (t‬ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﺍﳌﻤﻴﺰ ‪ :‬ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﺎ ‪ u R = 0, 63 ´ 10 = 6, 3V‬ﳒﺪ ‪. t = 0,8 ´ 2 = 1, 6s :‬‬
‫ﺏ‪ -‬ﻣﻘﺎﻭﻣﺔ ﻭﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺻﻔﺤﺔ ‪2‬‬
‫‪ub 2‬‬
‫ﻟﺪﻳﻨﺎ ‪ :‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪ ub = r.I‬ﻭﺑﺎﻟﺘﺎﱄ ‪= = 2W :‬‬
‫‪I 1‬‬
‫‪L‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫= ‪L = t ( R + r ) = 1, 6 ´ 10 -3 ´ 12 = 1,92 ´ 10 -3 H ، t‬‬
‫‪R+r‬‬
‫=‪. r‬‬
‫‪ .4‬ﺣﺴﺎﺏ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫‪1‬‬
‫‪2‬‬
‫‪1‬‬
‫‪2‬‬
‫ﻟﺪﻳﻨﺎ ‪ E ( L ) = L.I 2 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. E ( L ) = ´ 1,92 ´ 10-3. (1) = 9, 6 ´ 10-4 J :‬‬
‫‪2‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺜﺎﻟﺚ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭ ﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2008‬‬
‫ﺑﻐﺮﺽ ﻣﻌﺮﻓﺔ ﺳﻠﻮﻙ ﻭﳑﻴﺰﺍﺕ ﻭﺷﻴﻌﺔ ﻣﻘﺎﻭﻣﺘﻬﺎ ) ‪ ( r‬ﻭﺫﺍﺗﻴﺘﻬﺎ ) ‪ ، ( L‬ﻧﺮﺑﻄﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﲟﻮﻟﺪ ﺫﻱ‬
‫ﺗﻮﺗﺮ ﻛﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪ E = 4,5V‬ﻭ ﻗﺎﻃﻌﺔ ‪ . K‬ﺍﻟﺸﻜﻞ ‪-1-‬‬
‫‪ .1‬ﺃﻧﻘﻞ ﳐﻄﻂ ﺍﻟﺪﺍﺭﺓ ﻋﻠﻰ ﻭﺭﻗﺔ ﺍﻹﺟﺎﺑﺔ ﻭﺑﲔ ﻋﻠﻴﻪ ﺟﻬﺔ ﻣﺮﻭﺭ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺟﻬﱵ ﺍﻟﺴﻬﻤﲔ ﺍﻟﺬﻳﻦ‬
‫ﳝﺜﻼﻥ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ﻭﺑﲔ ﻃﺮﰲ ﺍﳌﻮﻟﺪ ‪.‬‬
‫‪ .2‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪: K‬‬
‫ﺃ‪ -‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﺗﻌﻄﻲ ﺍﻟﺸﺪﺓ ﺍﻟﻠﺤﻈﻴﺔ ) ‪ i ( t‬ﻟﻠﺘﻴﺎﺭ‬
‫ﺍﻟﺸـــﻜﻞ ‪-1-‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬
‫‪r‬‬
‫‪- t ö‬‬
‫‪æ‬‬
‫ﺏ‪-‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺗﻘﺒﻞ ﺣﻼ ﻣﻦ ﺍﻟﺸﻜﻞ ÷ ‪ i ( t ) = I 0 ç 1 - e L‬ﺣﻴﺚ ‪ I 0‬ﻫﻲ ﺍﻟﺸﺪﺓ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﺗﻌﻄﻰ ﺍﻟﺸﺪﺓ ﺍﻟﻠﺤﻈﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﺎﻟﻌﺒﺎﺭﺓ ‪ i ( t ) = 0, 45 (1 - e -10 t ) :‬ﺣﻴﺚ ) ‪ ( t‬ﺑﺎﻟﺜﺎﻧﻴﺔ ﻭ ) ‪ ( i‬ﺑﺎﻵﻣﺒﲑ ‪.‬‬
‫ ﺃﺣﺴﺐ ﻗﻴﻢ ﺍﳌﻘﺎﺩﻳﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬‫ﺃ‪ -‬ﺍﻟﺸﺪﺓ ﺍﻟﻌﻈﻤﻰ ) ‪ ( I 0‬ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬
‫ﺏ‪-‬ﺍﳌﻘﺎﻭﻣﺔ ) ‪ ( r‬ﻟﻠﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺟ‪ -‬ﺍﻟﺬﺍﺗﻴﺔ ) ‪ ( L‬ﻟﻠﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺩ‪ -‬ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ) ‪ (t‬ﺍﳌﻤﻴﺰ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫‪ .4‬ﺃ‪ -‬ﻣﺎ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻴﻌﺔ ﰲ ﺣﺎﻟﺔ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ؟‬
‫ﺏ‪ -‬ﺃﻛﺘﺐ ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻠﺤﻈﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺟ‪ -‬ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ﰲ ﺍﻟﻠﺤﻈﺔ ) ‪. ( t = 0,3s‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺭﺳﻢ ﳐﻄﻂ ﺍﻟﺪﺍﺭﺓ ‪ .‬ﺍﻟﺮﺳﻢ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .2‬ﺃ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ ub ( t ) = E :‬ﺇﺫﻥ‪= E :‬‬
‫) ‪di ( t‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪. ri ( t ) + L‬‬
‫‪r‬‬
‫‪E‬‬
‫ﻭﻣﻨﻪ ‪+ i ( t ) = :‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫ﺏ‪ -‬ﺍﻟﺘﺄﻛﺪ ﻣﻦ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺻﻠﻴﺔ ‪.‬‬
‫‪.‬‬
‫‪r‬‬
‫‪- t ö‬‬
‫‪æ‬‬
‫‪di‬‬
‫‪r -rt‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، i ( t ) = I 0 ç 1 - e L ÷ :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= I 0 . .e L :‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪.‬‬
‫‪r‬‬
‫‪- tö‬‬
‫‪di ( t ) R‬‬
‫‪E‬‬
‫‪r -rt r æ‬‬
‫‪r‬‬
‫ﺇﺫﻥ ‪+ i ( t ) = I 0 . .e L + I 0 ç1 - e L ÷ = I 0 :‬‬
‫؛ ﻟﻜﻦ ‪:‬‬
‫‪r‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪L è‬‬
‫‪ø L‬‬
‫ﺻﻔﺤﺔ ‪3‬‬
‫= ‪. I0‬‬
‫‪r‬‬
‫‪- t ö‬‬
‫‪di ( t ) R‬‬
‫‪æ‬‬
‫‪r E E‬‬
‫= ) ‪+ i (t‬‬
‫=‬
‫‪ .‬ﻭﻣﻨﻪ ﺍﻟﻌﺒﺎﺭﺓ ‪ i ( t ) = I 0 ç 1 - e L ÷ :‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪Lr L‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﺗﻌﲔ ﻗﻴﻢ ﺍﳌﻘﺎﺩﻳﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺃ‪ -‬ﺍﻟﺸﺪﺓ ﺍﻷﻋﻈﻤﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ‪ :‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ) ‪ ( t > 5t‬ﻟﺪﻳﻨﺎ ‪. I 0 = 0, 45 A :‬‬
‫‪E 4, 5‬‬
‫‪E‬‬
‫=‬
‫= ‪ ، I 0‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 10W‬‬
‫ﺏ‪ -‬ﻣﻘﺎﻭﻣﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪ :‬ﻟﺪﻳﻨﺎ‬
‫‪I 0 0, 45‬‬
‫‪r‬‬
‫‪r 10‬‬
‫‪r‬‬
‫ﺟ‪ -‬ﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪ :‬ﻟﺪﻳﻨﺎ ‪ ، = 10‬ﻭﺑﺎﻟﺘﺎﱄ ‪= = 1H‬‬
‫‪10 10‬‬
‫‪L‬‬
‫‪1‬‬
‫‪L‬‬
‫ﺩ‪ -‬ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ :‬ﻟﺪﻳﻨﺎ = ‪ ، t‬ﻭﺑﺎﻟﺘﺎﱄ ‪t = = 0,1s‬‬
‫‪10‬‬
‫‪r‬‬
‫‪ .4‬ﺃ‪ -‬ﺍﻟﻄﺎﻗﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻴﻌﺔ ﰲ ﺣﺎﻟﺔ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫=‪. r‬‬
‫=‪. L‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، E ( L ) = L.I 02 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. E ( L ) = ´1´ ( 0, 45) = 0,101J‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺏ‪ -‬ﻛﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻠﺤﻈﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﻟﺪﻳﻨﺎ ‪. ub = E = 4,5V :‬‬
‫‪r‬‬
‫‪- t‬‬
‫‪di‬‬
‫‪r - Lr t‬‬
‫‪L‬‬
‫‪ ، uL ( t ) = L = L.I 0 . .e = E.e‬ﻭﻣﻨﻪ ‪:‬‬
‫ﻋﺒﺎﺭﺓ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ﺍﻟﺬﺍﰐ ‪:‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪-10 t‬‬
‫‪. uL ( t ) = 4, 5.e‬‬
‫ﺟ‪ -‬ﺣﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﺬﺍﰐ ﰲ ﺍﻟﻠﺤﻈﺔ ) ‪. ( t = 0,3s‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، uL ( t ) = 4, 5.e-10t :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. uL ( 0,3) = 4,5.e -10´0,3 = 4,5.e -3 = 0, 224V :‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺮﺍﺑﻊ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭ ﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2008‬‬
‫ﰲ ﺣﺼﺔ ﻟﻸﻋﻤﺎﻝ ﺍﳌﺨﱪﻳﺔ ﺍﻗﺘﺮﺡ ﺍﻷﺳﺘﺎﺫ ﻋﻠﻰ ﺗﻼﻣﻴﺬﻩ ﳐﻄﻂ ﺍﻟﺪﺍﺭﺓ ﺍﳌﻤﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ -2-‬ﻟﺪﺭﺍﺳﺔ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ‪. RC‬‬
‫ﺗﺘﻜﻮﻥ ﺍﻟﺪﺍﺭﺓ ﻣﻦ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫§ ﻣﻮﻟﺪ ﺗﻮﺗﺮﻩ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪. E = 12V :‬‬
‫§ ﻣﻜﺜﻔﺔ )ﻏﲑ ﻣﺸﺤﻮﻧﺔ( ﺳﻌﺘﻬﺎ ‪. C = 1,0m F‬‬
‫§ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 5 ´103 W‬‬
‫ﺍﻟﺸــﻜﻞ ‪-2-‬‬
‫§ ﺑـــﺎﺩﻟﺔ ‪. K‬‬
‫‪ .1‬ﳒﻌﻞ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﻋﻠﻰ ﺍﻟﻮﺿﻊ )‪. (1‬‬
‫ﺃ‪ -‬ﻣﺎﺫﺍ ﳛﺪﺙ ﻟﻠﻤﻜﺜﻔﺔ ؟‬
‫ﺏ‪-‬ﻛﻴﻒ ﳝﻜﻦ ﻋﻤﻠﻴﺎ ﻣﺸﺎﻫﺪﺓ ﺍﻟﺘﻄﻮﺭ ﺍﻟﺰﻣﲏ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ u AB‬؟‬
‫‪du AB‬‬
‫ﺟ‪ -‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﲢﻜﻢ ﺍﺷﺘﻐﺎﻝ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﻋﺒﺎﺭ‪‬ﺎ ‪+ u AB = E :‬‬
‫‪dt‬‬
‫‪. RC‬‬
‫ﺩ‪ -‬ﺃﻋﻂ ﻋﺒﺎﺭﺓ ) ‪ (t‬ﺍﻟﺜﺎﺑﺖ ﺍﳌﻤﻴﺰ ﻟﻠﺪﺍﺭﺓ ‪ ،‬ﻭﺑﲔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺒﻌﺪﻱ ﺃﻧﻪ ﻳﻘﺪﺭ ﺑﺎﻟﺜﺎﻧﻴﺔ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﻭﱄ ﻟﻠﻮﺣﺪﺍﺕ ) ‪. ( SI‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫ﻫ‪ -‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ )‪ -1‬ﺟ( ﺗﻘﺒﻞ ﺍﻟﻌﺒﺎﺭﺓ ‪ u AB = E ç1 - e t ÷ :‬ﺣﻼ ﳍﺎ ‪.‬‬
‫‪è‬‬
‫‪ø‬‬
‫ﻭ‪ -‬ﺃﺭﺳﻢ ﺷﻜﻞ ﺍﳌﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ﺍﳌﻤﺜﻞ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ u AB = f ( t‬ﻭﺑﲔ ﻛﻴﻔﻴﺔ ﲢﺪﻳﺪ ‪ t‬ﻣﻦ ﺍﻟﺒﻴﺎﻥ ‪.‬‬
‫ﻱ‪ -‬ﻗﺎﺭﻥ ﺑﲔ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ‪ u AB‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 5t‬ﻭ ‪ . E‬ﻣﺎﺫﺍ ﺗﺴﺘﻨﺘﺞ ؟‬
‫‪ .2‬ﺑﻌﺪ ﺍﻻﻧﺘﻬﺎﺀ ﻣﻦ ﺍﻟﺪﺭﺍﺳﺔ ﺍﻟﺴﺎﺑﻘﺔ ‪ ،‬ﳒﻌﻞ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻊ )‪. (2‬‬
‫ﺃ‪-‬‬
‫ﻣﺎﺫﺍ ﳛﺪﺙ ﻟﻠﻤﻜﺜﻔﺔ ؟‬
‫ﺻﻔﺤﺔ ‪4‬‬
‫ﺏ‪-‬ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﶈﻮﻟﺔ ﰲ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺍﻟﺘﻔﺴﲑ ‪ :‬ﻋﻨﺪ ﺟﻌﻞ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻊ ‪ 1‬ﳝﺮ ﺗﻴﺎﺭ ﺑﺎﻟﺪﺍﺭﺓ ﳑﺎ ﻳﺆﺩﻱ ﺇﱃ ﺷﺤﻦ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫ﺏ‪ -‬ﺗﺒﲔ ﻛﻴﻒ ﻣﺸﺎﻫﺪﺓ ﺍﻟﺘﻄﻮﺭ ﺍﻟﺰﻣﲏ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪. u AB‬‬
‫ﳝﻜﻦ ﻣﺸﺎﻫﺪﺓ ﺍﻟﺘﻄﻮﺭ ﺍﻟﺰﻣﲏ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ u AB‬ﻭﺫﻟﻚ ﺑﺮﺑﻂ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ﺇﱃ ﺭﺍﺳﻢ ﺇﻫﺘﺰﺍﺯ ﻣﻬﺒﻄﻲ ﺫﻭ ﺫﺍﻛﺮﺓ ‪ ،‬ﺃﻭ ﺟﻬﺎﺯ ﺇﻋﻼﻡ ﺁﱄ ﻣﺰﻭﺩ ﺑﺒﻄﺎﻗﺔ ﻣﺪﺧﻞ ‪.‬‬
‫ﺟ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﲢﻜﻢ ﺍﺷﺘﻐﺎﻝ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. u R + uC = E :‬‬
‫‪dq‬‬
‫‪du‬‬
‫‪. u R = R.i = R‬‬
‫ﺣﻴﺚ ‪= RC C :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪duC‬‬
‫‪. RC‬‬
‫ﻭﻣﻨﻪ ‪+ uC = E :‬‬
‫‪dt‬‬
‫ﺩ‪ -‬ﻋﺒﺎﺭﺓ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t = RC :‬‬
‫ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺒﻌﺪﻱ ‪= [T ] :‬‬
‫] ‪[t ] = [ R].[C ] = [U ][ I ] .[ I ][T ][U‬‬
‫‪-1‬‬
‫‪-1‬‬
‫ﻫ‪ -‬ﺇﺛﺒﺎﺕ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪duC E -tt‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، uC = E ç1 - e t ÷ :‬ﺇﺫﻥ ‪= e :‬‬
‫‪dt‬‬
‫‪t‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪.‬‬
‫‪t‬‬
‫‪t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‬‫‬‫‪æ‬‬
‫‪duC‬‬
‫‪du‬‬
‫‪E -t‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪ ، RC C + uC = RC. e t + E ç1 - e t ÷ = Ee t + E - Ee t :‬ﺃﻱ ‪+ uC = E :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪t‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫ﻭﻣﻨﻪ ﺍﻟﻌﺒﺎﺭﺓ ‪ uC = E ç1 - e t ÷ :‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪. RC‬‬
‫) ‪u AB (V‬‬
‫‪12‬‬
‫ﻭ‪ -‬ﺭﺳﻢ ﺍﳌﻨﺤﲏ ﺍﳌﻤﺜﻞ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. u AB = f ( t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪t‬‬
‫‪:‬‬
‫ﺣﻴﺚ‬
‫‪،‬‬
‫‪E = 12V‬‬
‫ﻟﺪﻳﻨﺎ ‪uC = E ç1 - e ÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫ﻭ ‪. t = RC = 5 ´ 103 ´1, 0 ´ 10-6 = 5 ´ 10-3 s = 5ms‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪. uC = 12 (1 - e-200.t ) :‬‬
‫)‪t (s‬‬
‫ﻛﻴﻔﻴﺔ ﲢﺪﻳﺪ ‪ t‬ﻣﻦ ﺍﻟﺒﻴﺎﻥ ‪.‬‬
‫ﻫﻮ ﻓﺎﺻﻠﺔ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﳑﺎﺱ ﺍﻟﺒﻴﺎﻥ ﻋﻨﺪ ﺍﳌﺒﺪﺃ ﻣﻊ ﺍﳌﻘﺎﺭﺏ ‪ ،‬ﻭﻓﺎﺻﻠﺔ ﺍﻟﻨﻘﻄﺔ ﺫﺍﺕ ﺍﻟﺘﺮﺗﻴﺒﺔ ‪. u AB = 0, 63.E‬‬
‫‪u AB 11,9‬‬
‫=‬
‫ﻱ‪ -‬ﺍﳌﻘـــﺎﺭﻧﺔ ‪ :‬ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﱠﺎ ‪ t = 5t‬ﻟﺪﻳﻨﺎ ‪ ، u AB = 11,9V‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 0, 99‬‬
‫‪E‬‬
‫‪12‬‬
‫ﺍﻹﺳــﺘﻨﺘﺎﺝ ‪ :‬ﻋﻨﺪ ﺍﻟﻠﺤﻈﺔ ‪ t = 5t‬ﺗﺒﻠﻎ ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ﺍﻟﻨﺴﺒﺔ ‪ 99%‬ﻣﻦ ﺷﺤﻨﺘﻬﺎ ﺍﻷﻋﻈﻤﻴﺔ ‪.‬‬
‫‪.‬‬
‫‪ .2‬ﺃ‪ -‬ﺍﻟﺘﻔﺴﲑ ‪ :‬ﻋﻨﺪ ﺇﻧﺘﻬﺎﺀ ﺍﻟﺸﺤﻦ ﻭﺟﻌﻞ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻊ ‪ 2‬ﺗﺘﻔﺮﻍ ﺍﳌﻜﺜﻔﺔ ﰲ ﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ‪ ،‬ﻓﺘﺘﺤﻮﻝ ﺍﻟﻄﺎﻗﺔ ﺍﳌﺨﺰﻧﺔ ‪‬ﺎ ﺇﱃ ﻃﺎﻗﺔ ﺣﺮﺍﺭﻳﺔ ﺑﺎﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﶈﻮﻟﺔ ﰲ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪.‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2‬‬
‫‪ ، EC = C.U max‬ﻭﺑﺎﻟﺘﺎﱄ ‪. EC = ´ 10-6 ´ (12 ) = 1, 22 ´ 10-4 J :‬‬
‫ﻟﺪﻳﻨﺎ ‪= C.E 2 :‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﳋﺎﻣﺲ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2009‬‬
‫ﺗﺘﻜﻮﻥ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺒﻴﻨﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ -1-‬ﻣﻦ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻮﺻﻮﻟﺔ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ‪:‬‬
‫§ ﻣﻮﻟﺪ ﻛﻬﺮﺑﺎﺋﻲ ﺗﻮﺗﺮﻩ ﺛﺎﺑﺖ ‪. E = 6V‬‬
‫§ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪. C = 1, 2m F‬‬
‫ﺻﻔﺤﺔ ‪5‬‬
‫§ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 5k W‬‬
‫§ ﻗﺎﻃﻌﺔ ‪. K‬‬
‫ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪:‬‬
‫) ‪duC ( t‬‬
‫‪ .1‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﺗﺮﺑﻂ ﺑﲔ ) ‪، uC ( t‬‬
‫‪dt‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‪æ‬‬
‫‪RC‬‬
‫‪ uC ( t ) = E ç1 - e‬ﻛﺤﻞ ﳍﺎ ‪.‬‬
‫‪ .2‬ﲢﻘﻖ ﺇﻥ ﻛﺎﻧﺖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﶈﺼﻞ ﻋﻠﻴﻬﺎ ﺗﻘﺒﻞ ﺍﻟﻌﺒﺎﺭﺓ ‪÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﺣﺪﺩ ﻭﺣﺪﺓ ﺍﳌﻘﺪﺍﺭ ‪ ، RC‬ﻣﺎ ﻣﺪﻟﻮﻟﻪ ﺍﻟﻌﻠﻤﻲ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ؟ ﺍﺫﻛﺮ ﺍﲰﻪ ‪.‬‬
‫‪ R ، E ،‬ﻭ ‪.C‬‬
‫ﺍﻟﺸــﻜﻞ ‪1-‬‬
‫‪ .4‬ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ uC ( t‬ﰲ ﺍﻟﻠﺤﻈﺎﺕ ﺍﳌﺪﻭﻧﺔ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪18‬‬
‫‪24‬‬
‫‪6‬‬
‫‪12‬‬
‫‪0‬‬
‫) ‪t ( ms‬‬
‫) ‪uC ( t )(V‬‬
‫‪ .5‬ﺃﺭﺳﻢ ﺍﳌﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ‪. uC ( t ) = f ( t ) :‬‬
‫‪ .6‬ﺃﻭﺟﺪ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻠﺸﺪﺓ ﺍﻟﻠﺤﻈﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ i ( t‬ﺑﺪﻻﻟﺔ ‪ R ، E‬ﻭ ‪ ، C‬ﰒ ﺍﺣﺴﺐ ﻗﻴﻤﺘﻬﺎ ﰲ ﺍﻟﻠﺤﻈﺘﲔ ) ‪ ( t = 0‬ﻭ ) ‪. ( t ® ¥‬‬
‫‪ .7‬ﺍﻛﺘﺐ ﻋﺒﺎﺭﺓ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﳌﻜﺜﻔﺔ ‪ ،‬ﺍﺣﺴﺐ ﻗﻴﻤﺘﻬﺎ ﻋﻨﺪﻣﺎ ) ‪. ( t ® ¥‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫‪du C‬‬
‫ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﳒﺪ ‪ ، uC + u R = E :‬ﺣﻴﺚ ‪:‬‬
‫‪dt‬‬
‫‪du‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪. u C + RC C = E :‬‬
‫‪dt‬‬
‫‪duC‬‬
‫‪1‬‬
‫‪E‬‬
‫‪+‬‬
‫= ‪uC‬‬
‫ﻭﻣﻨﻪ ﺗﻜﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪RC‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‪æ‬‬
‫‪ .2‬ﺇﺛﺒﺎﺕ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ‪ uC ( t ) = E ç1 - e RC ÷ :‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪1‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‪æ‬‬
‫‪du C‬‬
‫‪E - RC t‬‬
‫‪RC‬‬
‫=‬
‫‪e‬‬
‫‪ uC = E ç1 - e‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻟﺪﻳﻨﺎ ‪÷ :‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪. u R = R .i = RC‬‬
‫‪.‬‬
‫‪1‬‬
‫‬‫‪t‬‬
‫‪æ‬‬
‫‪duC‬‬
‫‪1‬‬
‫‪E - RC1 t‬‬
‫‪1‬‬
‫‪+‬‬
‫= ‪uC‬‬
‫‪e‬‬
‫‪+‬‬
‫‪E ç1 - e RC‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪RC‬‬
‫‪RC è‬‬
‫‪ö E - RC1 t‬‬
‫‪E‬‬
‫‪E - RC1 t‬‬
‫‪E‬‬
‫=‬
‫‪e‬‬
‫‪+‬‬
‫‬‫‪e‬‬
‫=‬
‫ﺇﺫﻥ ‪:‬‬
‫÷‬
‫‪RC RC‬‬
‫‪RC‬‬
‫‪ø RC‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‪æ‬‬
‫‪RC‬‬
‫‪ uC ( t ) = E ç1 - e‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫ﻭﻣﻨﻪ ﺍﻟﻌﺒﺎﺭﺓ ‪÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﲢﺪﻳﺪ ﻭﺣﺪﺓ ﺍﳌﻘﺪﺍﺭ ‪ ، RC‬ﻭﻣﺪﻟﻮﻟﻪ ﻭ ﺍﲰﻪ ‪.‬‬
‫‪[U ] [Q ] = [ A ][T ] = T‬‬
‫] [‬
‫] ‪[ A ] [U ] [ A‬‬
‫= ] ‪ [ RC ] = [ R ][C‬ﻭﻣﻨﻪ ‪ RC‬ﻣﺘﻨﺎﺳﺐ ﻣﻊ ﺍﻟﺰﻣﻦ ‪.‬‬
‫ﻣﺪﻟﻮﻟﻪ ﺍﻟﻌﻠﻤﻲ ‪ :‬ﻫﻮ ﺍﳌﺪﺓ ﺍﻟﻼﺯﻣﺔ ﻟﺸﺤﻦ ﺍﳌﻜﺜﻔﺔ ﺑﻨﺴﺒﺔ ‪ ، 63%‬ﻭﻳﺴﻤﻰ ﺑﺜﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪.‬‬
‫‪ .4‬ﻣﻸ ﺍﳉﺪﻭﻝ ‪:‬‬
‫‪24‬‬
‫‪18‬‬
‫‪12‬‬
‫‪6‬‬
‫‪0‬‬
‫) ‪t ( ms‬‬
‫‪5,89‬‬
‫‪5,70‬‬
‫‪5,19‬‬
‫‪3,79‬‬
‫‪0‬‬
‫) ‪uC ( t )(V‬‬
‫‪ .5‬ﺭﺳﻢ ﺍﳌﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ‪. uC ( t ) = f ( t ) :‬‬
‫ﺃﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫ﺻﻔﺤﺔ ‪6‬‬
‫‪.‬‬
‫‪ .6‬ﺇﳚﺎﺩ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻠﺸﺪﺓ ﺍﻟﻠﺤﻈﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. i ( t‬‬
‫‪1‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‬‫‪t‬‬
‫‪æ‬‬
‫‪RC‬‬
‫‪RC‬‬
‫‪u R = E - E ç1 - e‬‬
‫ﻭ ﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪÷ = Ee‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪1‬‬
‫‬‫‪t ö‬‬
‫‪æ‬‬
‫‪RC‬‬
‫‪ uC ( t ) = E ç1 - e‬ﻭ ‪u R = E - u C‬‬
‫ﻟﺪﻳﻨﺎ ‪÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪1‬‬
‫‪E - t‬‬
‫‪u‬‬
‫ﻟﻜﻦ ‪ u R = R .i :‬ﺃﻱ ‪ i = R :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. i (t ) = e RC :‬‬
‫‪R‬‬
‫‪R‬‬
‫‪1‬‬
‫‬‫´‬
‫‪0‬‬
‫‪E‬‬
‫‪E‬‬
‫‪6‬‬
‫= ‪I 0 = e RC‬‬
‫= ‪. I0‬‬
‫ﺃﻱ ‪= 1, 2 ´ 10-3 A :‬‬
‫ﻭﻣﻨﻪ ‪ :‬ﳌﺎ ‪ ( t = 0 ) :‬ﻟﺪﻳﻨﺎ ‪:‬‬
‫‪3‬‬
‫‪5 ´ 10‬‬
‫‪R‬‬
‫‪R‬‬
‫‪E - 1 ´¥‬‬
‫ﳌﺎ ‪ (t ® ¥ ) :‬ﻟﺪﻳﻨﺎ ‪i ¥ = e RC = 0 :‬‬
‫‪.‬‬
‫‪R‬‬
‫‪ .7‬ﻛﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫ﻋﻨﺪ ) ‪ ( t ® ¥‬ﻳﻜﻮﻥ ﻗﺪ ﺍﻛﺘﻤﻞ ﺍﻟﺸﺤﻦ ﻭﺑﺎﻟﺘﺎﱄ ‪ E 0 = C .u C2max = C .E 2 :‬ﻭﻣﻨﻪ ‪E 0 = ´1, 2 ´10-6 ´ 62 = 2,16 ´10-5 J :‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺴﺎﺩﺱ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2009‬‬
‫ﻟﺪﻳﻨﺎ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪ C = 1, 0 ´ 10-1 m F‬ﻣﺸﺤﻮﻧﺔ ﻣﺴﺒﻘﺎ ﺑﺸﺤﻨﺔ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻣﻘﺪﺍﺭﻫﺎ ‪ ، q = 0, 6 ´ 10-6 C‬ﻭﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪ R = 15k W‬ﳓﻘﻖ ﺩﺍﺭﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ‬
‫ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﳌﻜﺜﻔﺔ ﻭﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ﻭﻗﺎﻃﻌﺔ ‪ . K‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪:‬‬
‫‪ .1‬ﺃﺭﺳﻢ ﳐﻄﻂ ﺍﻟﺪﺍﺭﺓ ﺍﳌﻮﺻﻮﻓﺔ ﺳﺎﺑﻘﺎ ‪.‬‬
‫‪ .2‬ﻣﺜﻞ ﻋﻠﻰ ﺍﳌﺨﻄﻂ ‪:‬‬
‫§ ﺟﻬﺔ ﻣﺮﻭﺭ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬
‫‪ .3‬ﺃﻭﺟﺪ ﻋﻼﻗﺔ ﺑﲔ ‪ u R‬ﻭ ‪. uC‬‬
‫‪ .4‬ﺑﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺑﺪﻻﻟﺔ ‪. uC‬‬
‫‪ .5‬ﺇﻥ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺻﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻫﻮ ﻣﻦ ﺍﻟﺸﻜﻞ ‪ ، uC = a ´ eb.t :‬ﺣﻴﺚ ‪ a‬ﻭ ‪ b‬ﺛﺎﺑﺘﲔ ﻳﻄﻠﺐ ﺗﻌﻴﲔ ﻗﻴﻤﺔ‬
‫ﻛﻞ ﻣﻨﻬﻤﺎ ‪.‬‬
‫‪ .6‬ﺃﻛﺘﺐ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﺘﻮﺗﺮ ) ‪. uC = f ( t‬‬
‫‪ .7‬ﺇﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺰﻣﻨﻴﺔ ‪ uC‬ﺗﺴﻤﺢ ﺑﺮﺳﻢ ﺍﻟﺒﻴﺎﻥ ﺍﻟﺸﻜﻞ‪: 1-‬‬
‫§ ﺍﺷﺮﺡ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ ﺍﻟﻄﺮﻳﻔﺔ ﺍﳌﺘﺒﻌﺔ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﺍﻟﻘﻴﻢ ﺍﶈﺴﻮﺑﺔ ﺳﺎﺑﻘﺎ ) ﺍﻟﺴﺆﺍﻝ ‪. ( 5‬‬
‫ﺍﻟــﺸﻜﻞ ‪1-‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺭﺳﻢ ﳐﻄﻂ ﻟﻠﺪﺍﺭﺓ ﺍﳌﻮﺻﻮﻓﺔ ‪ .‬ﺃﻧﻈﺮ ﺍﳌﺨﻄﻂ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .2‬ﺍﳉﻬﺔ ﺍﳊﻘﻴﻘﻴﺔ ﳌﺮﻭﺭ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﻟﺪﺍﺭﺓ ‪ :‬ﺃﻧﻈﺮ ﺍﳌﺨﻄﻂ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .3‬ﺇﳚﺎﺩ ﻋﻼﻗﺔ ﺑﲔ ‪ u R‬ﻭ ‪. uC‬‬
‫‪dq‬‬
‫‪ ، u R = R.i = R‬ﻭ ﻟﺪﻳﻨﺎ ‪ q = C .uC :‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫‪dt‬‬
‫‪ .4‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺑﺪﻻﻟﺔ ‪. uC‬‬
‫‪duC‬‬
‫‪dt‬‬
‫‪duC‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ uC + uR = 0 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 0 :‬‬
‫‪dt‬‬
‫‪du‬‬
‫‪1‬‬
‫‪. C+‬‬
‫‪uC = 0‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪ .5‬ﺗﻌﻴﲔ ﻗﻴﻤﺔ ﺍﻟﺜﺎﺑﺘﲔ ‪ a‬ﻭ ‪ b‬ﺛﺎﺑﺘﲔ ‪.‬‬
‫‪0, 6 ´10-6‬‬
‫ﻣﻦ ﺍﻟﺸﺮﻭﻁ ﺍﻹﺑﺘﺪﺍﺋﻴﺔ ﻟﺪﻳﻨﺎ ‪= 6V :‬‬
‫‪0,1´10-6‬‬
‫=‬
‫)‪q ( 0‬‬
‫‪C‬‬
‫‪. u R = RC‬‬
‫‪ uC + RC‬ﻭﻣﻨﻪ ‪:‬‬
‫= ‪uC ( 0 ) = E = a‬‬
‫‪duC‬‬
‫ﻟﺪﻳﻨﺎ ‪ uC = a ´ eb.t :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= ab.eb.t :‬‬
‫‪dt‬‬
‫‪1‬‬
‫‪duC‬‬
‫‪1‬‬
‫‪ ab.eb .t +‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 0 :‬‬
‫ﺇﺫﻥ ‪a.eb .t = 0 :‬‬
‫‪+‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪uC = 0 :‬‬
‫‪RC‬‬
‫‪dt‬‬
‫‪RC‬‬
‫ﺻﻔﺤﺔ ‪7‬‬
‫‪1 ö b .t‬‬
‫‪æ‬‬
‫‪açb +‬‬
‫‪÷e‬‬
‫‪RC ø‬‬
‫‪è‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2000 -1‬‬
‫‪1‬‬
‫ ‪=-‬‬‫=‬
‫‪ b +‬ﻭﺑﺎﻟﺘﺎﱄ ‪s :‬‬
‫ﺇﺫﻥ ‪= 0 :‬‬
‫‪3‬‬
‫‪-6‬‬
‫‪RC‬‬
‫‪t 15 ´10 ´ 0,1´ 10‬‬
‫‪3‬‬
‫‪RC‬‬
‫ﻭﻣﻨﻪ ‪:‬‬
‫‪1‬‬
‫‪t‬‬
‫‪RC‬‬
‫‪-‬‬
‫‪ uC = E.e‬ﺃﻱ ‪:‬‬
‫‪2000‬‬
‫‪.t‬‬
‫‪3‬‬
‫‪ .6‬ﲢﺪﻳﺪ ﺍﻟﺜﺎﺑﺘﲔ ‪ a‬ﻭ ‪ b‬ﺑﻴﺎﻧﻴﺎ ‪.‬‬
‫‪-‬‬
‫‪. b=-‬‬
‫‪. uC = 6.e‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ‪ :‬ﳌﺎ ‪ t = 0‬ﳒﺪ ‪. uC ( 0 ) = a = 6V :‬‬
‫ﳌﺎ ‪ uC = 0, 37 ´ 6 = 2, 22V‬ﳒﺪ ‪. t = 0, 75 ´ 0, 002 = 1, 5 ´ 10 s :‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2000 -1‬‬
‫=‬‫ﻭﺑﺎﻟﺘﺎﱄ ‪s :‬‬
‫= ‪. b=-‬‬‫‪-3‬‬
‫‪t‬‬
‫‪1, 5 ´ 10‬‬
‫‪3‬‬
‫‪-3‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺴﺎﺑﻊ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭ ﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2009‬‬
‫ﻧﺮﺑﻂ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫§ ﻣﻮﻟﺪ ﺫﻱ ﺗﻮﺗﺮ ﺛﺎﺑﺖ ) ‪. ( E = 12V‬‬
‫§ ﻭﺷﻴﻌﺔ ﺫﺍﺗﻴﺘﻬﺎ ) ‪ ( L = 300mH‬ﻭﻣﻘﺎﻭﻣﺘﻬﺎ ) ‪. ( r = 10W‬‬
‫§ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ) ‪. ( R = 110W‬‬
‫§ ﻗﺎﻃﻌﺔ ) ‪) ( k‬ﺍﻟﺸﻜﻞ ‪(-1-‬‬
‫‪ .1‬ﰲ ﺍﻟﻠﺤﻈﺔ ) ‪ ( t = 0 s‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ) ‪: ( k‬‬
‫ ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﺗﻌﻄﻲ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﻟﺪﺍﺭﺓ ‪.‬‬‫‪ .2‬ﻛﻴﻒ ﻳﻜﻮﻥ ﺳﻠﻮﻙ ﺍﻟﻮﺷﻴﻌﺔ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ؟ ﻭﻣﺎ ﻫﻲ ﻋﻨﺪﺋﺬ ﻋﺒﺎﺭﺓ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ I 0‬ﺍﻟﺬﻱ ﳚﺘﺎﺯ ﺍﻟﺪﺍﺭﺓ ؟‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪ .3‬ﺑﺎﻋﺘﺒﺎﺭ ﺍﻟﻌﻼﻗﺔ ÷ ‪ i = A ç1 - e t‬ﺣﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻄﻠﻮﺑﺔ ﰲ ﺍﻟﺴﺆﺍﻝ ‪-1-‬‬
‫‪è‬‬
‫‪ø‬‬
‫ﺃ‪ -‬ﺃﻭﺟﺪ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻜﻞ ﻣﻦ ‪ A‬ﻭ ‪. t‬‬
‫ﺏ‪-‬ﺍﺳﺘﻨﺘﺞ ﻋﺒﺎﺭ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ uBC‬ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫‪ .4‬ﺃ‪ -‬ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ uBC‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫ﺏ‪ -‬ﺃﺭﺳﻢ ﻛﻴﻔﻴﺎ ﺷﻜﻞ ﺍﻟﺒﻴﺎﻥ ) ‪. uBC = f ( t‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪u R ( t ) + ub ( t ) = E :‬‬
‫ﺇﺫﻥ‪= E :‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪ Ri ( t ) + ri ( t ) + L‬ﺃﻱ ‪= E :‬‬
‫) ‪di ( t‬‬
‫‪R+r‬‬
‫‪E‬‬
‫ﻭﻣﻨﻪ ‪i ( t ) = :‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪ .2‬ﲢﺪﻳﺪ ﺳﻠﻮﻙ ﺍﻟﻮﺷﻌﺔ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫‪+‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪( R + r ) i (t ) + L‬‬
‫‪.‬‬
‫) ‪di ( t‬‬
‫ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﻳﻜﻮﻥ ‪ ، i ( t ) = I 0 = Cte :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 0 :‬‬
‫‪dt‬‬
‫‪E‬‬
‫‪12‬‬
‫‪R+r‬‬
‫‪E‬‬
‫=‬
‫ﺃﻱ‪= 0,1A :‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪I 0 = :‬‬
‫= ‪. I0‬‬
‫‪R + r 120‬‬
‫‪L‬‬
‫‪L‬‬
‫‪ .3‬ﺃ‪ -‬ﺇﳚﺎﺩ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳊﺮﻓﻴﺔ ﻟﻜﻞ ﻣﻦ ‪ A‬ﻭ ‪. t‬‬
‫‪ö‬‬
‫ﻟﺪﻳﻨﺎ ‪÷ :‬‬
‫‪ø‬‬
‫‪t‬‬
‫‬‫‪æ‬‬
‫‪di A -tt‬‬
‫‪ ، i = A ç1 - e t‬ﻭﺑﺎﻟﺘﺎﱄ ‪= e :‬‬
‫‪dt t‬‬
‫‪è‬‬
‫‪ ،‬ﺇﺫﻥ ‪ . ub = r.i :‬ﻭﻣﻨﻪ ﺍﻟﻮﺷﻴﻌﺔ ﺗﺴﻠﻚ ﺳﻠﻮﻙ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. r‬‬
‫‪.‬‬
‫ﺻﻔﺤﺔ ‪8‬‬
‫‪t‬‬
‫‪di ( t ) R + r‬‬
‫‪E‬‬
‫‪A -tt R + r‬‬
‫‪R + r -tt E‬‬
‫‪E‬‬
‫‪æ 1 R + r ö -t R + r‬‬
‫‪e‬‬
‫‪+‬‬
‫‪A‬‬
‫=‬
‫‪e‬‬
‫‪+‬‬
‫‪A‬‬
‫‬‫ﻭﺑﺎﻟﺘﺎﱄ ‪Ae = :‬‬
‫‪+‬‬
‫= ) ‪i (t‬‬
‫ ‪. Aç‬‬‫‪:‬‬
‫ﺃﻱ‬
‫‪،‬‬
‫ﻭﻟﺪﻳﻨﺎ‬
‫÷‬
‫‪L ø‬‬
‫‪L‬‬
‫‪L‬‬
‫‪t‬‬
‫‪L‬‬
‫‪L‬‬
‫‪L‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪èt‬‬
‫‪L‬‬
‫‪E‬‬
‫‪R+r‬‬
‫‪E 1 R+r‬‬
‫ﺇﺫﻥ ‪= 0 :‬‬
‫=‪. A‬‬
‫= ‪ t‬ﻭ ‪= I0‬‬
‫‪ ،‬ﻭﻣﻨﻪ ‪:‬‬
‫=‪A‬‬
‫ ﻭ‬‫‪R+r‬‬
‫‪R+r‬‬
‫‪L‬‬
‫‪L t‬‬
‫‪L‬‬
‫ﺏ‪ -‬ﺍﺳﺘﻨﺘﺞ ﻋﺒﺎﺭ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ uBC‬ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫‪R+ r‬‬
‫‬‫‪t ö‬‬
‫‪di E - RL+ r t‬‬
‫‪E æ‬‬
‫‪.‬‬
‫‪= e‬‬
‫= ) ‪ ، i ( t‬ﻭﺑﺎﻟﺘﺎﱄ‪:‬‬
‫ﻟﺪﻳﻨﺎ ‪ç1 - e L ÷ :‬‬
‫‪dt L‬‬
‫‪R+r è‬‬
‫‪ø‬‬
‫‪R+ r‬‬
‫‪R+r‬‬
‫‬‫‪t‬‬
‫‬‫‪t ö‬‬
‫‪r‬‬
‫‪r‬‬
‫‪di‬‬
‫‪E - R +r t‬‬
‫‪E æ‬‬
‫‪E‬‬‫‪ . uBC = L + r.i = L. e L + r.‬ﺃﻱ ‪Ee L :‬‬
‫ﺇﺫﻥ ‪ç1 - e L ÷ :‬‬
‫‪R+r‬‬
‫‪R+r‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪R+r è‬‬
‫‪ø‬‬
‫‪R+r‬‬
‫‬‫‪t‬‬
‫‪r‬‬
‫‪R‬‬
‫=‬
‫‪E+‬‬
‫ﻭﻣﻨﻪ ‪Ee L :‬‬
‫‪R+r‬‬
‫‪R+r‬‬
‫‪+‬‬
‫‪R+ r‬‬
‫‪t‬‬
‫‪L‬‬
‫‪. uBC‬‬
‫‪-‬‬
‫‪. uBC = Ee‬‬
‫) ‪uBC (V‬‬
‫‪120‬‬
‫‬‫‪t‬‬
‫‪10‬‬
‫‪110‬‬
‫=‬
‫‪.12 +‬‬
‫ﺃﻱ ‪.12e 0,3 :‬‬
‫‪120‬‬
‫‪120‬‬
‫‪ ، uBC‬ﻭﻣﻨﻪ ‪:‬‬
‫‪-400.t‬‬
‫‪. uBC = 1 + 11.e‬‬
‫‪ .4‬ﺃ‪ -‬ﺣﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ uBC‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﻟﺪﻳﻨﺎ ‪ I 0 = 0,1A :‬ﻭ ‪ . uBC = r.I 0 ،‬ﻭﻣﻨﻪ ‪. uBC = 10 ´ 0,1 = 1V‬‬
‫ﺏ‪ -‬ﺭﺳﻢ ﻛﻴﻔﻲ ﻟﺸﻜﻞ ﺍﻟﺒﻴﺎﻥ ) ‪) . uBC = f ( t‬ﺍﻟﺒﻴﺎﻥ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ(‬
‫‪2‬‬
‫)‪t ( ms‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺜﺎﻣﻦ ‪:‬‬
‫‪2,5‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭ ﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2009‬‬
‫ﳓﻘﻖ ﺍﻟﺘﺮﻛﻴﺐ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﺘﺠﺮﻳﱯ ﺍﳌﺒﲔ ﰲ ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺠﻬﻴﺰ ‪:‬‬
‫· ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ) ‪ ( C‬ﻏﲑ ﻣﺸﺤﻮﻧﺔ ‪.‬‬
‫· ﻧﺎﻗﻠﲔ ﺃﻭﻣﻴﲔ ﻣﻘﺎﻭﻣﺘﻴﻬﻤﺎ ) ‪. ( R = R ' = 470W‬‬
‫· ﻣﻮﻟﺪ ﺫﻱ ﺗﻮﺗﺮ ﺛﺎﺑﺖ‬
‫· ﺑﺎﺩﻟﺔ‬
‫) ‪(k‬‬
‫) ‪(E‬‬
‫‪.‬‬
‫‪ ،‬ﺃﺳﻼﻙ ﺗﻮﺻﻴﻞ ‪.‬‬
‫‪ .1‬ﻧﻀﻊ ﺍﻟﺒﺎﺩﻟﺔ ﻋﻨﺪ ﺍﻟﻮﺿﻊ )‪ (1‬ﰲ ﺍﻟﻠﺤﻈﺔ ) ‪: ( t = 0‬‬
‫ﺃ‪ -‬ﺑﲔ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺟﻬﺔ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﰒ ﻣﺜﻞ ﺑﺎﻷﺳﻬﻢ ﺍﻟﺘﻮﺗﺮﻳﻦ ‪. uR ، uC‬‬
‫ﺏ‪-‬ﻋﱪ ﻋﻦ ‪ uC‬ﻭ ‪ uR‬ﺑﺪﻻﻟﺔ ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ‪ ، q = q A‬ﰒ ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﲢﻘﻘﻬﺎ ﺍﻟﺸﺤﻨﺔ ‪. q‬‬
‫ﺟ‪ -‬ﺗﻘﺒﻞ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺣﻼ ﻣﻦ ﺍﻟﺸﻜﻞ ‪ . q ( t ) = A (1 - e-a .t ) :‬ﻋﱪ ﻋﻦ ‪ A‬ﻭ ‪ a‬ﺑﺪﻻﻟﺔ ‪. E ، R ، C‬‬
‫ﺩ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻋﻨﺪ ‪‬ﺎﻳﺔ ﺍﻟﺸﺤﻦ ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ) ‪ ، ( 5V‬ﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ) ‪. ( E‬‬
‫ﻫ‪ -‬ﻋﻨﺪﻣﺎ ﺗﺸﺤﻦ ﺍﳌﻜﺜﻔﺔ ﻛﻠﻲ ﲣﺰﻥ ﻃﺎﻗﺔ ) ‪ ، ( EC = 5mJ‬ﺍﺳﺘﻨﺘﺞ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ) ‪. ( C‬‬
‫‪ .2‬ﳒﻌﻞ ﺍﻵﻥ ﺍﻟﺒﺎﺩﻟﺔ ﻋﻨﺪ ﺍﻟﻮﺿﻊ )‪: (2‬‬
‫ﺃ‪ -‬ﻣﺎﺫﺍ ﳛﺪﺙ ﻟﻠﻤﻜﺜﻔﺔ ؟‬
‫ﺏ‪-‬ﻗﺎﺭﻥ ﺑﲔ ﻗﻴﻤﱵ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﺍﳌﻮﺍﻓﻖ ﻟﻠﻮﺿﻌﲔ )‪ (1‬ﰒ )‪ (2‬ﻟﻠﺒﺎﺩﻟﺔ ‪. k‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﲤﺜﻴﻞ ﺍﻷﺳﻬﻢ ﺍﳌﻤﺜﻠﺔ ﻟﻔﺮﻭﻕ ﺍﻟﻜﻤﻮﻥ ‪ .‬ﺍﻟﺘﻤﺜﻴﻞ ﺑﺎﻟﺼﻔﺤﺔ ﺍﳌﻮﺍﻟﻴﺔ ‪.‬‬
‫ﺏ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫‪q‬‬
‫‪dq‬‬
‫‪ u R = R .i = R‬ﻭ‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫‪C‬‬
‫‪dt‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. u R + uC = E :‬‬
‫= ‪. uC‬‬
‫ﺻﻔﺤﺔ ‪9‬‬
‫‪dq‬‬
‫‪1‬‬
‫‪E‬‬
‫‪dq q‬‬
‫‪+‬‬
‫=‪q‬‬
‫‪، R‬ﻭﻣﻨﻪ ‪:‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪+ = E :‬‬
‫‪dt RC‬‬
‫‪R‬‬
‫‪dt C‬‬
‫ﺟ‪ -‬ﺇﳚﺎﺩ ﻋﺒﺎﺭﺓ ‪ A‬ﻭ ‪ a‬ﺑﺪﻻﻟﺔ ‪. E ، R ، C‬‬
‫‪.‬‬
‫) ‪dq ( t‬‬
‫ﻟﺪﻳﻨﺎ ‪ q ( t ) = A (1 - e-a .t ) :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= Aa e-a .t :‬‬
‫‪dt‬‬
‫‪1‬‬
‫‪E‬‬
‫‪dq‬‬
‫‪1‬‬
‫‪E‬‬
‫‪، Aa e -a .t +‬‬
‫‪ ،‬ﺇﺫﻥ ‪A (1 - e -a .t ) = :‬‬
‫‪+‬‬
‫=‪q‬‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫‪RC‬‬
‫‪R‬‬
‫‪dt RC‬‬
‫‪R‬‬
‫‪1 ö -a .t‬‬
‫‪A‬‬
‫‪E‬‬
‫‪æ‬‬
‫ ‪. A ça‬‬‫=‬
‫ﺃﻱ ‪:‬‬
‫‪÷e +‬‬
‫‪RC ø‬‬
‫‪RC R‬‬
‫‪è‬‬
‫‪1‬‬
‫‪A‬‬
‫‪E‬‬
‫‪1‬‬
‫= ‪ a‬ﻭ ‪. A = CE‬‬
‫ﻭﻣﻨﻪ ‪:‬‬
‫‪a‬ﻭ =‬‫ﺇﺫﻥ ‪= 0 :‬‬
‫‪RC‬‬
‫‪RC R‬‬
‫‪RC‬‬
‫‪t‬‬
‫‬‫‪æ‬‬
‫‪ö‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪. q ( t ) = CE ç1 - e RC ÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫ﺩ‪ -‬ﺇﳚﺎﺩ ﻗﻴﻤﺔ ‪ . E‬ﻋﻦ ‪‬ﺎﻳﺔ ﺍﻟﺸﺤﻦ ﺗﻜﻮﻥ ﺍﻟﺪﺍﺭﺓ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪ ،‬ﺇﺫﻥ ‪ i = 0 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪ u R = 0 :‬ﺇﺫﻥ ‪ ، uC = E :‬ﻭﻣﻨﻪ ‪. E = 5V :‬‬
‫‪.‬‬
‫ﻫ‪ -‬ﺇﳚﺎﺩ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪. C‬‬
‫‪2 EC 2 ´ 5 ´10-3‬‬
‫‪1‬‬
‫=‬
‫ﻟﺪﻳﻨﺎ ‪ EC = CE 2 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 4 ´10-4 F :‬‬
‫‪2‬‬
‫‪2‬‬
‫‪E‬‬
‫‪5‬‬
‫‪2‬‬
‫‪ .3‬ﺃ‪ -‬ﺍﻟﺘﻔﺴﲑ ‪ :‬ﻋﻨﺪ ﺟﻌﻞ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻌﻴﺔ ‪ 2‬ﺗﺘﻔﺮﻍ ﺍﻟﻄﺎﻗﺔ ﺍﳌﺨﺰﻧﺔ ﺑﺎﳌﻜﺜﻔﺔ ﰲ ﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ﻭﺗﺘﺤﻮﻝ ﺇﱃ ﻃﺎﻗﺔ ﺣﺮﺍﺭﻳﺔ ‪.‬‬
‫= ‪ . C‬ﻭﻣﻨﻪ ‪. C = 400m F :‬‬
‫ﺏ‪ -‬ﻣﻘﺎﺭﻧﺔ ﺛﺎﺑﱵ ﺍﻟﺰﻣﻦ ﻟﻠﻮﺿﻌﲔ ‪ 1‬ﻭ ‪. 2‬‬
‫ﺩﺍﺭﺓ ﺍﻟﺸﺤﻦ ‪ . t 1 = RC = 470 ´ 4 ´ 10-4 = 0,188s :‬ﺩﺍﺭﺓ ﺍﻟﺘﻔﺮﻳﻎ ‪. t 2 = ( R + R ') C = 2 RC = 2 ´ 470 ´ 4 ´10-4 = 0, 276s :‬‬
‫ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﻟﺪﺍﺭﺓ ﺍﻟﺘﻔﺮﻳﻎ ﺿﻌﻒ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﰲ ﺩﺍﺭﺓ ﺍﻟﺸﺤﻦ ‪.‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺘﺎﺳﻊ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2010‬‬
‫ﻧﺮﻳﺪ ﺗﻌﲔ ) ‪ ( L, r‬ﳑﻴﺰﰐ ﻭﺷﻴﻌﺔ ‪ ،‬ﻧﺮﺑﻄﻬﺎ ﰲ ﺩﺍﺭﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﻣﻊ ‪:‬‬
‫ﻣﻮﻟﺪ ﻛﻬﺮﺑﺎﺋﻲ ﺫﻱ ﺗﻮﺗﺮ ﻛﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪. E = 6V‬‬
‫ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 10W‬‬
‫ﻗﺎﻃﻌﺔ ‪ ) k‬ﺍﻟﺸﻜﻞ‪. ( 1-‬‬
‫‪ .1‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪ ، k‬ﺃﻛﺘﺐ ﻋﺒﺎﺭﺓ ﻛﻞ ﻣﻦ ‪:‬‬
‫ﺍﻟﺸــﻜﻞ ‪1-‬‬
‫‪ : u R‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ‪. R‬‬
‫‪ : ub‬ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫‪ .2‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ i ( t‬ﺍﳌﺎﺭ ﺑﺎﻟﺪﺍﺭﺓ ‪.‬‬
‫‪ .3‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺗﻘﺒﻞ ﺣﻼ ﻣﻦ ﺍﻟﺸﻜﻞ ‪:‬‬
‫‪( R+r) ö‬‬
‫‬‫‪t‬‬
‫‪E æ‬‬
‫÷÷ ‪çç1 - e L‬‬
‫‪R+r è‬‬
‫‪ø‬‬
‫= ) ‪. i (t‬‬
‫‪ .4‬ﻣﻜﻨﺖ ﺍﻟﺪﺭﺍﺳﺔ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﲟﺘﺎﺑﻌﺔ ﺗﻄﻮﺭ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﻭﺭﺳﻢ‬
‫ﺍﻟﺒﻴﺎﻥ ﺍﳌﻤﺜﻞ ﻟﻪ ﰲ ) ﺍﻟﺸﻜﻞ ‪ . ( 2-‬ﺑﺎﻻﺳﺘﻌﺎﻧﺔ ﺑﺎﻟﺒﻴﺎﻥ ﺃﺣﺴﺐ ‪:‬‬
‫ﺃ‪ -‬ﺍﳌﻘﺎﻭﻣﺔ ‪ r‬ﻟﻠﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺏ‪-‬ﻗﻴﻤﺔ ‪ t‬ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ ،‬ﰒ ﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ‪ L‬ﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺍﻟﺸــﻜﻞ ‪2-‬‬
‫‪ .5‬ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻴﻌﺔ ﰲ ﺣﺎﻟﺔ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﻛﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﻛﻞ ﻣﻦ ‪ u R‬ﻭ ‪. ub‬‬
‫ﺻﻔﺤﺔ ‪10‬‬
‫ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ‪ R‬ﻫﻮ ‪. u R = R.i :‬‬
‫‪di‬‬
‫ﻋﺒﺎﺭﺓ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﻟﻮﺷﻴﻌﺔ ﻫﻮ ‪:‬‬
‫‪dt‬‬
‫‪. ub = r.i + L‬‬
‫‪ .2‬ﺇﳚﺎﺩ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪uR + ub = E :‬‬
‫‪di‬‬
‫‪di‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪ R.i + r.i + L = E :‬؛ ﺇﺫﻥ ‪= E :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫) ‪di ( R + r‬‬
‫‪E‬‬
‫‪.‬‬
‫‪+‬‬
‫=‪i‬‬
‫ﻭﻣﻨﻪ ‪:‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪، (R + r )i + L‬‬
‫‪ .3‬ﺇﺛﺒﺎﺕ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫) ‪(R+r‬‬
‫‪( R+r) ö‬‬
‫‬‫‪t‬‬
‫‪di‬‬
‫‪E æ (R + r) - L t ö‬‬
‫‪E æ‬‬
‫؛ ﺃﻱ ‪:‬‬
‫=‬
‫‪.e‬‬
‫‪çç‬‬
‫= ) ‪ ، i ( t‬ﻭﺑﺎﻟﺘﺎﱄ ‪÷÷ :‬‬
‫ﻟﺪﻳﻨﺎ ‪çç1 - e L ÷÷ :‬‬
‫‪dt R + r è L‬‬
‫‪R+r è‬‬
‫‪ø‬‬
‫‪ø‬‬
‫‪(R+r ) ö‬‬
‫‬‫‪t‬‬
‫‪E æ‬‬
‫‪L‬‬
‫‪1‬‬
‫‬‫‪e‬‬
‫‪çç‬‬
‫ﺇﺫﻥ ‪÷÷ :‬‬
‫‪R+rè‬‬
‫‪ø‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪t‬‬
‫) ‪( R+ r‬‬
‫‪L‬‬
‫ ‪E E‬‬‫‪+ - e‬‬
‫‪L L‬‬
‫‪(R + r) .‬‬
‫‪L‬‬
‫)‪R+r‬‬
‫‪t‬‬
‫‪L‬‬
‫‪+‬‬
‫‪t‬‬
‫)‪( R+r‬‬
‫‪L‬‬
‫) ‪di ( R + r‬‬
‫ ‪E‬‬‫‪+‬‬
‫‪i = .e‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪t‬‬
‫)‪(R+r‬‬
‫‪L‬‬
‫ ‪di E‬‬‫‪.‬‬
‫‪= .e‬‬
‫‪dt L‬‬
‫‪.‬‬
‫(‬
‫) ‪di ( R + r‬‬
‫‪E‬‬
‫) ‪di ( R + r‬‬
‫ ‪E‬‬‫‪.‬‬
‫‪+‬‬
‫=‪i‬‬
‫؛ ﻭﻣﻨﻪ ‪:‬‬
‫‪+‬‬
‫‪i = .e‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪( R+r) ö‬‬
‫‬‫‪t‬‬
‫‪E æ‬‬
‫‪L‬‬
‫‪1‬‬
‫‬‫‪e‬‬
‫‪çç‬‬
‫ﺇﺫﻥ ﻧﺴﺘﻨﺘﺞ ﺃﻥ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻣﻦ ﺍﻟﺸﻜﻞ ‪÷÷ :‬‬
‫‪R+r è‬‬
‫‪ø‬‬
‫= ) ‪. i (t‬‬
‫‪ .4‬ﺃ‪ -‬ﲢﺪﻳﺪ ﺍﳌﻘﺎﻭﻣﺔ ‪ r‬ﻟﻠﻮ ﺷﻴﻌﺔ ‪.‬‬
‫‪6‬‬
‫‪E‬‬
‫‪E‬‬
‫= ‪ ، I 0‬ﺇﺫﻥ ‪ ، r = - R :‬ﻭﻟﺪﻳﻨﺎ ﻣﻦ ﺍﻟﺒﻴﺎﻥ ‪ I 0 = 0,5 A :‬ﻭﺑﺎﻟﺘﺎﱄ ‪- 10 = 2W :‬‬
‫ﻟﺪﻳﻨﺎ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪:‬‬
‫‪0,5‬‬
‫‪I0‬‬
‫)‪(R + r‬‬
‫=‪r‬‬
‫‪.‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ‪ ، t‬ﻭ ﺍﺳﺘﻨﺘﺎﺝ ﻗﻴﻤﺔ ‪. L‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﻟﺪﻳﻨﺎ ﻓﺎﺻﻠﺔ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﳑﺎﺱ ﺍﻟﺒﻴﺎﻥ ﻋﻨﺪ ﺍﳌﺒﺪﺃ ﻭﺍﳌﻘﺎﺭﺏ ﻫﻲ ‪ ) t = 10ms :‬ﺃﻭ ﻫﻲ ﻓﺎﺻﻠﺔ ﺍﻟﻨﻘﻄﺔ ﺫﺍﺕ ﺍﻟﺘﺮﺗﻴﺐ ‪. ( i = 0, 63.I 0 = 0,315 A‬‬
‫‪L‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫‪R+r‬‬
‫ﺟ‪ -‬ﺣﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮ ﺷﻴﻌﺔ ﰲ ﺣﺎﻟﺔ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫‪1‬‬
‫‪2‬‬
‫ﻟﺪﻳﻨﺎ ‪. Emax ( L ) = 1,5 ´10-2 J ، Emax ( L ) = L.I 02 = 0,12 ´10-2 ´ ( 0,5) :‬‬
‫‪2‬‬
‫= ‪ ، t‬ﻭﺑﺎﻟﺘﺎﱄ ‪ ، L = t ( R + r ) :‬ﺇﺫﻥ ‪ ، L = 10 ´10-3 ´12 :‬ﻭﻣﻨﻪ ‪. L = 0,12 H :‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﻌﺎﺷﺮ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2010‬‬
‫ﳓﻘﻖ ﺩﺍﺭﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﺗﺘﻜﻮﻥ ﻣﻦ ‪:‬‬
‫§ ﻣﻮﻟﺪ ﺫﻭ ﺗﻮﺗﺮ ﻛﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪. E = 5V‬‬
‫§ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 100W‬‬
‫§ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪. C‬‬
‫§ ﻗﺎﻃﻌﺔ ‪. k‬‬
‫ﻧﻮﺻﻞ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ‪ B ، A‬ﺇﱃ ﻭﺍﺟﻬﺔ ﺩﺧﻮﻝ ﳉﻬﺎﺯ ﺇﻋﻼﻡ ﺁﱄ ﻭﻋﻮﳉﺖ ﺍﳌﻌﻄﻴﺎﺕ ﺑﱪﳎﻴﺔ‬
‫" ‪ "Microsoft Excel‬ﻭﲢﺼﻠﻨﺎ ﻋﻠﻰ ﺍﳌﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ) ‪) uC = u AB = f ( t‬ﺍﻟﺸﻜﻞ ‪. (2-‬‬
‫‪ .1‬ﺇﻗﺘﺮﺡ ﳐﻄﻄﺎ ﻟﻠﺪﺍﺭﺓ ﻣﻮﺿﺤﺎ ﺇﲡﺎﻩ ﺍﻟﺘﻴﺎﺭ ﰒ ﻣﺜﻞ ﺑﺴﻬﻢ ﻛﻼ ﻣﻦ ﺍﻟﺘﻮﺗﺮﻳﻦ ‪ u R‬ﻭ ‪. uC‬‬
‫‪ .2‬ﻋﲔ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻟﻠﺪﺍﺭﺓ ﻭﻣﺎ ﻣﺪﻟﻮﻟﻪ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ؟ ﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪. C‬‬
‫ﺻﻔﺤﺔ ‪11‬‬
‫ﺍﻟﺸــﻜﻞ ‪2-‬‬
‫‪ .3‬ﺃﺣﺴﺐ ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ﻋﻨﺪ ﺑﻠﻮﻍ ﺍﻟﺪﺍﺭﺓ ﻟﻠﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫‪ .4‬ﻟﻮ ﺍﺳﺘﺒﺪﻟﻨﺎ ﺍﳌﻜﺜﻔﺔ ﺍﻟﺴﺎﺑﻘﺔ ﲟﻜﺜﻔﺔ ﺃﺧﺮﻯ ﺳﻌﺘﻬﺎ ‪ ، C ' = 2C‬ﺃﺭﺳﻢ ﻛﻴﻔﻴﺎ ﰲ ﻧﻔﺲ ﺍﳌﻌﻠﻢ ﺍﻟﺴﺎﺑﻖ ﺷﻜﻞ ﺍﳌﻨﺤﲎ ) ‪ uC ' = g ( t‬ﺍﻟﺬﻱ ﳝﻜﻦ ﻣﺸﺎﻫﺪﺗﻪ ﻋﻠﻰ ﺷﺎﺷﺔ ﺍﳉﻬﺎﺯ‬
‫ﻣﻊ ﺍﻟﺘﻌﻠﻴﻞ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﳐﻄﻂ ﺍﻟــﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ‪.‬‬
‫ﺍﻟﺘﻤﺜﻴﻞ ﺍﳌﻮﺍﻓﻖ ﻟﻠﺪﺍﺭﺓ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .2‬ﺗﻌﻴﲔ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﻟﺪﻳﻨﺎ ‪ ، t = 1ms :‬ﻭﻫﻮ ﺍﻟﺰﻣﻦ ﺍﻟﻼﺯﻡ ﻟﺒﻠﻮﻍ ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ﺍﻟﻘﻴﻤﺔ ‪ 63%‬ﻣﻦ ﻗﻴﻤﺔ ﺷﺤﻨﺘﻬﺎ ﺍﻟﻌﻈﻤﻰ ‪.‬‬
‫‪10-3‬‬
‫‪t‬‬
‫ﻟﺪﻳﻨﺎ ‪ t = R.C :‬ﻭﺑﺎﻟﺘﺎﱄ ‪ C = :‬ﻭﻣﻨﻪ ‪= 10-5 F = 10 m F :‬‬
‫‪100‬‬
‫‪R‬‬
‫‪ .3‬ﺣﺴﺎﺏ ﺷﺤﻨﺔ ﺍﳌﻜﺜﻔﺔ ﻋﻨﺪ ﺑﻠﻮﻍ ﺍﻟﺪﺍﺭﺓ ﻟﻠﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪.‬‬
‫=‪.C‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، Qmax = C.E :‬ﻭﺑﺎﻟﺘﺎﱄ ‪Qmax = 5 ´ 10-5 C :‬‬
‫‪ .4‬ﺭﺳﻢ ﻣﻨﺤﲏ ‪. uC‬‬
‫ﻟﺪﻳﻨﺎ ‪ t = RC :‬ﻭ ‪ t ' = RC ' = 2 RC‬ﻭﺑﺎﻟﺘﺎﱄ ‪t ' = 2t :‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﳊﺎﺩﻱ ﻋﺸﺮ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭ ﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2010‬‬
‫ﺑﻐﺮﺽ ﺷﺤﻦ ﻣﻜﺜﻔﺔ ﻓﺎﺭﻏﺔ ‪ ،‬ﺳﻌﺘﻬﺎ ‪ ، C‬ﻧﺼﻠﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﻣﻊ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ ﻣﻮﻟﺪ ﺫﻭ ﺗﻮﺗﺮ ﻛﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪ E = 5V‬ﻭﻣﻘﺎﻭﻣﺘﻪ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻣﻬﻤﻠﺔ ‪.‬‬‫ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 120W‬‬‫ ﺑﺎﺩﻟﺔ ‪) K‬ﺍﻟﺸﻜﻞ ‪. (2-‬‬‫‪ .1‬ﳌﺘﺎﺑﻌﺔ ﺗﻄﻮﺭ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ‪ uC‬ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ﺑﺪﻻﻟﺔ ﺍﻟﺰﻣﻦ ‪ ،‬ﻧﻮﺻﻞ ﻣﻘﻴﺎﺱ ﻓﻮﻟﻄﻤﺘﺮ ﺭﻗﻤﻲ ﺑﲔ ﻃﺮﰲ‬
‫ﺍﳌﻜﺜﻔﺔ ﻭﰲ ﺍﻟﻠﺤﻈﺔ ‪ ، t = 0‬ﻧﻀﻊ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻊ )‪ . (1‬ﻭﺑﺎﻟﺘﺼﻮﻳﺮ ﺍﳌﺘﻌﺎﻗﺐ ﰎ ﺗﺼﻮﻳﺮ ﺷﺎﺷﺔ ﺟﻬﺎﺯ ﺍﻟﻔﻮﻟﻄﻤﺘﺮ‬
‫ﺍﻟﺮﻗﻤﻲ ﳌﺪﺓ ﻣﻌﻴﻨﺔ ﻭﲟﺸﺎﻫﺪﺓ ﺷﺮﻳﻂ ﺍﻟﻔﻴﺪﻳﻮ ﺑﺒﻂﺀ ﺳﺠﻠﻨﺎ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪80‬‬
‫‪68‬‬
‫‪60‬‬
‫‪48‬‬
‫‪40‬‬
‫‪32‬‬
‫‪24‬‬
‫‪20‬‬
‫‪16‬‬
‫‪8‬‬
‫‪4‬‬
‫‪0‬‬
‫) ‪t ( ms‬‬
‫‪5,0‬‬
‫‪5,0‬‬
‫‪5,0‬‬
‫‪4,9‬‬
‫‪4,8‬‬
‫‪4,5‬‬
‫‪4,1‬‬
‫‪3,8‬‬
‫‪3,3‬‬
‫‪2,0‬‬
‫‪1,0‬‬
‫‪0‬‬
‫) ‪uC (V‬‬
‫ﺃ‪ -‬ﺍﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ) ‪. uC = f ( t‬‬
‫ﺏ‪-‬ﻋﲔ ﺑﻴﺎﻧﻴﺎ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻟﺜﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ‪ RC‬ﻭﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ﺍﻟﺴﻌﺔ ‪ C‬ﻟﻠﻤﻜﺜﻔﺔ ‪.‬‬
‫‪ .2‬ﻛﻴﻒ ﺗﺘﻐﲑ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﰲ ﺍﳊﺎﻟﺘﲔ ؟‬
‫ ﺍﳊـﺎﻟﺔ )ﺃ( ‪ :‬ﻣﻦ ﺃﺟﻞ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ' ‪ C‬ﺣﻴﺚ ‪ C ' > C‬ﻭ ‪. R = 120W‬‬‫‪ -‬ﺍﳊﺎﻟﺔ )ﺏ( ‪ :‬ﻣﻦ ﺃﺟﻞ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ '' ‪ C‬ﺣﻴﺚ ‪ C '' = C‬ﻭ ‪. R < 120W‬‬
‫ﺍﺭﺳﻢ ﻛﻴﻔﻴﺎ ‪ ،‬ﰲ ﻧﻔﺲ ﺍﳌﻌﻠﻢ ﺍﳌﻨﺤﻨﻴﲔ )‪ (1‬ﻭ )‪ (2‬ﺍﳌﻌﱪﻳﻦ ﻋﻦ ) ‪ uC ( t‬ﰲ ﺍﳊﺎﻟﺘﲔ )ﺃ( ﻭ )ﺏ( ﺍﻟﺴﺎﺑﻘﺘﲔ ‪.‬‬
‫) ‪dq ( t‬‬
‫‪1‬‬
‫‪E‬‬
‫‪ .3‬ﺃ‪ -‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻌﱪﺓ ﻋﻦ ) ‪ q ( t‬ﺗﻌﻄﻰ ﺑﺎﻟﻌﺒﺎﺭﺓ ‪q ( t ) = :‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪R‬‬
‫ﺏ‪ -‬ﻳﻌﻄﻰ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺑﺎﻟﻌﺒﺎﺭﺓ ‪ q ( t ) = Aea t + B‬ﺣﻴﺚ ‪ A‬ﻭ ‪ a‬ﻭ ‪ B‬ﺛﻮﺍﺑﺖ ﻳﻄﻠﺐ ﺗﻌﻴﻨﻬﺎ ‪ ،‬ﻋﻠﻤﺎ ﺃﻧﻪ ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﺗﻜﻮﻥ ‪. q ( 0 ) = 0‬‬
‫‪+‬‬
‫‪.‬‬
‫‪ .4‬ﺍﳌﻜﺜﻔﺔ ﻣﺸﺤﻮﻧﺔ ﻧﻀﻊ ﺍﻟﺒﺎﺩﻟﺔ ﰲ ﺍﻟﻮﺿﻊ )‪ (2‬ﰲ ﳊﻈﺔ ﻧﻌﺘﱪﻫﺎ ﻛﻤﺒﺪﺃ ﻟﻸﺯﻣﻨﺔ ‪.‬‬
‫ﺃ‪ -‬ﺍﺣﺴﺐ ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0‬ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ‪ E0‬ﰲ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫‪E‬‬
‫ﺏ‪-‬ﻣﺎ ﻫﻮ ﺍﻟﺰﻣﻦ ﺍﻟﻼﺯﻡ ﺍﻟﺬﻱ ﻣﻦ ﺃﺟﻠﻪ ﺗﺼﺒﺢ ﺍﻟﻄﺎﻗﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﳌﻜﺜﻔﺔ ‪ E = 0‬؟‬
‫‪2‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ‪ . uC = f (t ) :‬ﺍﻟﺸﻜﻞ ﺑﺎﻟﺼﻔﺤﺔ ﺍﳌﻮﺍﻟﻴﺔ ‪.‬‬
‫ﺻﻔﺤﺔ ‪12‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪.‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﺎ ‪ ، uC = 0, 63 ´ 5 = 3,15V :‬ﳒﺪ ‪. t = 16ms :‬‬
‫‪t‬‬
‫‪16 ´10-3‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪ t = R .C :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 13,3 ´10-5 F :‬‬
‫‪R‬‬
‫‪120‬‬
‫‪ .2‬ﺍﳊــﺎﻟﺔ ﺃ ‪:‬‬
‫ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻭﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ﻣﺘﻨﺎﺳﺒﺎﻥ ﻃﺮﺩﺍ ﻭﺑﺎﻟﺘﺎﱄ ‪ :‬ﳌﺎ ‪ ، C ' > C‬ﻳﻜﻮﻥ ‪. t ' > t :‬‬
‫=‬
‫= ‪.C‬‬
‫ﺍﳊــﺎﻟﺔ ﺏ ‪:‬‬
‫ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻣﻘﺎﻭﻣﺔ ﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ﻣﺘﻨﺎﺳﺒﺎﻥ ﻃﺮﺩﺍ ﻭﺑﺎﻟﺘﺎﱄ ‪ :‬ﳌﺎ ‪ R ' < R‬ﻳﻜﻮﻥ ‪. t ' < t :‬‬
‫ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﻜﻴﻔﻲ ‪ :‬ﺍﻟﺒﻴﺎﻥ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪ .3‬ﺃ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. u R + uC = E :‬‬
‫‪q‬‬
‫‪dq‬‬
‫‪ u R = R .i = R‬ﻭ‬
‫ﺣﻴﺚ ‪:‬‬
‫‪C‬‬
‫‪dt‬‬
‫‪dq‬‬
‫‪1‬‬
‫‪E‬‬
‫‪dq q‬‬
‫‪.‬‬
‫‪+‬‬
‫=‪q‬‬
‫‪ R‬ﻭﻣﻨﻪ ‪:‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪+ = E :‬‬
‫‪dt RC‬‬
‫‪R‬‬
‫‪dt C‬‬
‫= ‪. uC‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﻋﺒﺎﺭﺓ ‪ B ، A‬ﻭ ‪. α‬‬
‫‪dq‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، q (t ) = Ae at + B :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= A ae at :‬‬
‫‪dt‬‬
‫‪1‬‬
‫‪E‬‬
‫‪dq‬‬
‫‪1‬‬
‫‪E‬‬
‫‪+‬‬
‫= ) ‪Ae at + B‬‬
‫ﺇﺫﻥ ‪:‬‬
‫‪+‬‬
‫=‪q‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫(‬
‫‪RC‬‬
‫‪R‬‬
‫‪dt RC‬‬
‫‪R‬‬
‫‪1‬‬
‫‪B‬‬
‫‪E‬‬
‫‪1‬‬
‫‪ ،‬ﻭﻣﻨﻪ ‪:‬‬
‫=‬
‫‪a+‬ﻭ‬
‫ﺇﺫﻥ ‪= 0 :‬‬
‫‪RC‬‬
‫‪RC R‬‬
‫‪RC‬‬
‫‪1 ö at‬‬
‫‪B‬‬
‫‪E‬‬
‫‪æ‬‬
‫‪. A ça +‬‬
‫=‬
‫‪ . A a e at‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪÷e +‬‬
‫‪RC ø‬‬
‫‪RC R‬‬
‫‪è‬‬
‫‪ a = -‬ﻭ ‪. B = CE‬‬
‫‪t‬‬
‫‬‫‪æ‬‬
‫‪ö‬‬
‫‪RC‬‬
‫‪q (t ) = CE ç1 - e‬‬
‫ﻭﻟﺪﻳﻨﺎ ﻣﻦ ﺍﻟﺸﺮﻭﻁ ﺍﻹﻳﺘﺪﺍﺋﻴﺔ ‪ ) q ( 0 ) = A + B = 0 :‬ﺍﳌﻜﺜﻔﺔ ﻓﺎﺭﻏﺔ ( ‪ ،‬ﻭﺑﺎﻟﺘﺎﱄ ‪ . A = -B = -CE :‬ﻭﻣﻨﻪ ‪÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .4‬ﺃ‪ -‬ﺣﺴﺎﺏ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﻌﻈﻤﻰ ‪.‬‬
‫‪1‬‬
‫‪1‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، E 0 = CE 2 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. E0 = ´ 13,3 ´ 10-5 ´ 52 = 1, 66 ´ 10-3 J :‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﺯﻣﻦ ﺍﻟﻨﺼﻒ ‪.‬‬
‫ﻟﺪﻳﻨﺎ ‪ln 2 :‬‬
‫‪t‬‬
‫‪2‬‬
‫= ‪t1/ 2‬‬
‫‪16‬‬
‫ﻭﻣﻨﻪ ‪´ 0, 693 = 5,54ms :‬‬
‫‪2‬‬
‫= ‪. t1/ 2‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺜﺎﱐ ﻋﺸﺮ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2010‬‬
‫ﺗﺘﻜﻮﻥ ﺩﺍﺭﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻣﻦ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺮﺑﻮﻃﺔ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ‪:‬‬
‫ﻭﺷﻴﻌﺔ ﺫﺍﺗﻴﺘﻬﺎ ‪ L‬ﻭﻣﻘﺎﻭﻣﺘﻬﺎ ‪ ، r‬ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪ ، R = 17,5W‬ﻣﻮﻟﺪ ﺫﻱ ﺗﻮﺗﺮ ﺛﺎﺑﺖ ‪، E = 6,00V‬‬
‫ﻗﺎﻃﻌﺔ ﻛﻬﺮﺑﺎﺋﻴﺔ ‪) K‬ﺍﻟﺸﻜﻞ ‪ (3-‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ﰲ ﺍﻟﻠﺤﻈﺔ ‪. t = 0‬‬
‫ﲰﺤﺖ ﺑﺮﳎﻴﺔ ﻟﻺﻋﻼﻡ ﺍﻵﱄ ﲟﺘﺎﺑﻌﺔ ﺗﻄﻮﺭ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﻣﻊ ﻣﺮﻭﺭ ﺍﻟﺰﻣﻦ ﻭﻣﺸﺎﻫﺪﺓ ﺍﻟﺒﻴﺎﻥ ‪:‬‬
‫) ‪) i = f ( t‬ﺍﻟﺸﻜﻞ ‪. (4-‬‬
‫‪ .1‬ﺑﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ ‪:‬‬
‫ﺃ‪ -‬ﺍﺳﺘﻨﺘﺞ ﻗﻴﻢ ﻛﻞ ﻣﻦ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪ ،‬ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺏ‪-‬ﺍﺣﺴﺐ ﻛﻞ ﻣﻦ ﺍﳌﻘﺎﻭﻣﺔ ‪ r‬ﻭ ﺍﻟﺬﺍﺗﻴﺔ ‪ L‬ﻟﻠﻮﺷﻴﻌﺔ ‪.‬‬
‫‪ .2‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻹﻧﺘﻘﺎﱄ ‪:‬‬
‫ﺻﻔﺤﺔ ‪13‬‬
‫ﺍﻟﺸــﻜﻞ ‪3-‬‬
‫)‪i ( A‬‬
‫‪di i I 0‬‬
‫= ‪+‬‬
‫ﺃ‪ -‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﺍﻟﺘﻮﺗﺮﺍﺕ ﺃﺛﺒﺖ ﺃﻥ‪:‬‬
‫‪dt t t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫ﺏ‪-‬ﺑﲔ ﺃﻥ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﻫﻮ ﻣﻦ ﺍﻟﺸﻜﻞ ‪. i = I 0 ç 1 - e t ÷ :‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﻧﻌﺘﱪ ﺍﻵﻥ ﻗﻴﻤﺔ ﺍﻟﺬﺍﺗﻴﺔ ‪ L‬ﻟﻠﻮﺷﻴﻌﺔ ﻭﲟﻌﺎﳉﺔ ﺍﳌﻌﻄﻴﺎﺕ ﺑﱪﳎﻴﺔ ﺇﻋﻼﻡ ﺁﱄ ﻧﺴﺠﻞ ﻗﻴﻢ ‪ t‬ﺛﺎﺑﺖ‬
‫ﺍﻟﺰﻣﻦ ﻟﻠﺪﺍﺭﺓ ﻟﻨﺤﺼﻞ ﻋﻠﻰ ﺟﺪﻭﻝ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﺘﺎﱄ ‪:‬‬
‫ﺣﻴﺚ ‪ I 0‬ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ‬
‫‪20‬‬
‫‪12‬‬
‫‪8‬‬
‫‪4‬‬
‫) ‪t ( ms‬‬
‫‪0,5‬‬
‫‪0,3‬‬
‫‪0,2‬‬
‫‪0,1‬‬
‫) ‪L(H‬‬
‫ﺃ‪ -‬ﺍﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ‪. L = h (t ) :‬‬
‫‪0,05‬‬
‫) ‪t ( ms‬‬
‫ﺏ‪-‬ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺒﻴﺎﻥ ‪.‬‬
‫ﺟ‪ -‬ﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ﻣﻘﺎﻭﻣﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪ ، r‬ﻫﻞ ﺗﺘﻮﺍﻓﻖ ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﻣﻊ ﺍﻟﻘﻴﻤﺔ ﺍﶈﺴﻮﺑﺔ ﰲ ﺍﻟﺴﺆﺍﻝ ‪-1‬ﺏ؟‬
‫ﺍﻟﺸــﻜﻞ ‪4-‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪10‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺇﳚﺎﺩ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﻭﲢﺪﻳﺪ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪.‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﻟﺪﻳﻨﺎ ‪. I 0 = 0, 24A :‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﺎ ‪ i = 0, 24 ´ 0, 63 » 0,15 A :‬ﻟﺪﻳﻨﺎ ‪. t » 10ms :‬‬
‫ﺏ‪ -‬ﺣﺴﺎﺏ ﻣﻘﺎﻭﻣﺔ ﺍﻟﻮﺷﻴﻌﺔ ﻭﺫﺍﺗﻴﺘﻬﺎ ‪.‬‬
‫‪6‬‬
‫‪E‬‬
‫‪E‬‬
‫= ‪ I 0‬ﻭﺑﺎﻟﺘﺎﱄ ‪ r = - R :‬ﺇﺫﻥ ‪- 17,5 = 7,5W :‬‬
‫=‪. r‬‬
‫ﻟﺪﻳﻨﺎ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪:‬‬
‫‪0, 24‬‬
‫‪R +r‬‬
‫‪I0‬‬
‫‪L‬‬
‫= ‪ t‬ﻭﺑﺎﻟﺘﺎﱄ ‪ L = t ( R + r ) :‬ﺇﺫﻥ ‪. L = 10 ´10 -3 (17,5 + 7,5 ) = 0, 25H :‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫‪R +r‬‬
‫‪ .2‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫‪di‬‬
‫‪. u b = r .i + L‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ ، E = u R + u b :‬ﺣﻴﺚ ‪ u R = R .i‬ﻭ‬
‫‪dt‬‬
‫) ‪di ( R + r‬‬
‫‪E‬‬
‫‪di‬‬
‫‪.‬‬
‫‪+‬‬
‫= ‪i‬‬
‫‪ ( R + r ) i + L‬ﺇﺫﻥ ‪:‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪= E :‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪dt‬‬
‫‪di i I 0‬‬
‫‪L .I 0‬‬
‫‪L‬‬
‫‪.‬‬
‫= ‪+‬‬
‫= ‪. E = ( R + r ) I 0‬ﻭﻣﻨﻪ ﺗﻜﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ‪:‬‬
‫= ‪t‬ﻭ‬
‫ﻟﻜﻦ ‪:‬‬
‫‪dt t t‬‬
‫‪t‬‬
‫‪R +r‬‬
‫ﺇﺛﺒﺎﺕ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫ﺏ‪-‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪di I 0 -tt‬‬
‫‪t‬‬
‫‪.‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، i (t ) = I 0 ç1 - e ÷ .‬ﻭﺑﺎﻟﺘﺎﱄ ‪= .e :‬‬
‫‪dt t‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪di i I 0 -t I 0 æ‬‬
‫ﺇﺫﻥ ‪+ = .e + ç 1 - e t ÷ :‬‬
‫‪dt t t‬‬
‫‪t è‬‬
‫‪ø‬‬
‫‪di i I 0 -tt I 0 I 0 -tt I 0‬‬
‫= ‪+ = .e + - e‬‬
‫ﺃﻱ ‪:‬‬
‫‪dt t t‬‬
‫‪t t‬‬
‫‪t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫ﻭﻣﻨﻪ ‪ :‬ﺍﻟﻌﺒﺎﺭﺓ ÷ ‪ i (t ) = I 0 ç1 - e t‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪ .3‬ﺃ‪ -‬ﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ) ‪ : L = h (t‬ﺃﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫‪.‬‬
‫ﺏ‪-‬ﻛﺘﺎﺑﺔ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺒﻴﺎﻥ ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ ﻋﺒﺎﺭﺓ ﻋﻦ ﺧﻂ ﻣﺴﺘﻘﻴﻢ ﲤﺪﻳﺪﻩ ﳝﺮ ﺑﺎﳌﺒﺪﺃ ﻣﻌﺎﺩﻟﺘﻪ ﻣﻦ ﺍﻟﺸﻜﻞ ‪. L = a.t :‬‬
‫‪DL‬‬
‫‪0,5 - 0,1‬‬
‫= ‪ ، a‬ﻭﺑﺎﻟﺘﺎﱄ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺒﻴﺎﻥ ﻫﻲ ‪. L = 25.t :‬‬
‫=‬
‫ﺣﻴﺚ ‪ a :‬ﻣﻴﻠﻪ ﻭ ‪= 25H .s -1 = 25W‬‬
‫‪Dt ( 20 - 4 ) ´10-3‬‬
‫ﻟﺪﻳﻨﺎ ‪ L = ( R + r ) .t :‬ﺃﻱ ‪ ، a = R + r :‬ﻭﺑﺎﻟﺘﺎﱄ ‪ ، r = a - R = 25 - 17,5 = 7,5W :‬ﻭﻫﻲ ﻧﻔﺴﻬﺎ ﺍﻟﻘﻴﻤﺔ ﺍﶈﺴﻮﺑﺔ ﺳﺎﺑﻘﺎ ‪.‬‬
‫ﺻﻔﺤﺔ ‪14‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺜﺎﻟﺚ ﻋﺸﺮ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2010‬‬
‫ﻧﺮﺑﻂ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 500W‬‬‫ ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪ C‬ﻏﲑ ﻣﺸﺤﻮﻧﺔ ‪.‬‬‫ ﻣﻮﻟﺪ ﺫﻱ ﺗﻮﺗﺮ ﻛﻬﺮﺑﺎﺋﻲ ﺛﺎﺑﺖ ‪. E‬‬‫‪ -‬ﻗﺎﻃﻌﺔ ‪) K‬ﺍﻟﺸﻜﻞ ‪. (2-‬‬
‫ﻣﻜﻨﺖ ﻣﺘﺎﺑﻌﺔ ﺗﻄﻮﺭ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪ uC ( t‬ﺑﲔ ﻟﺒﻮﺳﻲ ﺍﳌﻜﺜﻔﺔ ﺑﺮﺳﻢ ﺍﻟﺒﻴﺎﻥ )ﺍﻟﺸﻜﻞ ‪.(3-‬‬
‫ﺍﻟﺸـﻜﻞ ‪2-‬‬
‫‪ .1‬ﻋﻤﻠﻴﺎ ﻳﻜﺘﻤﻞ ﺷﺤﻦ ﺍﳌﻜﺜﻔﺔ ﻋﻨﺪﻣﺎ ﻳﺒﻠﻎ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﻓﻴﻬﺎ ‪ 99%‬ﻣﻦ ﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﳌﻮﻟﺪ ‪.‬‬
‫ﺍﻋﺘﻤﺎﺩﺍ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻥ ‪:‬‬
‫ﺃ‪ -‬ﻋﲔ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻭﻗﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﳌﻮﻟﺪ ﰒ ﺍﺣﺴﺐ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪C‬‬
‫‪.‬‬
‫ﺏ‪ -‬ﺣﺪﺩ ﺍﳌﺪﺓ ﺍﻟﺰﻣﻨﻴﺔ ' ‪ t‬ﻻﻛﺘﻤﺎﻝ ﻋﻤﻠﻴﺔ ﺷﺤﻦ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫ﺟ‪ -‬ﻣﺎ ﻫﻲ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ' ‪ t‬ﻭ ‪. t‬‬
‫‪ .2‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﺃﻭﺟﺪ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺑﺪﻻﻟﺔ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ‬
‫) ‪= uC ( t‬‬
‫‪AB‬‬
‫‪ ، u‬ﰒ ﺑﲔ ﺃ‪‬ﺎ ﺗﻘﺒﻞ ﺣﻼ ﻣﻦ ﺍﻟﺸﻜﻞ ‪) :‬‬
‫‪t‬‬
‫‪-t‬‬
‫(‬
‫‪uC ( t ) = E 1 - e‬‬
‫‪.‬‬
‫‪ .3‬ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ‪ EC‬ﰲ ﺍﳌﻜﺜﻔﺔ ﻋﻨﺪ ﺍﻟﻠﺤﻈﺎﺕ ‪t2 = 5t ، t1 = t ، t0 = 0‬‬
‫‪.‬‬
‫)‬
‫‪u C (V‬‬
‫‪2‬‬
‫) ‪t ( ms‬‬
‫ﺍﻟﺸـﻜﻞ ‪3-‬‬
‫‪10‬‬
‫‪ .4‬ﺗﻮﻗﻊ )ﺭﺳﻢ ﻛﻴﻔﻲ( ﺷﻜﻞ ﺍﳌﻨﺤﲎ ) ‪. EC = f ( t‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺗﻌﲔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﻭ ﺍﻟﺘﻮﺗﺮ ﺑﲔ ﻃﺮﰲ ﺍﳌﻮﻟﺪ ‪ ، E‬ﰒ ﺣﺴﺎﺏ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪. C‬‬
‫ﳑﺎﺱ ﺍﻟﺒﻴﺎﻥ ﻋﻨﺪ ﺍﳌﺒﺪﺃ ‪ ،‬ﻳﻘﻄﻊ ﺍﳌﻘﺎﺭﺏ ﰲ ﺍﻟﻨﻘﻄﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺻﻠﺔ ‪. t = 14ms :‬‬
‫ﻳﺒﻠﻎ ﺍﻟﺘﻮﺗﺮ ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ﻗﻴﻤﺔ ﻋﻈﻤﻰ ‪. E = 7, 4 ´ 2 = 14,8V :‬‬
‫‪t‬‬
‫‪14 ´10-3‬‬
‫ﻟﺪﻳﻨﺎ ‪ t = RC :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 2,8 ´10-5 F = 28m F :‬‬
‫= =‪. C‬‬
‫‪R‬‬
‫‪500‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﺍﳌﺪﺓ ﺍﻟﺰﻣﻨﻴﺔ ' ‪ t‬ﻻﻛﺘﻤﺎﻝ ﻋﻤﻠﻴﺔ ﺷﺤﻦ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫ﻳﺒﻠﻎ ﺍﻟﺘﻮﺗﺮ ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ﻗﻴﻤﺘﻪ ﺍﻟﻌﻈﻤﻰ ) ‪ ( UC = 0,99.E = 14,65V‬ﺇﺑﺘﺪﺍﺀ ﻣﻦ ﺍﻟﻠﺤﻈﺔ ‪. t ' = 70 ms :‬‬
‫ﺟ‪ -‬ﲢﺪﻳﺪ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ' ‪ t‬ﻭ ‪ : t‬ﻧﻼﺣﻆ ﺃﻥ ‪. t ' = 5t‬‬
‫‪ .2‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. u R + uC = E :‬‬
‫‪dq‬‬
‫‪du‬‬
‫ﺣﻴﺚ ‪= RC C :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪du‬‬
‫‪1‬‬
‫‪E‬‬
‫‪du‬‬
‫‪. C+‬‬
‫= ‪uC‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪ RC C + uC = E :‬ﻭﻣﻨﻪ ‪:‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪RC‬‬
‫‪dt‬‬
‫‪u R = R.i = R‬‬
‫)‬
‫‪ -‬ﺇﺛﺒﺎﺕ ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫(‬
‫‪duC E - t t‬‬
‫‪-t‬‬
‫‪= e‬‬
‫ﻟﺪﻳﻨﺎ ‪ uC ( t ) = E 1 - e t‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪dt‬‬
‫‪t‬‬
‫‪t‬‬
‫‪1‬‬
‫‪E -t‬‬
‫‪E‬‬
‫‪E - tt‬‬
‫‪E‬‬
‫‬‫‪+‬‬
‫‪.E 1 - e t = e t +‬‬
‫‬‫= ‪e‬‬
‫ﺇﺫﻥ ‪:‬‬
‫‪RC‬‬
‫‪t‬‬
‫‪RC RC‬‬
‫‪RC‬‬
‫‪ .3‬ﺇﳚﺎﺩ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ‪ EC‬ﰲ ﺍﳌﻜﺜﻔﺔ ‪.‬‬
‫‪.‬‬
‫)‬
‫(‬
‫‪duC‬‬
‫‪1‬‬
‫‪E -t‬‬
‫‪+‬‬
‫‪uC = e t‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪t‬‬
‫ﺻﻔﺤﺔ ‪15‬‬
‫‪ ) .‬ﺣﻴﺚ ‪( t = RC :‬‬
‫‪1‬‬
‫‪1‬‬
‫ﻟﺪﻳﻨﺎ ‪، EC = C .uC2 = ´ 2,8 ´ 10 -5.uC2 :‬‬
‫‪2‬‬
‫‪2‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪. EC = 1, 4 ´ 10-5.uC2 :‬‬
‫) ‪t ( ms‬‬
‫) ‪uC (V‬‬
‫‪t0 = 0‬‬
‫‪t1 = t = 14‬‬
‫‪0‬‬
‫‪9,324‬‬
‫‪t2 = 5t = 70‬‬
‫‪14,652‬‬
‫) ‪EC (´10-3 J‬‬
‫) ‪EC ( Joule‬‬
‫‪0‬‬
‫‪1, 22 ´ 10-3‬‬
‫‪-3‬‬
‫‪3, 01´ 10‬‬
‫‪ .4‬ﺭﺳﻢ ﻛﻴﻔﻲ ﻟﺸﻜﻞ ﺍﳌﻨﺤﲎ ) ‪. EC = f ( t‬‬
‫‪0,5‬‬
‫ﺃﻧﻈﺮ ﺍﻟﺒﻴﺎﻥ ﺍﳌﻘﺎﺑﻞ‬
‫) ‪t ( ms‬‬
‫‪10‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺮﺍﺑﻊ ﻋﺸﺮ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2011‬‬
‫ﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪ C‬ﺷﺤﻨﺖ ﻛﻠﻴﺎ ﲢﺖ ﺗﻮﺗﺮ ﺛﺎﺑﺖ ‪ . E = 6V‬ﻣﻦ ﺃﺟﻞ ﻣﻌﺮﻓﺔ ﺳﻌﺘﻬﺎ ‪ C‬ﻧﻘﻮﻡ ﺑﺘﻔﺮﻳﻐﻬﺎ ﰲ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 4k W‬‬
‫‪ .1‬ﺍﺭﺳﻢ ﳐﻄﻂ ﺩﺍﺭﺓ ﺍﻟﺘﻔﺮﻳﻎ ‪.‬‬
‫‪ .2‬ﳌﺘﺎﺑﻌﺔ ﺗﻄﻮﺭ ﺍﻟﺘﻮﺗﺮ ) ‪ uC ( t‬ﺑﲔ ﻃﺮﰲ ﺍﳌﻜﺜﻔﺔ ﺧﻼﻝ ﺍﻟﺰﻣﻦ ﻧﺴﺘﻌﻤﻞ ﺟﻬﺎﺯ ﻓﻮﻟﻂ ﻣﺘﺮ ﺭﻗﻤﻲ ﻭﻣﻴﻘﺎﺗﻴﺔ ﺇﻟﻜﺘﺮﻭﻧﻴﺔ ‪.‬‬
‫ﺃ‪ -‬ﻛﻴﻒ ﻳﺘﻢ ﺭﺑﻂ ﺟﻬﺎﺯ ﺍﻟﻔﻮﻟﻂ ﻣﺘﺮ ﰲ ﺍﻟﺪﺍﺭﺓ ؟‬
‫ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0ms‬ﻭﻧﺴﺤﻞ ﻧﺘﺎﺋﺞ ﺍﳌﺘﺎﺑﻌﺔ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫‪120‬‬
‫‪100‬‬
‫‪80‬‬
‫‪60‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪0‬‬
‫) ‪t ( ms‬‬
‫‪0,54‬‬
‫‪0,81‬‬
‫‪1,21‬‬
‫‪1,81‬‬
‫‪2,69‬‬
‫‪3,21‬‬
‫‪4,02‬‬
‫‪4,91‬‬
‫‪6,00‬‬
‫) ‪uC (V‬‬
‫ﺏ‪-‬ﺍﺭﺳﻢ ﺍﳌﻨﺤﲎ ﺍﻟﺒﻴﺎﱐ ﺍﳌﻤﺜﻞ ﻟﻠﺪﺍﻟﺔ ) ‪ uC = f ( t‬ﻋﻠﻰ ﻭﺭﻗﺔ ﻣﻴﻠﻴﻤﺘﺮﻳﺔ ‪ ،‬ﺃﺭﻓﻘﻬﺎ ﻣﻊ ﻭﺭﻗﺔ ﺇﺟﺎﺑﺘﻚ ‪.‬‬
‫ﺟ‪ -‬ﻋﲔ ﺑﻴﺎﻧﻴﺎ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t‬‬
‫ﺩ‪ -‬ﺍﺣﺴﺐ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪. C‬‬
‫‪ .3‬ﺃ‪ -‬ﺑﺘﻄﺒﻴﻖ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺍﻛﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. uC ( t‬‬
‫ﺏ‪ -‬ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺗﻘﺒﻞ ﺍﻟﻌﺒﺎﺭﺓ ‪ uC ( t ) = Ae-a t‬ﺣﻼ ﳍﺎ ‪ ،‬ﺣﻴﺚ ‪ A ، a‬ﺛﺎﺑﺘﺎﻥ ﻳﻄﻠﺐ ﺗﻌﻴﻨﻬﻤﺎ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﳐﻄﻂ ﺩﺍﺭﺓ ﺍﻟﺘﻔﺮﻳﻎ ‪ :‬ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ‬
‫‪ .2‬ﺃ‪ -‬ﻳﺘﻢ ﺭﺑﻂ ﺟﻬﺎﺯ ﺍﻟﻔﻮﻟﻂ ﻣﺘﺮ ﰲ ﺍﻟﺪﺍﺭﺓ ‪ :‬ﻋﻠﻰ ﺍﻟﺘﻔﺮﻉ‬
‫ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫) ‪uC (V‬‬
‫ﺏ‪ -‬ﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ) ‪. uC = f ( t‬‬
‫ﺍﻟﺒﻴﺎﻥ ﻣﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫ﺟ‪ -‬ﺗﻌﲔ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﺎ ‪ . uC = 0,37 ´ E = 0,37 ´ 6 = 2, 22V‬ﳒﺪ ‪. t = 50ms :‬‬
‫ﺩ‪ -‬ﺍﺣﺴﺐ ﺳﻌﺔ ﺍﳌﻜﺜﻔﺔ ‪C‬‬
‫‪50 ´10-3‬‬
‫ﻟﺪﻳﻨﺎ ‪ t = RC :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 12,5 ´10-6 F :‬‬
‫‪4 ´103‬‬
‫‪ .3‬ﺃ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻟﻠﺘﻮﺗﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪. uC ( t‬‬
‫=‬
‫‪t‬‬
‫‪R‬‬
‫=‪C‬‬
‫) ‪t ( ms‬‬
‫‪duC‬‬
‫‪1‬‬
‫‪du‬‬
‫‪+‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ . uC + uR = 0 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪ uC + RC C = 0 :‬ﻭﻣﻨﻪ ‪uC = 0 :‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪dt‬‬
‫ﺏ‪ -‬ﺗﻌﲔ ﺍﻟﺜﺎﺑﺘﺎﻥ ‪. A ، a‬‬
‫ﺻﻔﺤﺔ ‪16‬‬
‫‪.‬‬
‫ﻣﻦ ﺍﻟﺸﺮﻭﻁ ﺍﻹﺑﺘﺪﺍﺋﻴﺔ ﻟﺪﻳﻨﺎ ‪uC ( 0 ) = E = A :‬‬
‫‪duC‬‬
‫ﻟﺪﻳﻨﺎ ‪ uC ( t ) = Ae-a t :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= -a Ae-a t :‬‬
‫‪dt‬‬
‫‪1‬‬
‫‪duC‬‬
‫‪1‬‬
‫‪+‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪uC = 0 :‬‬
‫‪+‬‬
‫ﺇﺫﻥ ‪Ae -a t = 0 :‬‬
‫‪dt‬‬
‫‪RC‬‬
‫‪RC‬‬
‫ﺇﺫﻥ ‪:‬‬
‫‪1‬‬
‫‪t‬‬
‫‪RC‬‬
‫‪-‬‬
‫‪1 ö -a . t‬‬
‫‪1‬‬
‫‪æ‬‬
‫‪ ، A ç -a +‬ﻭﻣﻨﻪ ‪:‬‬
‫‪ -a Ae -a .t‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 0 :‬‬
‫‪÷e‬‬
‫‪RC ø‬‬
‫‪RC‬‬
‫‪è‬‬
‫=‪a‬‬
‫‪ ، uC = E.e‬ﺃﻱ ‪. uC ( t ) = 6.e -20.t :‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﳋﺎﻣﺲ ﻋﺸﺮ ‪:‬‬
‫ﻋﻠﻮﻡ ﲡﺮﻳﺒﻴﺔ ‪2011‬‬
‫ﲢﺘﻮﻱ ﺩﺍﺭﺓ ﻋﻠﻰ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺮﺑﻮﻃﺔ ﻋﻠﻰ ﺍﻟﺘﺴﻠﺴﻞ ) ﺍﻟﺸﻜﻞ‪( 2-‬‬
‫ ﻣﻮﻟﺪ ﺫﻱ ﺗﻮﺗﺮ ﺛﺎﺑﺖ ‪. E‬‬‫‪ -‬ﻭﺷﻴﻌﺔ ﺫﺍﺗﻴﺘﻬﺎ ‪ L‬ﻭﻣﻘﺎﻭﻣﺘﻬﺎ ‪. r‬‬
‫ﺍﻟﺸــﻜﻞ‪2-‬‬
‫ ﻧﺎﻗﻞ ﺃﻭﻣﻲ ﻣﻘﺎﻭﻣﺘﻪ ‪. R = 100W‬‬‫‪ -‬ﻗﺎﻃﻌﺔ ‪. K‬‬
‫ﻟﻠﻤﺘﺎﺑﻌﺔ ﺍﻟﺰﻣﻨﻴﺔ ﻟﺘﻄﻮﺭ ﺍﻟﺘﻮﺗﺮ ﺑﲔ ﻃﺮﰲ ﻛﻞ ﻣﻦ ﺍﻟﻮﺷﻴﻌﺔ ) ‪ ub ( t‬ﻭﺍﻟﻨﺎﻗﻞ ﺍﻷﻭﻣﻲ ) ‪ uR ( t‬ﻧﺴﺘﻌﻤﻞ ﺭﺍﺳﻢ ﺍﻫﺘﺰﺍﺯ ﻣﻬﺒﻄﻲ ﺫﻱ ﺫﺍﻛﺮﺓ ‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺑﻴ‪‬ﻦ ﻛﻴﻒ ﳝﻜﻦ ﺭﺑﻂ ﺭﺍﺳﻢ ﺍﻻﻫﺘﺰﺍﺯ ﺍﳌﻬﺒﻄﻲ ﺑﺎﻟﺪﺍﺭﺓ ﳌﺸﺎﻫﺪﺓ ﻛﻞ ﻣﻦ ) ‪ ub ( t‬ﻭ ) ‪ uR ( t‬؟‬
‫ﺏ‪ -‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t = 0s‬ﻓﻨﺸﺎﻫﺪ ﻋﻠﻰ ﺍﻟﺸﺎﺷﺔ ﺍﻟﺒﻴﺎﻧﻴﲔ ﺍﳌﻤﺜﻠﲔ ﻟﻠﺘﻮﺗﺮﻳﻦ ) ‪ ub ( t‬ﻭ ) ‪ ) uR ( t‬ﺍﻟﺸﻜﻞ‪. ( 3-‬‬
‫‪ -‬ﺍﻧﺴﺐ ﻛﻞ ﻣﻨﺤﲎ ﻟﻠﺘﻮﺗﺮ ﺍﳌﻮﺍﻓﻖ ﻟﻪ ‪ .‬ﻣﻊ ﺍﻟﺘﻌﻠﻴﻞ ‪.‬‬
‫ﺍﻟﺸــﻜﻞ‪3-‬‬
‫) ‪di ( t‬‬
‫‪ .2‬ﺃ‪ -‬ﺍﺛﺒﺖ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻟﺸﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ﺗﻜﻮﻥ ﻣﻦ ﺍﻟﺸﻜﻞ ‪+ Ai ( t ) = B :‬‬
‫‪dt‬‬
‫ﺏ‪ -‬ﺃﻋﻂ ﻋﺒﺎﺭﺓ ﻛﻞ ﻣﻦ ‪ A‬ﻭ ‪ B‬ﺑﺪﻻﻟﺔ ‪ E‬ﻭ ‪ L‬ﻭ ‪ r‬ﻭ ‪. R‬‬
‫‪B‬‬
‫ﺟ‪ -‬ﲢﻘﻖ ﻣﻦ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ) ‪1 - e - At‬‬
‫(‬
‫‪A‬‬
‫‪.‬‬
‫= ) ‪ i ( t‬ﻫﻲ ﺣﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ‪.‬‬
‫ﺩ‪ -‬ﺍﺣﺴﺐ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪. I 0‬‬
‫ﻫ‪ -‬ﺍﺣﺴﺐ ﻛﻞ ﻣﻦ ‪ E‬ﻭ ‪ r‬ﻭ ‪ t‬ﻭ ‪. L‬‬
‫ﻭ‪ -‬ﺃﺣﺴﺐ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﺑﺎﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﺃ‪ -‬ﺗﻮﺿﻴﺢ ﻛﻴﻔﺔ ﺭﺑﻂ ﺭﺍﺳﻢ ﺍﻻﻫﺘﺰﺍﺯ ﺍﳌﻬﺒﻄﻲ ﺑﺎﻟﺪﺍﺭﺓ ‪.‬‬
‫ﺍﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪ :‬ﻋﻠﻰ ﺍﳌﺪﺧﻞ ‪ y1‬ﻧﺸﺎﻫﺪ ) ‪ ub ( t‬؛ ﻭ ﻋﻠﻰ ﺍﳌﺪﺧﻞ ‪ y1‬ﻧﺸﺎﻫﺪ ) ‪. uR ( t‬‬
‫ﺏ‪ -‬ﺍﻧﺴﺎﺏ ﻛﻞ ﻣﻨﺤﲎ ﻟﻠﺘﻮﺗﺮ ﺍﳌﻮﺍﻓﻖ ‪.‬‬
‫ﺑﻌﺪ ﻏﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ﺗﺘﺰﺍﻳﺪ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﺎﻟﺪﺍﺭﺓ ﻭﺑﺎﻟﺘﺎﱄ ﻳﺘﺰﺍﻳﺪ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ) ‪ ) uR ( t‬ﻷﻥ ‪، ( u R = R.i :‬‬
‫ﻭﻳﺘﻨﺎﻗﺺ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ) ‪ ) ub ( t‬ﻷﻥ ‪. ( ub = E - u R :‬‬
‫ﺻﻔﺤﺔ ‪17‬‬
‫ﻭﻣﻨﻪ ‪ :‬ﺍﳌﻨﺤﲎ ‪ 1-‬ﻳﻮﺍﻓﻖ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ) ‪ uR ( t‬؛ ﻭ ﺍﳌﻨﺤﲎ ‪ 2-‬ﻳﻮﺍﻓﻖ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ ) ‪. uR ( t‬‬
‫‪ .2‬ﺃ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ u R ( t ) + ub ( t ) = E :‬ﺇﺫﻥ‪= E :‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪ Ri ( t ) + ri ( t ) + L‬ﺃﻱ ‪= E :‬‬
‫‪di ( t ) R + r‬‬
‫) ‪di ( t‬‬
‫‪E‬‬
‫‪+‬‬
‫ﻭﻣﻨﻪ ‪i ( t ) = :‬‬
‫؛ ﻭﻫﻲ ﻣﻦ ﺍﻟﺸﻜﻞ ‪+ Ai ( t ) = B :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪E‬‬
‫‪R+r‬‬
‫ﺏ‪ -‬ﺇﻋﻂ ﻋﺒﺎﺭﺓ ﻛﻞ ﻣﻦ ‪ A‬ﻭ ‪ . B‬ﺑﺎﳌﻄﺎﺑﻘﺔ ﳒﺪ ‪:‬‬
‫ﻭ =‪B‬‬
‫=‪A‬‬
‫‪L‬‬
‫‪L‬‬
‫ﺟ‪ -‬ﺍﻟﺘﺤﻘﻖ ﻣﻦ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ‪.‬‬
‫) ‪di ( t‬‬
‫‪B‬‬
‫ﻟﺪﻳﻨﺎ ‪ i ( t ) = (1 - e - At ) :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= B.e - At :‬‬
‫‪A‬‬
‫‪dt‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪( R + r ) i (t ) + L‬‬
‫‪.‬‬
‫‪.‬‬
‫) ‪di ( t‬‬
‫) ‪di ( t‬‬
‫‪B‬‬
‫؛ ﺃﻱ ‪+ Ai ( t ) = B :‬‬
‫ﺇﺫﻥ ‪+ Ai ( t ) = B.e - At + A. (1 - e - At ) = B.e - At + B - B.e - At :‬‬
‫‪dt‬‬
‫‪dt‬‬
‫‪A‬‬
‫‪.‬‬
‫‪R+r‬‬
‫‬‫‪t ö‬‬
‫‪B‬‬
‫‪E æ‬‬
‫‪- At‬‬
‫‪L‬‬
‫= ) ‪. i (t‬‬
‫‪ç1 - e‬‬
‫ﻭﻣﻨﻪ ‪ i ( t ) = (1 - e ) :‬ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪ ،‬ﺃﻱ ‪÷ :‬‬
‫‪A‬‬
‫‪R+rè‬‬
‫‪ø‬‬
‫ﺩ‪ -‬ﺍﺣﺴﺐ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ‪. I 0‬‬
‫‪U R 10‬‬
‫=‬
‫ﻣﻦ ﺍﳌﻨﺤﲏ‪ : 1-‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﳒﺪ ‪ U R = 10V :‬؛ ﻭﻟﺪﻳﻨﺎ ‪ U R = R.I 0 :‬؛ ﻭﺑﺎﻟﺘﺎﱄ ‪= 0,1A :‬‬
‫‪R 100‬‬
‫= ‪. I0‬‬
‫ﻫ‪ -‬ﺣﺴﺎﺏ ﻛﻞ ﻣﻦ ‪ E‬ﻭ ‪ r‬ﻭ ‪ t‬ﻭ ‪. L‬‬
‫ﻣﻦ ﺍﳌﻨﺤﲏ‪ 1-‬ﻭ ‪ 2‬ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺍﺋﻢ ﻟﺪﻳﻨﺎ ‪ U R = 10V :‬ﻭ ‪ ، U b = 2V‬ﻭﺑﺎﻟﺘﺎﱄ ‪. E = U b + U R = 10 + 2 = 12V :‬‬
‫‪Ub‬‬
‫‪2‬‬
‫=‬
‫ﻭﻟﺪﻳﻨﺎ ‪ ، U b = r.I 0 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= 20W :‬‬
‫‪I 0 0,1‬‬
‫ﻣﻦ ﺍﳌﻨﺤﲏ ‪ : 1-‬ﳌﺎ ‪ ، uR = 0, 63 ´ U R = 6,3V‬ﳒﺪ ‪t = 10ms :‬‬
‫‪L‬‬
‫ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫‪R+r‬‬
‫=‪r‬‬
‫‪.‬‬
‫‪.‬‬
‫= ‪ t‬ﻭﺑﺎﻟﺘﺎﱄ ‪. L = t ( R + r ) = 10 ´10 -3 ´120 = 0,12 H :‬‬
‫ﻭ‪ -‬ﺣﺴﺐ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﺑﺎﻟﻮﺷﻴﻌﺔ ‪.‬‬
‫‪1‬‬
‫‪2‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، E ( L ) = L.I 02 :‬ﻭﺑﺎﻟﺘﺎﱄ ‪. E ( L ) = ´ 0,12 ´ ( 0,1) = 6 ´ 10-2 J :‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺴﺎﺩﺱ ﻋﺸﺮ ‪:‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2010‬‬
‫ﳓﻘﻖ ﺍﻟﺪﺍﺭﺓ ) ﺍﻟﺸﻜﻞ‪ (5-‬ﻭﺍﻟﱵ ﺗﺘﻜﻮﻥ ﻣﻦ ﻣﻮﻟﺪ ﻟﺘﻮﺗﺮ ﺛﺎﺑﺖ ‪ ، E = 6,0V‬ﻭﻣﻜﺜﻔﺔ ﺳﻌﺘﻬﺎ ‪ C = 250m F‬ﻭﻧﺎﻗﻠﲔ ﺃﻭﻣﻴﲔ ﻣﺘﻤﺎﺛﻠﲔ ﻣﻘﺎﻭﻣﺔ ﻛﻞ ﻣﻨﻬﻤﺎ ‪R = 200W‬‬
‫ﻭﺑﺎﺩﻟﺔ ‪. K‬‬
‫ﺃﻭﻻ ‪ :‬ﻧﻀﻊ ﺍﻟﺒﺎﺩﻟﺔ ﻋﻠﻰ ﺍﻟﻮﺿﻊ ‪: 1‬‬
‫‪ .1‬ﺃ‪ -‬ﺃﻋﻂ ﺭﺳﻢ ﺍﻟﺪﺍﺭﺓ ) ﺍﻟﺸﻜﻞ‪ (5-‬ﻣﺒﻴﻨﺎ ﻋﻠﻴﻬﺎ ﺟﻬﺔ ﺍﻧﺘﻘﺎﻝ ﺣﺎﻣﻼﺕ ﺍﻟﺸﺤﻨﺔ ﻭﻣﺎ ﻃﺒﻴﻌﺘﻬﺎ ؟ ﺣﺪﺩ ﺷﺤﻨﺔ‬
‫ﻛﻞ ﻟﺒﻮﺱ ﻭﺟﻬﺔ ﺍﻟﺘﻴﺎﺭ ‪.‬‬
‫ﺏ‪ -‬ﺫﻛﺮ ﺑﺎﻟﻌﻼﻗﺔ ﺑﲔ ) ‪ i ( t‬ﻭ ) ‪ q ( t‬ﻭﺍﻟﻌﻼﻗﺔ ﺑﲔ ) ‪ uC ( t‬ﻭ ) ‪ q ( t‬ﰒ ﺍﺳﺘﻨﺘﺞ ﺍﻟﻌﻼﻗﺔ ﺑﲔ‬
‫) ‪ i ( t‬ﻭ ) ‪. uC ( t‬‬
‫‪ .2‬ﺃ‪ -‬ﺃﻭﺟﺪ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ) ‪ uR ( t‬ﻭ ) ‪ uC ( t‬ﻭﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﱵ ﳛﻘﻘﻬﺎ ) ‪ uC ( t‬ﻫﻲ ﻣﻦ‬
‫) ‪duC ( t‬‬
‫ﺍﻟﺸﻜﻞ ‪+ uC ( t ) = A :‬‬
‫‪dt‬‬
‫ﺏ‪ -‬ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻜﻞ ﻣﻦ ‪. A ، t 1‬‬
‫ﺟ‪ -‬ﺃﻭﺟﺪ ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻭﺣﺪﺓ ‪ . t 1‬ﻋﺮﻓﻪ ‪.‬‬
‫‪. t1‬‬
‫ﺻﻔﺤﺔ ‪18‬‬
‫ﺍﻟﺸـــﻜﻞ ‪-5-‬‬
‫‪ .3‬ﺃ‪ -‬ﺇﻗﺮﺃ ﻋﻠﻰ ﺍﳌﻨﺤﲎ ﺍﻟﺒﻴﺎﱐ ) ﺍﻟﺸﻜﻞ ‪ ( 6-‬ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ ، t 1‬ﻭﻗﺎﺭ‪‬ﺎ ﺑﺎﻟﻘﻴﻤﺔ ﺍﶈﺴﻮﺑﺔ ﺳﺎﺑﻘﺎ ‪.‬‬
‫ﺏ‪ -‬ﺣﺪﺩ ﺑﻴﺎﻧﻴﺎ ﺍﳌﺪﺓ ﺍﻟﺰﻣﻨﻴﺔ ‪ Dt‬ﺍﻟﺼﻐﺮﻯ ﺍﻟﻼﺯﻣﺔ ﻻﻋﺘﺒﺎﺭ ﺍﳌﻜﺜﻔﺔ ﻋﻤﻠﻴﺎ ﻣﺸﺤﻮﻧﺔ ‪ .‬ﻗﺎﺭ‪‬ﺎ ﻣﻊ ‪t 1‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﻧﻀﻊ ﺍﻟﺒﺎﺩﻟﺔ ﻋﻠﻰ ﺍﻟﻮﺿﻊ ‪. 2‬‬
‫ﺃ‪ -‬ﻣﺎ ﺍﻟﻈﺎﻫﺮﺓ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﺍﻟﱵ ﲢﺪﺙ ؟ ﺃﻛﺘﺐ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺻﻠﻴﺔ ﻟـ ) ‪ uC ( t‬ﺍﳌﻮﺍﻓﻘﺔ ‪.‬‬
‫ﺏ‪ -‬ﺃﺣﺴﺐ ‪ ، t 2‬ﻗﺎﺭ‪‬ﺎ ﺑـ ‪ . t 1‬ﻣﺎﺫﺍ ﺗﺴﺘﻨﺘﺞ ؟‬
‫ﺟ‪ -‬ﻣﺜﻞ ﺑﺸﻜﻞ ﺗﻘﺮﻳﱯ ﺍﳌﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ﻟﺘﻐﲑ ) ‪ uC ( t‬ﻣﺴﺘﻌﻴﻨﺎ ﺑﺎﻟﻘﻴﻢ ﺍﳌﻤﻴﺰﺓ ‪.‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫ﺃﻭﻻ ‪ :‬ﺍﻟﺒﺎﺩﻟﺔ ﻋﻠﻰ ﺍﻟﻮﺿﻊ ‪: 1‬‬
‫‪ .1‬ﺃ‪ -‬ﳐـﻄﻂ ﺍﻟـﺪﺍﺭﺓ ‪ .‬ﺍﻟـﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫ﺣﺎﻣﻼﺕ ﺍﻟﺸﺤﻨﺔ ﻫﻲ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ‪.‬‬
‫ﺏ‪ -‬ﻛﺘﺎﺑﺔ ﺍﻟﻌﻼﻗﺎﺕ ﺍﳌﻄﻠﻮﺑﺔ ‪.‬‬
‫) ‪dq ( t‬‬
‫= ) ‪ i ( t‬ﻭ ) ‪ ، q ( t ) = C.uC ( t‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫‪dt‬‬
‫‪ .2‬ﺃ‪ -‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ‪.‬‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫) ‪duC ( t‬‬
‫‪dt‬‬
‫‪uR = R.i ( t ) = RC.‬‬
‫) ‪duC ( t‬‬
‫‪dt‬‬
‫‪. i ( t ) = C.‬‬
‫‪ .‬ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. u R ( t ) + uC ( t ) = E :‬‬
‫) ‪duC ( t‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪+ uC ( t ) = E :‬‬
‫‪dt‬‬
‫ﺏ‪ -‬ﺇﳚﺎﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻜﻞ ﻣﻦ ‪. A ، t 1‬‬
‫‪ . RC.‬ﻭﻫﻲ ﻣﻦ ﺍﻟﺸﻜﻞ ‪+ uC ( t ) = A :‬‬
‫) ‪duC ( t‬‬
‫‪dt‬‬
‫‪. t1‬‬
‫ﺑﺎﳌﻄﺎﺑﻘﺔ ‪ t 1 = RC = 200 ´ 250 ´ 10-6 = 5 ´ 10-2 s :‬ﻭ ‪. A = E = 6V‬‬
‫ﺟ‪ -‬ﺇﳚﺎﺩ ﻭﺣﺪﺓ ‪ t 1‬؛ ﻭﺗﻌﺮﻳﻔﻪ ‪.‬‬
‫ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻧﺴﺘﻨﺘﺞ ﺃﻥ ‪ ، t é duC ( t ) ù = U :‬ﺃﻱ ‪[U ] = U :‬‬
‫‪[ 1]ê‬‬
‫] [‬
‫] [ ‪ú‬‬
‫] ‪[T‬‬
‫‪ë dt û‬‬
‫] ‪[t 1‬‬
‫ﻭﻣﻨﻪ ‪. [t 1 ] = [T ] :‬‬
‫ﺗﻌﺮﻳﻔﻪ ‪ :‬ﻫﻮ ﺍﳌﺪﺓ ﺍﻟﻀﺮﻭﺭﻳﺔ ﻟﺸﺤﻦ ﺍﳌﻜﺜﻔﺔ ﺑﻨﺴﺒﺔ ‪. 63%‬‬
‫‪ .3‬ﺃ‪ -‬ﲢﺪﻳﺪ ﻗﻴﻤﺔ ‪. t 1‬‬
‫ﳑﺎﺱ ﺍﻟﺒﻴﺎﻥ ﻳﻘﻄﻊ ﺍﳌﻘﺎﺭﺏ ﰲ ﺍﻟﻨﻘﻄﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺻﻠﺔ ‪ t 1 = 0, 05s :‬ﻭﻫﻲ ﻣﻄﺎﺑﻘﺔ ﻟﻠﻘﻴﻤﺔ ﺍﶈﺴﻮﺑﺔ ﺳﺎﺑﻘﺎ ‪.‬‬
‫ﺏ‪ -‬ﲢــﺪﻳﺪ ‪. Dt‬‬
‫ﻳﺴﺘﻘﺮ ﺍﻟﺒﻴﺎﻥ ﺇﺑﺘﺪﺍﺀ ﻣﻦ ﺍﻟﻠﺤﻈﺔ ‪ Dt » 0, 25s :‬ﻭﻫﻲ ﺗﻮﺍﻓﻖ ﺍﻟﻘﻴﻤﺔ ‪. Dt » 5.t1 :‬‬
‫ﺛﺎﻧﻴﺎ ‪ :‬ﺍﻟﺒﺎﺩﻟﺔ ﻋﻠﻰ ﺍﻟﻮﺿﻊ ‪. 2‬‬
‫ﺕ‪ -‬ﺍﻟﻈﺎﻫﺮﺓ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﺍﳊﺎﺩﺛﺔ ‪ :‬ﺗﻔﺮﻳﻎ ﺍﳌﻜﺜﻔﺔ ﰲ ﺍﻟﻨﺎﻗﻠﲔ ﺍﻷﻭﻣﻴﲔ ‪.‬‬
‫) ﲢﻮﻝ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﳌﻜﺜﻔﺔ ﺇﱃ ﻃﺎﻗﺔ ﺣﺮﺍﺭﻳﺔ ﰲ ﺍﻟﻨﺎﻗﻠﲔ ﺍﻷﻭﻣﻴﲔ ﺑﻔﻌﻞ ﺟﻮﻝ (‬
‫) ‪uC (V‬‬
‫ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺻﻠﻴﺔ ﺍﳌﻮﺍﻓﻘﺔ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪. uC ( t ) + 2uR ( t ) = 0 :‬‬
‫) ‪du ( t‬‬
‫‪1‬‬
‫‪ . uC ( t ) + 2RC. C‬ﻭﻣﻨﻪ ‪uC ( t ) = 0 :‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪= 0 :‬‬
‫‪2RC‬‬
‫‪dt‬‬
‫‪+‬‬
‫) ‪duC ( t‬‬
‫‪dt‬‬
‫ﺙ‪ -‬ﺣﺴﺎﺏ ‪ t 2‬ﻭﻣﻘﺎﺭﻧﺘﻪ ﻣﻊ ‪. t1‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، t 2 = 2RC = 2 ´ 200 ´ 250 ´10-6 = 0,1s :‬ﻧﻼﺣﻆ ﺃﻥ ‪. t 2 = 2t 1 :‬‬
‫ﺍﻹﺳﺘﻨﺘﺎﺝ ‪ :‬ﻣﺪﺓ ﺗﻔﺮﻳﻎ ﺍﳌﻜﺜﻔﺔ ﺗﺴﺎﻭﻱ ﺿﻌﻒ ﻣﺪﺓ ﺷﺤﻨﻬﺎ ‪.‬‬
‫‪1‬‬
‫) ‪t ( ms‬‬
‫ﺟ‪ -‬ﲤﺜﻴﻞ ﺷﻜﻞ ﺗﻘﺮﻳﱯ ﻟﻠﻤﻨﺤﲏ ﺍﻟﺒﻴﺎﱐ ﻟﺘﻐﲑ ) ‪. uC ( t‬‬
‫ﺍﻟﺒﻴﺎﻥ ﺑﺎﻟﺸﻜﻞ ﺍﳌﻘﺎﺑﻞ ‪.‬‬
‫ﺣﻴﺚ ‪. uC ( 5t 2 ) = 0 ، uC (t 2 ) = 0,37 E = 2, 22V ، uC ( 0 ) = E = 6V :‬‬
‫ﺻﻔﺤﺔ ‪19‬‬
‫‪0,05‬‬
‫ﺍﻟﺘﻤﺮﻳﻦ ﺍﻟﺴﺎﺑﻊ ﻋﺸﺮ ‪:‬‬
‫‪‬ﺪﻑ ﺗﻌﲔ ﺍﻟﺜﺎﺑﺘﲔ‬
‫) ‪( L, r‬‬
‫ﺭﻳﺎﺿﻴﺎﺕ ﻭﺗﻘﲏ ﺭﻳﺎﺿﻲ ‪2010‬‬
‫ﺍﳌﻤﻴﺰﻳﻦ ﻟﻮﺷﻴﻌﺔ ‪ ،‬ﳓﻘﻖ ﺍﻟﺪﺍﺭﺓ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ) ﺍﻟﺸﻜﻞ‪. ( 1-‬‬
‫ﺣﻴﺚ ‪ E = 9V :‬ﻭ ‪ . R = 45W‬ﰲ ﺍﻟﻠﺤﻈﺔ ‪ t1 = 0 s‬ﻧﻐﻠﻖ ﺍﻟﻘﺎﻃﻌﺔ ‪. K‬‬
‫‪ .1‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ‪ ،‬ﺑﲔ ﺃﻥ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﻟﺸﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻫﻲ ‪:‬‬
‫‪di ( t ) 1‬‬
‫‪E‬‬
‫‪.‬‬
‫= ) ‪+ i (t‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪t‬‬
‫‪ö‬‬
‫‪ .2‬ﺍﻟﻌﺒﺎﺭﺓ ÷‬
‫‪ø‬‬
‫ﻣﺎﺫﺍ ﳝﺜﻞ ؟‬
‫ﺍﻟﺸــﻜﻞ ‪1-‬‬
‫‪t‬‬
‫‬‫‪æ‬‬
‫‪ i ( t ) = A ç 1 - e t‬ﻫﻲ ﺣﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﻟﺴﺎﺑﻘﺔ ‪ ،‬ﺃﻭﺟﺪ ﺍﻟﺜﺎﺑﺖ ‪، A‬‬
‫‪è‬‬
‫‪ .3‬ﻋﱪ ﻋﻦ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ t‬ﺑﺪﻻﻟﺔ ‪ r ، L‬ﻭ ‪ R‬ﻭﺑﲔ ﺑﺎﻟﺘﺤﻠﻴﻞ ﺍﻟﺒﻌﺪﻱ ﺃﻧﻪ ﻣﺘﺠﺎﻧﺲ ﻣﻊ ﺍﻟﺰﻣﻦ ‪.‬‬
‫‪ .4‬ﺑﻮﺍﺳﻄﺔ ﻻﻗﻂ ﺁﻣﺒﲑ ﻣﺘﺮ ﻣﻮﺻﻮﻝ ﺑﺎﻟﺪﺍﺭﺓ ﻭﻣﺮﺗﺒﻂ ﺑﻮﺍﺟﻬﺔ ﺩﺧﻮﻝ ﳉﻬﺎﺯ ﺇﻋﻼﻡ ﺁﱄ ﻣﺰﻭﺩ ﺑﱪﳎﻴﺔ‬
‫ﻣﻨﺎﺳﺒﺔ ﳓﺼﻞ ﻋﻠﻰ ﺍﻟﺘﻄﻮﺭ ﺍﻟﺰﻣﲏ ﻟﻠﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ) ‪) i ( t‬ﺍﻟﺸﻜﻞ‪. (2-‬‬
‫ﺃ‪ -‬ﺃﻭﺟﺪ ﺑﻴﺎﻧﻴﺎ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪ ، t‬ﻣﻊ ﺷﺮﺡ ﺍﻟﻄﺮﻳﻘﺔ ﺍﳌﺘﺒﻌﺔ ‪.‬‬
‫ﺏ‪-‬ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﳌﻘﺎﻭﻣﺔ ‪ ، r‬ﰒ ﺃﺣﺴﺐ ﻗﻴﻤﺔ ﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪L‬‬
‫‪ .5‬ﺃﺣﺴﺐ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻌﺔ ‪.‬‬
‫ﺍﻟﺸــﻜﻞ ‪2-‬‬
‫ﺍﳊﻞ ﺍﳌﻔﺼﻞ ‪:‬‬
‫‪.‬‬
‫‪ .1‬ﻛﺘﺎﺑﺔ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﺪﺍﺭﺓ ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻧﻮﻥ ﲨﻊ ﺍﻟﺘﻮﺗﺮﺍﺕ ﻟﺪﻳﻨﺎ ‪ u R ( t ) + ub ( t ) = E :‬ﺇﺫﻥ‪= E :‬‬
‫ﺃﻱ ‪= E :‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫) ‪di ( t‬‬
‫‪dt‬‬
‫‪Ri ( t ) + ri ( t ) + L‬‬
‫‪( R + r ) i (t ) + L‬‬
‫‪di ( t ) R + r‬‬
‫‪E‬‬
‫‪di ( t ) 1‬‬
‫‪L‬‬
‫‪E‬‬
‫ﻭﻣﻨﻪ ‪i ( t ) = :‬‬
‫‪+‬‬
‫ﺣﻴﺚ ‪:‬‬
‫؛ ﻭﻫﻲ ﻣﻦ ﺍﻟﺸﻜﻞ ‪+ i ( t ) = :‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪L‬‬
‫‪R+r‬‬
‫‪t‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪ .2‬ﺇﳚﺎﺩ ﺍﻟﺜﺎﺑﺖ ‪. A‬‬
‫=‪t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪æ‬‬
‫‪di ( t ) 1‬‬
‫‪di ( t ) A - tt‬‬
‫‪E‬‬
‫‪t‬‬
‫‪ .‬ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫= ) ‪+ i (t‬‬
‫ﻟﺪﻳﻨﺎ ‪ ، i ( t ) = A ç 1 - e ÷ :‬ﻭﺑﺎﻟﺘﺎﱄ ‪= e :‬‬
‫‪t‬‬
‫‪t‬‬
‫‪dt‬‬
‫‪L‬‬
‫‪dt‬‬
‫‪è‬‬
‫‪ø‬‬
‫‪t‬‬
‫‪t‬‬
‫‪t‬‬
‫‪t‬‬
‫‪- ö‬‬
‫‪A -t 1 æ‬‬
‫‪E‬‬
‫ ‪A‬‬‫ ‪A A‬‬‫‪E‬‬
‫‪A E‬‬
‫‪.‬‬
‫= ‪ . e t + - e t‬ﺇﺫﻥ ‪:‬‬
‫‪ ،‬ﺃﻱ ‪:‬‬
‫ﺇﺫﻥ ‪:‬‬
‫= ÷ ‪e + .A ç1 - e t‬‬
‫=‬
‫‪t‬‬
‫‪t t‬‬
‫‪t L‬‬
‫‪L‬‬
‫‪t‬‬
‫‪t è‬‬
‫‪ø L‬‬
‫‪E‬‬
‫‪L E‬‬
‫‪E‬‬
‫ﻭﻣﻨﻪ ‪:‬‬
‫=‬
‫=‬
‫‪L R+r L R+r‬‬
‫‪ .3‬ﻋﺒﺎﺭﺓ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t‬‬
‫‪.‬‬
‫ﺍﻟﺸــﻜﻞ ‪1-‬‬
‫‪ . A = I 0 = 4, 5 ´ 0, 04 = 0,18 A ، A = t‬ﻭﻫﻲ ﲤﺜﻞ ﺍﻟﺸﺪﺓ ﺍﻷﻋﻈﻤﻴﺔ ﻟﻠﺘﻴﺎﺭ ﺍﳌﺎﺭ ﰲ ﺍﻟﺪﺍﺭﺓ ) ﰲ ﺍﻟﻨﻈﺎﻡ ﺍﻟﺪﺋﻢ (‬
‫‪L‬‬
‫‪L‬‬
‫ﺗﻌﻄﻰ ﻋﺒﺎﺭﺓ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ﻛﻤﺎﻳﻠﻲ ‪:‬‬
‫=‬
‫‪R + r Réq‬‬
‫= ‪ . t‬ﻭﺑﺎﻟﺘﺎﱄ ‪= [T ] :‬‬
‫] ‪[U ][T ][ I‬‬
‫=‬
‫= ] ‪[t‬‬
‫‪-1‬‬
‫‪éë Réq ùû‬‬
‫] ‪[U ][ I‬‬
‫‪-1‬‬
‫‪ .4‬ﺃ‪ -‬ﲢﺪﻳﺪ ﻗﻴﻤﺔ ﺛﺎﺑﺖ ﺍﻟﺰﻣﻦ ‪. t‬‬
‫ﻣﻦ ﺍﻟﺒﻴﺎﻥ ﳌﱠﺎ ‪ i = 0, 63.I 0 = 0, 63 ´ 0,18 = 0,11A :‬ﳒﺪ ‪. t = 0, 2ms :‬‬
‫]‪[ L‬‬
‫ﺏ‪ -‬ﲢﺪﻳﺪ ﻗﻴﻤﺔ ﺍﳌﻘﺎﻭﻣﺔ ‪ ، r‬ﰒ ﺣﺴﺎﺏ ﻗﻴﻤﺔ ﺫﺍﺗﻴﺔ ﺍﻟﻮﺷﻴﻌﺔ ‪. L‬‬
‫‪L‬‬
‫‪E‬‬
‫‪E‬‬
‫‪9‬‬
‫= ‪ t‬ﺇﺫﻥ ‪. L = t ( R + r ) = 0, 2 ´ 10 -3 ´ 50 = 10 -2 H :‬‬
‫= ‪ . r = - R‬ﻭﻟﺪﻳﻨﺎ ‪:‬‬
‫ﻟﺪﻳﻨﺎ ‪:‬‬
‫= ‪ I 0‬ﺇﺫﻥ ‪- 45 = 5W :‬‬
‫‪R+r‬‬
‫‪R+r‬‬
‫‪I0‬‬
‫‪0,18‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪ .5‬ﺣﺴﺎﺏ ﺍﻟﻄﺎﻗﺔ ﺍﻷﻋﻈﻤﻴﺔ ﺍﳌﺨﺰﻧﺔ ﰲ ﺍﻟﻮﺷﻌﺔ ‪ .‬ﻟﺪﻳﻨﺎ ‪E ( L ) = L.I 02 = ´ 10 -2 ´ ( 0,18 ) = 1, 62 ´ 10 -4 :‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺻﻔﺤﺔ ‪20‬‬
‫ﻫﺎﻡ ﺟــﺪﺍ ‪ :‬ﻭﺭﺩ ﺧﻂ ﰲ ﺍﻟﺴﻠﺴﻠﺔ ﺭﻗﻢ ‪ 01‬ﻟﻠﻮﺣﺪﺓ ﺍﻷﻭﱃ ﰲ ﺍﻟﺘﻤﺮﻳﻦ ‪ 10‬ﺷﻌﺒﺔ ﺍﻟﻌﻠﻮﻡ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ‪ . 2010‬ﻓﺄﺭﺟﻮ ﺍﳌﻌﺬﺭﺓ ‪.‬‬
‫ﺍﳋﻄﺄ ﺑﺎﻟﺘﺤﺪﻳﺪ ﰲ ﺍﻟﺘﺠﺮﺑﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻭﻫﻮ ﻧﻘﻄﺔ ﺑﺪﺍﻳﺔ ﺍﻟﺒﻴﺎﻥ ‪. 02‬‬
‫‪ .3‬ﺍﻟﺘﺠﺮﺑﺔ ﺍﻟﺜﺎﻧﻴﺔ‪ :‬ﻳﺘﻨﺎﻗﺺ ﺍﻟﺒﻴﺎﻥ ﺑﺴﺮﻋﺔ ﺃﻗﻞ ﻣﻦ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ‪ ،‬ﻭﺫﻟﻚ ﻷﻥ ﺗﺮﻛﻴﺰ ﺛﻨﺎﺋﻲ ﺍﻟﻴﻮﺩ ﺍﳌﺴﺘﻌﻤﻞ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺃﻗﻞ ﻣﻦ ﺗﺮﻛﻴﺰ ﺛﻨﺎﺋﻲ ﺍﻟﻴﻮﺩ ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ)ﳏﻠﻮﻝ ﳐﻔﻒ( ‪.‬‬
‫‪C 20‬‬
‫‪V‬‬
‫‪100‬‬
‫=‬
‫= ‪ F = f‬؛ ﻭﺑﺎﻟﺘﺎﱄ ‪= 10mmol .L -1 :‬‬
‫ﻟﺪﻳﻨﺎ ‪= 2 :‬‬
‫‪F‬‬
‫‪2‬‬
‫‪Vi‬‬
‫‪50‬‬
‫= ‪. [ I 2 ]i‬‬
‫‪ .4‬ﺍﻟﺘﺠﺮﺑﺔ ﺍﻟﺜﺎﻟﺜﺔ ‪ :‬ﻳﺘﻨﺎﻗﺺ ﺍﻟﺒﻴﺎﻥ ﺑﺴﺮﻋﺔ ﺃﻛﱪ ﻣﻦ ﺍﳊﺎﻟﺘﲔ ‪ ،‬ﻭﺫﻟﻚ ﻻﺭﺗﻔﺎﻉ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬
‫‪ .5‬ﺍﻟﻌﻮﺍﻣﻞ ﺍﳊﺮﻛﻴﺔ ﺍﻟﱵ ﺗﱪﺯﻫﺎ ﻫﺬﻩ ﺍﻟﺘﺠﺎﺭﺏ ﻫﻲ ﺗﺄﺛﲑ ﺗﺮﺍﻛﻴﺰ ﺍﳌﺘﻔﺎﻋﻼﺕ ﻭﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‬
‫ﻋﻠﻰ ﺳﺮﻋﺔ ﺍﻟﺘﻔﺎﻋﻞ ‪.‬‬
‫ﺍﻹﺳﺘﻨﺘﺎﺝ ‪:‬‬
‫· ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﺗﺮﺍﻛﻴﺰ ﺍﳌﺘﻔﺎﻋﻼﺕ ﺃﻛﱪ ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﺳﺮﻋﺔ ﺍﻟﺘﻔﺎﻋﻞ ﺃﻛﱪ ‪.‬‬
‫· ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻮﺳﻂ ﺃﻋﻠﻰ ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﺳﺮﻋﺔ ﺍﻟﺘﻔﺎﻋﻞ ﺃﻛﱪ ‪.‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﻳﻜﻮﻥ ﺯﻣﻦ ﻧﺼﻒ ﺍﻟﺘﻔﺎﻋﻞ ﺃﺻﻐﺮ ﰲ ﺍﻟﺘﺤﻮﻝ ﺍﻟﻜﻴﻤﻴﺎﺋﻲ ﺍﻷﺳﺮﻉ ‪.‬‬
‫ﺻﻔﺤﺔ ‪21‬‬